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Abstract. This paper investigates, for the first time in the literature,
the approximation of min-max (regret) versions of classical problems like
shortest path, minimum spanning tree, and knapsack. For a bounded
number of scenarios, we establish fully polynomial-time approximation
schemes for the min-max versions of these problems, using relation-
ships between multi-objective and min-max optimization. Using dynamic
programming and classical trimming techniques, we construct a fully
polynomial-time approximation scheme for min-max regret shortest path.
We also establish a fully polynomial-time approximation scheme for min-
max regret spanning tree and prove that min-max regret knapsack is
not at all approximable. We also investigate the case of an unbounded
number of scenarios, for which min-max and min-max regret versions
of polynomial-time solvable problems usually become strongly NP-hard.
In this setting, non-approximability results are provided for min-max
(regret) versions of shortest path and spanning tree.

Keywords: min-max, min-max regret, approximation, fptas, shortest path, mi-
nimum spanning tree, knapsack.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty/imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to model parameters. There exist two natural ways of describing the set of all
possible scenarios. In the interval data case, each numerical parameter can take
any value between a lower and an upper bound. In the discrete scenario case, the
scenario set is described explicitly. In this case, that is considered in this paper,
we distinguish situations where the number of scenarios is bounded by a constant
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from those where the number of scenarios is unbounded. Kouvelis and Yu [5]
proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. The min-
max criterion aims at constructing solutions having a good performance in the
worst case. The min-max regret criterion, less conservative, aims at obtaining a
solution minimizing, over all possible scenarios, the maximum deviation of the
value of the solution from the optimal value of the corresponding scenario.

Complexity of the min-max and min-max regret versions has been studied
extensively during the last decade. In [5], for the discrete scenario case, the
complexity of min-max and min-max regret versions of several combinatorial
optimization problems was studied, including shortest path, minimum spanning
tree, assignment, and knapsack problems. In general, these versions are shown
to be harder than the classical versions. More precisely, if the number of sce-
narios is unbounded, these problems become strongly NP-hard, even when the
classical problems are solvable in polynomial time. On the other hand, for a
constant number of scenarios, it was only partially known if these problems are
strongly or weakly NP-hard. Indeed, the reductions described in [5] to prove
NP-difficulty are based on transformations from the partition problem which is
known to be weakly NP-hard [3]. These reductions give no indications as to the
precise status of these problems. The only known weakly NP-hard problems are
those for which there exists a pseudo-polynomial algorithm (shortest path, knap-
sack, minimum spanning tree on grid graphs, ...). All these pseudo-polynomial
algorithms described in [5] are based on dynamic programming.

In this paper we consider, for the first time in the literature, the approx-
imation complexity of these versions for classical combinatorial optimization
problems, focusing on three typical problems: shortest path, minimum spanning
tree and knapsack.

After presenting preliminary concepts in Section 2, we investigate the exis-
tence of approximation algorithms for our reference problems when the number
of scenarios is bounded by a constant (Section 3), and when it is unbounded
(Section 4). The results we obtained are summarized in Table 1.

bounded unbounded
min-max| min-max regret min-max min-max regret
shortest path fptas fptas not (2 — ¢) approx. |not (2 — &) approx.
min spanning tree| fptas fptas not (2 — &) approx.|not (2 — ¢) approx.
knapsack fptas |not at all approx.| not at all approx. | not at all approx.

Table 1. Approximation results for min-max and min-max versions

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective

function defined as:
min Z?:l Ci%; c; € 7+
rze X c{0,1}"



Approximation complexity of min-max (regret) problems 3

This class encompasses a large variety of classical combinatorial problems,
some of which are polynomial-time solvable (shortest path problem, minimum
spanning tree, ...) and others are NP-difficult (knapsack, set covering, ...).

2.1 Min-max, min-max regret versions

Given a problem P € C, the min-max (regret) version associated to P has as
input a finite set of scenarios S where each scenario s € S is represented by
a vector (cf,...,c5). We denote by val(z,s) = Y, ciz; the value of solution
x € X under scenario s € S and by val} the optimal value in scenario s.

