
A practical efficient fptas

for the 0-1 multi-objective knapsack problem

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten

LAMSADE, Université Paris Dauphine, Place Du Maréchal De Lattre de Tassigny,
75 775 Paris Cedex 16, France. {bazgan,hugot,vdp}@lamsade.dauphine.fr

Abstract. In the present work, we are interested in the practical be-
havior of a new fptas to solve the approximation version of the 0-1 multi-
objective knapsack problem. Nevertheless, our methodology focuses on
very general techniques (such as dominance relations in dynamic pro-
gramming) and thus may be applicable in the implementation of fptas
for other problems as well. Extensive numerical experiments on various
types of instances establish that our method performs very well both in
terms of CPU time and size of solved instances. We point out some rea-
sons for the good practical performance of our algorithm. A comparison
with an exact method is also performed.

Keywords: multi-objective knapsack problem, approximation, dynamic
programming, dominance relations, combinatorial optimization.

1 Introduction

In multi-objective combinatorial optimization, a major challenge is to generate
either the set of efficient solutions, that have the property that no improvement
on any objective is possible without sacrificing on at least another objective, or
the set of non-dominated criterion vectors corresponding to their image in the
criterion space. The reader can refer to [1] about multi-objective combinatorial
optimization. However, even for moderately-sized problems, it is usually compu-
tationally prohibitive to identify the efficient set for two major reasons. First, the
number of efficient solutions can be very large. This occurs notably when solv-
ing intractable instances of combinatorial multi-objective problems, for which
the number of efficient solutions is not polynomial in the size of these instances
(see, e.g., [1] about the intractability of multi-objective problems). Second, for
most multi-objective problems, deciding whether a given solution is dominated
is NP-hard, even if the underlying single-objective problem can be solved in a
polynomial time.

To handle these two difficulties, researchers have been interested in develop-
ing approximation algorithms with provable guarantee such as fully polynomial
approximation schemes (fptas). Indeed, an fptas guarantees to compute, for a
given accuracy ε > 0, in a running time that is polynomial both in the size of
the input and in 1/ε, an (1+ε)-approximation, that is a subset of solutions such
that, for each efficient solution, this subset contains a solution that is at most



at a factor (1 + ε) on all objective values. This is made possible since it has
been pointed out in [2], that, under certain general assumptions, there always
exists an (1 + ε)-approximation, with any given accuracy ε > 0, whose size is
polynomial both in the size of the instance and in 1/ε. Thus using an fptas for
solving a multi-objective problem has two main advantages: on the one hand
it provides us with an efficient algorithm to compute an approximation with a
guaranteed accuracy and on the other hand it computes an approximation of
reasonable size. Nevertheless, in this stream, researchers are usually motivated
by the theoretical question of proving or disproving the existence of an fptas
for a given problem. Thus, practical implementations of fptas are cruelly lacking
and most of the schemes proposed in the literature are not effective in practice.

We consider in this paper the 0-1 multi-objective knapsack problem which has
been shown to admit an fptas in [3,4,5]. Our perspective, however, is to propose
another fptas focusing on its practical behavior. The main idea of our approach,
based on dynamic programming, relies on the use of several complementary
dominance relations to discard partial solutions. In a previous work [6], such
techniques have been proved to be extremely effective to solve the exact version
of this problem. Extensive numerical experiments on various types of instances
are reported and establish that our method performs very well both in terms of
CPU time and size of solved instances (up to 20000 items in less than 1 hour in
the bi-objective case). We compare our approach with the exact method of [6],
which is the most effective exact method currently known. In our experiments,
we point out some reasons for the good practical performance of our algorithm
that may be applicable to other fptas. Indeed, since our methodology focuses on
very general techniques (such as dominance relations in dynamic programming),
it may be applicable in the implementation of fptas for other problems as well.

This paper is organized as follows. In section 2, we review basic concepts
about multi-objective optimization and approximation, and formally define the
0-1 multi-objective knapsack problem. Section 3 presents the dynamic program-
ming approach using dominance relations. Section 4 is devoted to the presen-
tation of the dominance relations. Computational experiments and results are
described in section 5. Conclusions are provided in a final section.

2 Preliminaries

We first recall that, given % a binary relation defined on a finite set A, B ⊆ A
is a covering (or dominating) set of A with respect to % if and only if for all
a ∈ A\B there exists b ∈ B such that b%a, and B ⊆ A is an independent (or
stable) set with respect to % if and only if for all b, b′ ∈ B, b 6= b′, not(b%b′).

2.1 Multi-objective optimization and approximation

Consider a multi-objective optimization problem with p criteria or objectives
where X denotes the finite set of feasible solutions. Each solution x ∈ X is



represented in the criterion space by its corresponding criterion vector f(x) =
(f1(x), . . . , fp(x)). We assume that each criterion has to be maximized.