The min-max optimization problem corresponding to P, denoted by MIN-
MAX P, consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as:

min max val(z, s)
zeX seSs

Given a solution = € X, its regret, R(x,s), under scenario s € S is defined
as R(z, s) = val(z, s) —val’. The mazimum regret Ryqq(x) of solution x is then
defined as Rz () = maxges R(z, s).

The min-max regret optimization problem corresponding to P, denoted by
MIN-MAX REGRET P, consists of finding a solution « minimizing the maximum
regret Ry,q.(x) which can be stated as:

. . s
min Rypoz(z) = min I?eag{val(x, s) —wall}

When P is a maximization problem, the max-min and min-max regret ver-
sions associated to P are defined similarly.

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a
solution x of I. We denote by opt(I) the optimum value of instance I. The
val(z) opt(I)
opt(I)’ val(x)

performance ratio of x is r(x) = max{ }, and its error is e(x) =

r(z) —1.

For a function f, an algorithm is an f(n)-approzimation algorithm if, for
any instance I of the problem, it returns a solution x such that r(x) < f(|I]).
An optimization problem has a fully polynomial-time approximation scheme (an
fptas, for short) if, for every constant € > 0, it admits an (1 + ¢)-approximation
algorithm which is polynomial both in the size of the input and in 1/e. The set
of problems having an fptas is denoted by FPTAS.

We recall the notion of gap-introducing reduction (see, e.g., [1,8]). Let P be a
decision problem and Q a minimization problem. P is gap-introducing reducible
to Q if there exist two functions f and « such that, given an instance I of P, it
is possible to construct in polynomial time an instance I’ of Q, such that

— if I is a positive instance then opt(I') < f(I'),

— if T is a negative instance then opt(I') > a(|I'|) f(I').
If P is an NP-hard problem, and P is gap-introducing reducible to Q, then Q
is not a(n)-approximable if P # NP.
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2.3 Multi-objective optimization

It is natural to consider scenarios as criteria (or objective functions) and to inves-
tigate relationships between min-max (regret) and multi-objective optimization,
when it is usually assumed that the number of criteria is a constant.

The multi-objective version associated to P € C, denoted by MULTI-OBJEC-
TIVE P, has for input k objective functions (or criteria) where the hth objective
function has coefficients cf,...,ct. We denote by val(z,h) = Y1, clz; the
value of solution z € X on criterion h, and assume w.l.o.g. that all criteria are
to be minimized. Given two feasible solutions = and y, we say that y dominates
x if val(y, h) <wal(xz,h) for h=1,...,k with at least one strict inequality. The
problem consists of finding the set E of efficient solutions. A feasible solution x
is efficient if there is no other feasible solution y that dominates x. In general
MULTI-OBJECTIVE P is intractable in the sense that it admits instances for which
the size of FE is exponential in the size of the input. A set F' of feasible solutions is
called an f(n)-approximation of the set of efficient solutions if, for every efficient
solution z, F' contains a feasible solution y such that val(y, h) < f(n)val(z,h)
for each criterion h = 1,..., k. An algorithm is an f(n)-approzimation algorithm
for a multi-objective problem, if for any instance I of the problem it returns an
f(n)-approximation of the set of efficient solutions. A multi-objective problem
has an fptas if, for every constant £ > 0, there exists an (1 + €)-approximation
algorithm for the set of efficient solutions which is polynomial both in the size
of the input and in 1/e.

3 Bounded number of scenarios

3.1 Min-max problems

Consider a minimization problem P. It is easy to see that at least one optimal
solution for MIN-MAX P is necessarily an efficient solution. Indeed, if x € X
dominates y € X then maxgeg val(z, s) < maxses val(y, s). Therefore, we obtain
an optimal solution for MIN-MAX P by taking, among the efficient solutions,
one that has a minimum maxseg val(z, s). Observe, however, that if MIN-MAX
P admits several optimal solutions, some of them may not be efficient, but at
least one is efficient.

Theorem 1. For any function f : IN — (1,00), if MULTI-OBJECTIVE P has a
polynomial-time f(n)-approzimation algorithm, then MIN-MAX P has a polyno-
mial-time f(n)-approxzimation algorithm.

Proof. Let F be an f(n)-approximation of the set of efficient solutions. Since at
least one optimal solution z* for MIN-MAX P is efficient, there exists a solution
y € F such that val(y,s) < f(n)val(z*,s), for s € S. Consider among the set
F a solution z that has a minimum maxsecg val(z, s). Thus, maxgecg val(z,s) <
maxges val(y, s) < maxgegs f(n)val(z*,s) = f(n)opt(I). a
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Corollary 1. For a bounded number of scenarios, MIN-MAX SHORTEST PATH,
MIN-MAX SPANNING TREE, and MAX-MIN KNAPSACK are in FPTAS.

Proof. For a bounded number of criteria, multi-objective versions of SHORTEST
PATH, MINIMUM SPANNING TREE and KNAPSACK, have an fptas [6]. O

3.2 Min-max regret problems

General results

As for min-max, at least one optimal solution for MIN-MAX REGRET P is neces-
sarily an efficient solution for MULTI-OBJECTIVE P. Indeed, if x € X dominates
y € X then val(z,s) < wval(y, s), for each s € S, and thus Ryez(%) < Rias ().
Therefore, we obtain an optimal solution for MIN-MAX REGRET P by taking,
among the efficient solutions, a solution z that has a minimum Ry,q. (). Unfor-
tunately, given F' an f(n)-approximation of the set of efficient solutions, a solu-
tion x € F with a minimum R, () is not necessarily an f(n)-approximation
for the optimum value since the minimum maximum regret could be very small
compared with the error that was allowed in F'.

The following result deals with problems whose feasible solutions have a fixed
size. In this context, we need to consider instances where some coefficients are
negative but any feasible solution has a non-negative value. For an optimization
problem P, we denote by P’ the extension of P to these instances.

Theorem 2. For any polynomial-time solvable minimization problem P whose
feasible solutions have a fized size and for any function f : IN — (1,00), if MIN-
Max P’ has a polynomial-time f(n)-approxzimation algorithm, then MIN-MAX
REGRET P has a polynomial-time f(n)-approzimation algorithm.

Proof. Let t be the size of all feasible solutions of any instance of P. Consider
an instance I of MIN-MAX REGRET P where ¢ is the value of coefficient c;
in scenario s € §. Compute for each scenario s the value val? of an optimum
solution. We construct from I an instance I of MIN-MAX P’ with the same

. — val’ :
number of scenarios, where ¢j = ¢j ——=. Remark that some coefficients could be

negative but any feasible solution has a non-negative value. Let val(z, s) denote
the value of solution z in scenario s in I. The sets of the feasible solutions of both
instances are the same and moreover, for any feasible solution x, and for any
scenario s € S, we have R(x,s) = val(z,s) — val* = val(z, s) since any feasible
solution is of size t. Therefore, an optimum solution for I is also an optimum
solution for I with opt(I) = opt(I). |

Min-Max Regret Spanning Tree

Corollary 2. MIN-MAX REGRET SPANNING TREE, with a bounded number of
scenarios, is in FPTAS.

Proof. By combining the rounding technique [7], with a pseudo-polynomial time
algorithm for the exact version of minimum spanning tree [2,4], that can be
extended to instances with negative coefficients, we can obtain an fptas for MIN-
MAX REGRET (SPANNING TREE)’. Using Theorem 2, the result follows. O
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Min-Max Regret Shortest Path

We construct in the following an fptas for MIN-MAX REGRET SHORTEST PATH
considering the multi-objective problem that consists of enumerating the paths
whose regret vectors are efficient.

Theorem 3. MIN-MAX REGRET SHORTEST PATH, with a bounded number of
scenarios, is in FPTAS.

Proof. We consider first the case when the graph is acyclic and we describe
briefly at the end how to adapt this procedure for graphs with cycles.

Consider an instance I described by a directed acyclic graph G = (V, A),
where V' = {1,...,n} is such that if (¢,j) € A then i < j, and a set S of k
scenarios describing for each arc (i,7) € A its cost in scenario s by c;;- Denote
by ci; the vector of size k formed by ¢j;, s € S. Let (val?)!; s € 8,1 <i<n
be the value of a shortest path in graph G from 1 to i under scenario s and let
(val*)® be the vector of size k of these values (val?)’, s € S.