From these p criteria, the dominance relation defined on X , denoted by ∆,
states that a feasible solution x dominates a feasible solution x′, x∆x′, if and
only if fi(x) ≥ fi(x

′) for i = 1, . . . , p. We denote by ∆ the asymmetric part
of ∆. A solution x is efficient if and only if there is no other feasible solution
x′ ∈ X such that x′∆ x, and its corresponding criterion vector is said to be
non-dominated. The set of non-dominated criterion vectors is denoted by ND .
A set of efficient solutions is said to be reduced if it contains only one solution
corresponding to each non-dominated criterion vector. Observe that X ′ ⊆ X is
a reduced efficient set if and only if it is a covering and independent set with
respect to ∆.

For any constant ε ≥ 0, the relation ∆ε, called ε-dominance, defined on X ,
states that for all x, x′ ∈ X, x∆εx

′ if and only if fi(x)(1 + ε) ≥ fi(x
′) for i =

1, . . . , p. For any constant ε ≥ 0, an (1 + ε)-approximation is a covering set
of X with respect to ∆ε. Any (1 + ε)-approximation which does not contain
solutions that dominate each other, i.e. which is independent with respect to ∆,
is a reduced (1 + ε)-approximation. In the following, for a given reduced (1 + ε)-
approximation, NDε denotes the image in the criterion space of this reduced
(1 + ε)-approximation.

2.2 The 0-1 multi-objective knapsack problem

An instance of the 0-1 multi-objective knapsack problem consists of an integer
capacity W > 0 and n items. Each item k has a positive integer weight wk and
p non negative integer profits vk

1 , . . . , vk
p (k = 1, . . . , n). A feasible solution is

represented by a vector x = (x1, . . . , xn) of binary decision variables xk, such
that xk = 1 if item k is included in the solution and 0 otherwise, which satisfies
the capacity constraint

∑n
k=1 wkxk ≤ W . The value of a feasible solution x ∈ X

on the ith objective is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instance of this

problem, we consider two versions: the exact version which aims at determining
a reduced efficient set, and the approximation version which aims at determining
a reduced (1 + ε)-approximation.

3 Dynamic Programming for the approximation version

We first describe the sequential process used in Dynamic Programming (DP)
and introduce some basic concepts of DP (section 3.1). Then, we present the
concept of dominance relations for solving the approximation version by a DP
approach (section 3.2).

3.1 Sequential process and basic concepts of DP

The sequential process used in DP consists of n phases. At any phase k we
generate the set of states Sk which represents all the feasible solutions made



up of items belonging exclusively to the k first items (k = 1, . . . , n). A state
sk = (sk

1 , . . . , sk
p, sk

p+1) ∈ Sk represents a feasible solution of value sk
i on the

ith objective (i = 1, . . . , p) and of weight sk
p+1. Thus, we have Sk = Sk−1 ∪

{(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤ W, sk−1 ∈ Sk−1} for k =

1, . . . , n where the initial set of states S0 contains only the state s0 = (0, . . . , 0)
corresponding to the empty knapsack. In the following, we identify a state and
a corresponding feasible solution. Thus, relations defined on X are also valid on
Sk, and we have sk∆s̃k if and only if sk

i ≥ s̃k
i , i = 1, . . . , p and sk∆εs̃

k if and
only if sk

i (1 + ε) ≥ s̃k
i , i = 1, . . . , p

Definition 1 (Completion, extension, restriction). For any state sk ∈ Sk

(k ≤ n), a completion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} such
that sk

p+1 +
∑

j∈J wj ≤ W . We assume that any state sn ∈ Sn admits the empty

set as unique completion. A state sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n)
if and only if there exists a completion J of sk such that sn

i = sk
i +

∑

j∈J vj
i for

i = 1, . . . , p and sn
p+1 = sk

p+1 +
∑

j∈J wj. The set of extensions of sk is denoted

by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restriction at phase k of state
sn ∈ Sn if and only if sn is an extension of sk.

3.2 Families of dominance relations in Dynamic Programming

The efficiency of DP depends crucially on the possibility of reducing the set of
states at each phase. In the context of the approximation version, a family of
dominance relations between states for ∆ε is used to discard states at any phase.
Each dominance relation of this family is specific to a phase. Indeed, we share
out the total error ε between the phases by the mean of an error function and
associate to each dominance relation of the family a proportion of this error.

Definition 2 (Error function). The function e : {1, . . . , n} → R is an error
function if and only if

∑n
k=1 e(k) ≤ 1 and e(k) ≥ 0, k = 1, . . . , n.