In the following, we describe firstly a dynamic programming algorithm that
computes at each stage i, 1 < i < n, the set R’ of efficient vectors of regrets
for paths from 1 to i, for each scenario s € S. Consider arc (i,j) € A and let
P; be a path in G from 1 to i of regret ri = val(P;,s) — (val?)?, s € S. Denote
by P; the path constructed from P; by adding arc (¢,j). The regret of P; is
r] =wval(Py, s)+ ¢} — (vali)! = ri+ (val?)’ +c§; — (valt)?, s € S. The algorithm
starts by initializing R' = {(0,...,0)}, where (0,...,0) is a vector of size k and
for2<j<nlet

R = Minjep-105{r" + (val*)’ + ¢;; — (val*)? : r* € R*}
where the operator "Min” preserves the efficient vectors.

Observe that, for 2 < j < n, R7, which contains all efficient regret vectors
for paths from 1 to j, necessarily contains one optimal vector corresponding
to a min-max regret shortest path from 1 to j. We also point out that, for
this algorithm as well as for the following approximation algorithm, any path
of interest can be obtained using standard bookkeeping techniques that do not
affect the complexity of these algorithms.

Our approximation algorithm is a dynamic programming procedure com-
bined with a trimming of the states depending on an accepted error € > 0. In
this procedure, define set 71 = {(0,...,0)}, and sets U’,T7 for 2 < j < n as
follows

Ul = User—1(p{rt + (val*)" + ci; — (val*)? : r* € T},
T = Red(U7), where Red is an operator satisfying the following property
VreUl 3reTi iF<r(l+e)mt
where, given two vectors /', " of size |S|, we have ' < ¢ if and only if v, < r//,
VseS.

In the following, we prove by induction on j the proposition

P(j) :¥Vr € R7,37 € T? such that 7 < r(1 —|—5)%
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Obviously, proposition P(1) is true. Supposing now that P(i) is true for
i < j, we show that P(j) is true. Consider » € R’. Then there exists i < j
such that (i,j) € A and v’ € R such that r = r' + (val*)" + ¢;; — (val*)7. Since
(val*)" + ¢;; > (val*)?, we have r > r’. Using the induction hypothesis for 1,
there exists 7 € T* such that 7 < r/(1 + 5)ﬁ Since 7 € T% and (4,7) € A, we
have 7 + (val*)’ + Cij — (val*)? € U’ and, using the property satisfied by Red,
there exists 7 € T7 such that:

F < [F+ (val*)" + ¢ij — (val*)7](1 S
<'(1+e)mt +r—r)(1+e)mT <r(l+e)mT <r(l —&—5)%.

Thus proposition P(j) is true for j = 1,...,n. Obviously, there exists r € R"™
such that opt(I) = maxsesrs. Applying P(n) to r € R™, there exists 7 € T"
such that 7 < r(1 +¢) and thus maxsegrs < (14 €)opt(I).

We show in the following how this algorithm can be implemented in poly-
nomial time in |I| and % Let ¢nax = max(; jjeases c;;- For any s € S and
2 < j < n, we have 7 < (n — 1)¢mas- An operator Red can be implemented in
polynomial time using the technique of interval partitioning described in Sahni
[7]. The idea is to partition the domain of values, for each scenario, into subinter-
vals such that the ratio of the extremities is (1 -I-E)ﬁ. Thus on each coordinate
(or scenario) we have [("71)115;(({‘ g é)c’"’”] subintervals. Operator Red can be
implemented by selecting only one vector in each non-empty hypercube of the

cartesian product of subintervals. Thus |T7] < (%)k, 2 < j < nand

1 “max . . .
%)k) that is polynomial in

the time complexity of our algorithm is O(n(
|| = |A|k10g Cmaz and L.

Consider now graphs with cycles. We can generalize the previous procedure,

by defining a dynamic programming scheme with stages ¢, £ = 1,....,n — 1,
containing sets of states Rf which represent the set of efficient vectors of regrets
for paths from 1 to j of length at most ¢, j =2,... n. O

Min-Max Regret Knapsack

In this section, we prove that MIN-MAX REGRET KNAPSACK is not at all
approximable even for two scenarios. For this, we use a reduction from MAXIMUM
CONSTRAINED PARTITION defined in [1].

MaXiMUM CONSTRAINED PARTITION

Input: A finite set A and an integer size s(a) for each a € A, one element ag € A
and a subset B C A.

Output: A feasible partition, i.e., a partition (A, A\ A’), A’ C A such that
Y aear8(a) = 3,4\ a0 5(a), with a maximum number of elements from B on
the same side of the partition as ag.

MaxiMuM CONSTRAINED PARTITION was proved not approximable within |A|®

for some € > 0 [9], but even deciding the existence of a feasible partition is
NP-hard [3].
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Theorem 4. For any function f : IN — (1,00), MIN-MAX REGRET KNAPSACK
is not f(n)-approximable even for two scenarios, unless P = NP.

Proof. We construct a reduction from MAXIMUM CONSTRAINED PARTITION to
MIN-MAX REGRET KNAPSACK. Consider an instance I of MAXiMuM CON-
STRAINED PARTITION characterized by a set A = {ag,a1,...,a,-1}, a size s(a)
for each a € A, and a subset B C A. We define an instance I’ of MIN-MAX
REGRET KNAPSACK as follows: the number of items is n + 1, the knapsack ca-
pacity is d = %EaeA s(a), the items weights are w; = s(a;) for i =0,...,n—1
and w, = d. I’ contains two scenarios and the values of the n items are de-
fined as follows: v} = n3d, v} =0, for i = 1,...,n and v? = n?s(a;) + §;, for
i=0,...,n—1, where §; = 1 if a; € B and §; = 0 otherwise, and v2 = n?d.

Clearly, the optimum value in the first scenario of I’ is n3d. If I does not
contain a feasible partition, the optimum value in the second scenario is n2d.
Indeed, candidate optimal solutions are either item n only with value n?d or sub-
sets T' of items such that Y, ., s(a;) < d with value n® Y, s(a;) + > ;e 0 <
n?(d—1)+n < n%d. If I contains a feasible partition, let opt(I) denote its optimal
value and (A’, A\ A’) an optimal partition. Suppose that ay € A’, otherwise we
exchange A’ with A\ A’. In this case, the optimum value in the second scenario is
n2d+ opt(I) (the optimal solution is formed by items corresponding to elements
from A’).

If a solution z of I’ does not contain ag then R,,q.(x) = n®d. Consequently,
any optimal solution z* of I’ must include item aq. If there exists a feasible
partition in I, then we have opt(I') = Ryez(7*) = 0 and opt(I') > n? —n,
otherwise.

Hence, MIN-MAX REGRET KNAPSACK is not approximable since otherwise,
any polynomial-time approximation algorithm for this problem applied to I’
could decide if I contains a feasible partition (we could even derive a maximum
constrained partition by selecting for A’ the set of items present in the optimal
solution). O

We conclude this section giving some precisions about the complexity status
of these problems. Pseudo-polynomial time algorithms were given in the case
of a bounded number of scenarios for min-max (max-min) and min-max regret
versions of shortest path, knapsack, and minimum spanning tree on grid graphs
[5]. Our fptas for min-max and min-max regret spanning tree establish also
the existence of pseudo-polynomial time algorithms for these problems. Thus
min-max (max-min) and min-max regret versions of shortest path, minimum
spanning tree and knapsack are weakly NP-hard.

4 Unbounded number of scenarios

When the number of scenarios is unbounded, min-max and min-max regret short-
est path as well as min-max spanning tree and max-min knapsack were proved
strongly NP-hard in [5]. We establish the strong NP-hardness of min-max regret
knapsack and min-max regret spanning tree in Theorems 5 and 9 respectively.
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Concerning approximability results, reductions used in [5] for proving the
strong NP-hardness of min-max/min-max regret shortest path, and min-max
spanning tree, which are based on the 3-partition problem, cannot be used to
establish non-approximability results for these problems. Using alternative re-
ductions, we establish such results in Theorems 6-9. On the other hand, the
reduction used in [5] for proving the strong NP-hardness of max-min knapsack
is stronger and can be used to establish non-approximability results. In fact, it is
a gap-introducing reduction from the set covering problem which maps positive
instances into instances with optimum value at least 1 and negative instances
into instances with optimum value 0. Therefore, we can deduce from this re-
duction that MAX-MIN KNAPSACK is not f(n)-approximable for any function
f: IN — (1,00). Finally, regarding MIN-MAX REGRET KNAPSACK, we know
already that it is not f(n)-approximable for any function f : IN — (1, 00), since
even for two scenarios it is not approximable as shown in Theorem 4.