In this way, families of dominance relations between states for ∆ε are defined as
follows.

Definition 3 (Families of dominance relations between states for ∆ε).
For any ε ≥ 0 and any error function e, a family of relations Dk on Sk, k =
1, . . . , n, is a family of dominance relations for ∆ε if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), sn
i (1 + ε)e(k) ≥ s̃n

i , i = 1, . . . , p (1)

When ε = 0, Definition 3 collapses to the classical definition of dominance rela-
tions used in the context of the exact version: a relation Dk on Sk, k = 1, . . . , n,
is a dominance relation for ∆ if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), sn∆s̃n (2)

Even if dominance relations can be non-transitive, in order to be efficient in
the implementation, we consider only transitive dominance relations. We intro-
duce now the way of using families of transitive dominance relations for ∆ε in



DP approach (see Algorithm 1). At each phase k, Algorithm 1 generates a sub-
set of states Ck ⊆ Sk. This is achieved by first creating from Ck−1 a temporary
subset T k ⊆ Sk. Then, we apply transitive dominance relation Dk to each state
of T k in order to check if it is not dominated by any state already in Ck (in
which case it is added to Ck) and if it dominates states already in Ck (which
are then removed from Ck).

Algorithm 1: Computing a reduced (1 + ε)-approximation

C0 ← {(0, . . . , 0)};1

for k← 1 to n do2

T k ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤ W, sk−1 ∈ Ck−1};3

/* Assume that T k = {sk(1), . . . , sk(r)} */

Ck ← {sk(1)};4

for i← 2 to r do5

/* Assume that Ck = {s̃k(1), . . . , s̃k(ℓi)} */

dominated ← false ; dominates ← false ; j ← 1;6

while j ≤ ℓi and not(dominated) and not(dominates) do7

if s̃k(j)Dksk(i)
then dominated ← true8

else if sk(i)Dks̃k(j)
then Ck ← Ck\{s̃k(j)} ; dominates ← true;9

j ← j + 1;10

if not(dominated) then11

while j ≤ ℓi do12

if sk(i)Dk s̃k(j)
then Ck ← Ck\{s̃k(j)};13

j ← j + 1;14

Ck ← Ck ∪ {sk(i)};15

return Cn;16

The following results characterize the set Ck obtained at the end of each
phase k and establish the validity of Algorithm 1.

Proposition 1. For any transitive relation Dk on Sk, the set Ck obtained at
the end of phase k in Algorithm 1 is a covering and independent set of T k with
respect to Dk (k = 1, . . . , n).

Theorem 1. For any family of transitive dominance relations D1, . . . , Dn for
∆ε, Algorithm 1 returns Cn a covering set of Sn with respect to ∆ε. Moreover,
if ∆ ⊆ Dn, Cn is a reduced (1 + ε)-approximation.

Algorithm 1 can be significantly simplified by generating states of T k =
{sk(1), . . . , sk(r)} according to any topological order based on the asymmetric
part of Dk. Thus, we have either sk(i)Dksk(j) or not(sk(j)Dksk(i)) for all i < j
(1 ≤ i,j ≤ r) and step 9 and loop 12-14 can be omitted.

Remark that when ε = 0, we have ∆ε = ∆, and thus Cn is a covering set of
X with respect to ∆. Moreover, in this case, if ∆ ⊆ Dn, Cn corresponds to a
reduced efficient set.

4 Dominance relations

We first present the family of dominance relations for ∆ε used in our approach
that can provide an fptas in certain cases (section 4.1). Then, we present two



complementary dominance relations for ∆ (section 4.2) and give a brief explana-
tion of the way of applying them together with the family of dominance relations
for ∆ε (section 4.3).

4.1 Family of dominance relations for ∆
ε

To solve the exact version of the 0-1 multi-objective knapsack problem, we
showed in a previous work [6] that a powerful dominance relation for ∆ is the
relation Dk

∆ that is a generalization to the multi-objective case of the dominance

relation usually attributed to Weingartner and Ness [7]. Relation Dk
∆ is defined

on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
∆s̃k ⇔

{

sk∆s̃k and
sk

p+1 ≤ s̃k
p+1 if k < n

To solve the approximation version of the 0-1 multi-objective knapsack prob-
lem, we generalize relations Dk

∆ (k = 1, . . . , n) to obtain the family of dominance

relations Dk
∆ε

(k = 1, . . . , n) for ∆ε that is based on a partition of the criterion
space into hyper-rectangles. For a constant ε > 0 and an error function e, at each
phase k we partition each positive criterion range [1, Ui], where Ui is an upper
bound on the value of the feasible solutions on the ith criterion (i = 1, . . . , p),
into disjoints intervals of length (1 + ε)e(k) (k = 1, . . . , n). When e(k) = 0, we
obtain the following degenerate intervals: [1, 1], [2, 2], . . . , [Ui, Ui] (i = 1, . . . , p).
When e(k) 6= 0, we obtain the following intervals: [1; (1+ε)e(k)[, [(1+ε)e(k); (1+