Now we state and prove the above-mentioned results.

Theorem 5. MIN-MAX REGRET KNAPSACK, with an unbounded number of
scenartos, is strongly NP-hard.

Proof. We construct a gap-introducing reduction from VERTEX COVER. Given
a graph G = (V, E)) on n vertices and m edges and a positive integer k, we define
an instance I of MIN-MAX REGRET KNAPSACK with n items and a set of m
scenarios S = {s1,...,Sm}. The weights are w; = 1, for any ¢ = 1,...,n, the
knapsack capacity is d = k and the value of item 7 in scenario s; is vf I =1if
node ¢ € V is incident to edge j € E, and 0 otherwise.

Observe first that valy, = 2, for all s; € S, which is obtained by taking the
two items corresponding to the extremities of edge j. If G has a vertex cover V' of
size at most k then the subset of items 2’ corresponding to V” has val(z', s;) > 1,
for any s; € S since edge j is covered by V'. Thus, Rpqz(2") < 1, which implies
opt(I) < 1.

If G has no vertex cover of size at most k then for any V! C V |V/| < k,
there exists s; € S, corresponding to an edge j which is not covered by V’, such
that the subset of items z’ corresponding to V' has val(z’,s;) = 0, and thus
Rynaz (') = 2, which implies opt(I) = 2.

The existence of a polynomial-time algorithm would allow us to decide for
VERTEX COVER in polynomial time. m]

Observe that the (2 — €) non-approximability result that could be derived
from this proof is weaker than the result stated in Theorem 4.

We show in the following a non-approximability result for min-max and min-
max regret versions of shortest path. For this, we use a reduction from PATH
WITH FORBIDDEN PAIRS that is known to be NP-hard [3].

PATH WITH FORBIDDEN PAIRS
Input: A directed graph G = (V, A), where V' = {1,...,n}, a collection C =
{(a1,b1),...,(as,bs)} of arcs from A.
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Question: Is there a path from 1 to n in GG containing at most one vertex from
each arc of C' ?

Theorem 6. MIN-MAX SHORTEST PATH, with an unbounded number of sce-
narios, is not (2 — €)-approximable, for any € > 0, unless P = NP.

Proof. We construct a gap-introducing reduction from PATH WITH FORBIDDEN
PAIRS. Let I be an instance of this problem with n vertices and m arcs, and ¢
arcs in collection C. We construct an instance I’ of MIN-MAX SHORTEST PATH
as follows: consider the same graph G = (V, A), a scenario set S = {s1,...,8t},
and costs of arcs defined for each scenario as
2 if arc (4, ) corresponds to (an, bp)
Cpi = 1ifi=ah Oerbh,(i,j) 7& (ah,bh)
0 otherwise
Suppose that I is a positive instance, that is G contains a path p from 1
to n that has at most one extremity from each of the ¢ arcs of C'. Then for
any scenario s, we have val(p, s) < 1. Then maxegs val(p, s) < 1, which implies
opt(I') < 1.
If I is a negative instance, then every path p from 1 to n in G contains either
an arc or both extremities of an arc (ay, by) from C. Then val(p, sp) = 2 in both
cases. Thus maxeg val(p, s) = 2, which implies opt(I') = 2. a

Theorem 7. MIN-MAX REGRET SHORTEST PATH, with an unbounded number
of scenarios, is not (2 — e)-approximable, for any € > 0, unless P = NP.

Proof. As for the previous theorem, we construct a similar gap-introducing re-
duction from PATH WITH FORBIDDEN PAIRS. Let I be an instance of this
problem with n vertices and m arcs, and t arcs in the collection C'. We con-
struct an instance I’ of MIN-MAX REGRET SHORTEST PATH as follows: con-
sider graph G’ = (V', A"), where V' =V U{n+1,...,n+|S|}, A = Au{(1,7) :
i=n+1,....,n+ |5} U{@G,n) :i=n+1,...,n+ |5}, and a scenario set
S ={s1,...,5:}. The costs of arcs in A are defined for each scenario s € S as in
the previous theorem, and for any s € .S
cinﬂ' = CfL+i,n = {(1) i 8875 ;l
3
Obviously, val}, = 0 since the path (1, n + 4, n) has value 0 on scenario s;.
As previously, we can prove that if I is a positive instance, then opt(I”) < 1,
otherwise opt(I") = 2. O

We show in the following non-approximability results for min-max and min-
max regret versions of spanning tree. The first result uses a reduction from MIN-
IMUM DEGREE SPANNING TREE that is known to be not (2 — )-approximable,
for any € > 0 [3].

MINIMUM DEGREE SPANNING TREE
Input: A graph G = (V, E).
Output: A spanning tree such that its maximum degree is minimum.
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Theorem 8. MIN-MAX SPANNING TREE, with an unbounded number of sce-
narios, is not (% — ¢)-approximable, for any & > 0, unless P = NP.

Proof. We construct an approximation preserving reduction from MINIMUM DE-
GREE SPANNING TREE. Let G = (V, E) be an instance of this problem on n
vertices. We construct an instance of MIN-MAX SPANNING TREE on the same
graph G, with a set of n scenarios S = {s1,...,s,}, and costs of edges in sce-
nario sy defined by cf]” =1if h =4 or h = j and 0, otherwise. Then for any
spanning tree T' of G, the degree of i € V in T is the same as val(T), s;). Thus,
the maximum degree of T, that is max;cy dr (i), coincides with the maximum

value of T over all scenarios from S, that is maxsegval(T, s). O

Theorem 9. MIN-MAX REGRET SPANNING TREE, with an unbounded number
of scenarios, is strongly NP-hard. Moreover, it is not (% — &)-approzimable, for
any € > 0, unless P = NP.

Proof. We construct a gap-introducing reduction from 3SAT. Given a set U =
{u1,...,u,} of boolean variables and a formula ¢ containing the clauses {C1, ...,
Cyn } over U such that each clause depends on exactly 3 variables, we construct an
instance I of MIN-MAX REGRET SPANNING TREE defined on a graph G = (V, E)
where V = {1,...,n} U{l,..., A} U{n+1,...,3n}. Vertices 4,1, correspond to
variable u;, i = 1,...,n. Edge set is E = {(i,n + 1), (i,2n +1), (i,n + 1), (i,2n +
i),(i,4) :i=1,...,n} U{(i,i+1):i=1,...,n—1}. Scenario set S = S; USyU

Ss where S1 = {s1,...,5m} corresponds to clauses and Sy = {s],,1,...,55,},
Sz = {sh,..., s, s’T, ..., 85} correspond to vertices of G. The costs of edges in

. i . Sj _ . . . Sj _ .
scenario s; € S; are defined as follows: Ciopyi = 1 if u; € Cj, Conyi = 1 if

w; € Cj, and 0 otherwise. The values of edges in scenario s;» € Sy are defined
Sln+i _ S;’L+’I'r =7 CS/2n+1i _ (}sznﬂ
Lnti T i 0 Th2n4i T Yon 4y
and 0 otherwise. The values of edges in scenario s} € S3 are defined as follows:

’ ’ ’ ’ / ’

as follows: ¢ =n, for every i = 1,...,n

Si _ S _ S ST _ 57 _ 57 -
Citngi = Cianti = €7 = 2, i = Ciongi = G = 2, for every i = 1,...,n and

0 otherwise.

We compute in the following the optimum costs corresponding to each sce-
nario. For any scenario s; € Sy, consider the spanning tree containing {(z,i+1) :
i=1,...,n—1} and {(i,n+1), (i, 2n+1), (i,1)}, for every i such that u; € C;, or

{(i,2n+1), (i,n+1), (4,7) }, otherwise. Obviously, this tree has value 0 in scenario
s;. For any scenario s],; € Sa, val?, = n since any spanning tree contains one

n+i

of the edges (i,n + i), (i,n + ). Similarly, valy,  =mn, for all Spqs € S2. For

n+i

any scenario s, € Ss, val?, = 2 since any spanning tree contains at least one of
the edges (i,n + 1), (i,2n + 1), (i,7). Similarly, valy, = 2, for all s%. € Ss.

A spanning tree in G necessarily contains edges (i, + 1), i = 1,...,n —
1. We show in the following that every spanning tree T' that contains edges
(i,7), (i,n+1),(z,2n+1) or edges (4,7), (i,2n+1), (i,n+1) for every i = 1,...,n,
has Ryaz(T) < 3. Moreover, any other spanning tree 7" in G has Ry,q.(T") > 4.
We have val(T, s;) < 3, for any s; € S1, val(T,s’;) = n, for any s; € Sa, and
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val(T, s}) = 4, for any s} € S3. Thus, Rpa.(T) < 3. If T contains both edges
(i,n + 1), (i,n + 1) for some i, then val(T’, s, ;) = 2n and thus Ry,e(T") = n.
We can also see that if a spanning tree T” contains both edges (i, 2n +1), (i, 2n +
i) for some i, then val(1”,s5, ;) = 2n and thus Ry, (T') = n. Consider in
the following spanning trees 7" that contain edges (i,i), i = 1,...,n. If T
contains both edges (i,n+ 1), (¢,2n +14) for some %, then val(1”, s;) = 6 and thus
Rpnax(T') = 4. We can see also that if T contains both edges (i,n+1), (,2n+1)
for some %, then val(T’,s%) = 6 and thus R4, (T") = 4. Thus an optimum
solution in G is a spanning tree T that contains edges (i,i+1),i=1,...,n—1,
edges (i,i), i = 1,...,n, and, for every i = 1,...,n, it contains either edges
(i,n+1), (i,2n+1) or edges (i,2n +1), (i,n +1i). Such spanning trees are in one-
to-one correspondence with assignments of variables uy, ..., u,. More precisely,
T contains for some i edges (i,n + i), (i,2n + i) if and only if u; takes value 1,
and it contains edges (i,2n + i), (i,n + i) if and only if u; takes value 0. If ¢ is
satisfiable, then there exists an assignment x for uq,...,u, that satisfies each
clause. Then, consider the spanning tree 1" associated to x. Every clause C; is
satisfied by x. Therefore, there exists u; € Cj, such that u; has value 1 in = or
u; € Cj, such that u; has value 0 in x. In both cases, val(T,s;) < 2, for any
sj € S1. Tree T has also val(T, s) = n, for any s € Sy and val(T, s) = 4, for any
s € S3, and thus, R4, (T) = 2, which implies opt(I) = 2.

Suppose now that ¢ is not satisfiable, that is for any assignment x, there exists
a clause C that is not satisfied. Therefore, for any spanning tree T" associated to
x, we have val(T, s;) = 3, and thus R, (T) = 3, which implies opt(I) =3. O

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complezity and approximation. Combinatorial optimization problems
and their approximability properties. Springer, 1999.

2. F. Barahona and R. Pulleyblank. Exact arborescences, matching and cycles. Dis-
crete Applied Mathematics, 16:91-99, 1987.

3. M. Garey and D. Johnson. Computer and Intractability: A Guide to the theory of
NP-completeness. Freeman, 1979.

4. S. P. Hong, S. J. Chung, and B. H. Park. A fully polynomial bicriteria approximation
scheme for the constrained spanning tree problem. Operations Research Letters,
32:233-239, 2004.

5. P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Boston, 1997.

6. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In IEEE Symposium on Foundations of Computer
Science, pages 86-92, 2000.

7. S. Sahni. General techniques for combinatorial approximation. Operations Research,

25(6):920-936, 1977.

V. V. Vazirani. Approzimation Algorithms. Springer, 2001.

9. D. Zuckerman. NP-complete problems have a version that’s hard to approximate.
In Proc. 8th Annual Conference on Structure in Complexity Theory, pages 305-312,
1993.

®