ε)2e(k)[, . . . , [(1 + ε)(ℓ
k
i−1)e(k); (1 + ε)ℓk

i e(k)[ where ℓk
i =

⌊

log Ui

e(k) log(1+ε)

⌋

+ 1 (i =

1, . . . , p). In both cases, we add the interval [0, 0]. The number of the interval in
which belongs the value of a state sk on the ith criterion (i = 1, . . . , p) in this
partition is:

Bi(s
k, e(k)) =

{

sk
i if e(k) = 0 or sk

i = 0
⌊

log sk
i

e(k) log(1+ε)

⌋

+ 1 otherwise

From these partitions, we can define for any ε > 0 and any error function e,
relations Dk

∆ε
on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
∆

ε
s̃k ⇔

{

Bi(s
k, e(k)) ≥ Bi(s̃

k, e(k)) i = 1, . . . , p, and
sk

p+1 ≤ s̃k
p+1 if k < n

The following proposition shows that Dk
∆ε

is indeed a family of dominance rela-

tions for ∆ε and gives additional properties of Dk
∆

ε
.

Proposition 2. For any ε > 0 and any error function e, we have:
(a) Dk

∆ε
, k = 1, . . . , n, is a family of dominance relations for ∆ε,

(b) for any k ∈ {1, . . . , n}, Dk
∆ε

is transitive,

(c) for any k ∈ {1, . . . , n}, Dk
∆ε

⊇ Dk
∆ and Dk

∆ε
= Dk

∆ if e(k) = 0.



As a consequence of (c) we have ∆ ⊆ Dn
∆ε

and thus Algorithm 1 using the

family of relations Dk
∆

ε
, k = 1, . . . , n, computes a reduced (1+ε)-approximation

(see Theorem 1). Relation Dk
∆ε

is a powerful relation since a state can possibly
dominate all other states of larger weight. This relation requires at most p + 1
tests to be established between two states.

Observe that, even if the authors of [5] do not explicitly mention the use of
a family of dominance relations for ∆ε, their approach could be restated within
Algorithm 1 by using the following family of relations Dk

E defined on Sk by:

for all sk, s̃k ∈ Sk, skDk
E s̃k ⇔

{

Bi(s
k, 1/n) = Bi(s̃

k, 1/n), i = 1, . . . , p, and
sk

p+1 ≤ s̃k
p+1

Remark that Dk
E ⊆ Dk

∆ε
for e(k) = 1/n (k = 1, . . . , n). This relation, which is

quite sufficient to establish the existence of an fptas, has two main disadvantages
for an efficient implementation. First, it is very poor since it compares only states
lying in the same hyper-rectangle. Therefore, even if two states sk, s̃k are such
that skDk

∆s̃k, we keep both of them in Ck provided that they are not in the

same hyper-rectangle. Secondly, by applying a constant error of (1 + ε)1/n at
each phase, the total error of 1+ ε is shared out equitably among all the phases.
During the first phases, since the values of the states are small, the hyper-
rectangles in which the states belong usually have a length smaller than 1 on
all dimensions. In this case, the advantage of the partition is canceled out since
only states with same values could be in relation Dk

E . Thus, the error allocated
to these phases is wasted.

For a given ε > 0, the running time of Algorithm 1 using relation Dk
∆ε

depends crucially on the error function e. In order to guarantee that Algorithm 1
is polynomial both in the size of the instance and in 1/ε, we have to add some
conditions on the error function aiming at limiting the number of phases with
an error equals to 0.

Definition 4 (Polynomial error function). The error function e is a poly-
nomial error function if for k = 1, . . . , n, e(k) = 1/g(k), if k is a multiple of t,
0 otherwise, where t is a strictly positive integer in O(log n) and where, for any
k = 1, . . . , n, 0 < g(k) ≤ cnd for some positive fixed constants c, d.

The following theorem establishes the complexity of Algorithm 1 using the family
of dominance relations Dk

∆ε
.

Theorem 2. For any ε > 0 and any polynomial error function e, Algorithm 1,
using the family of dominance relations Dk

∆
ε
, is polynomial both in the size of

the instance and in 1/ε.

Hence, by Theorems 1 and 2 we have that, for any ε > 0 and any polynomial
error function e, Algorithm 1 using the family of dominance relations Dk

∆ε
is an

fptas that produces a reduced (1 + ε)-approximation.



4.2 Complementary dominance relations with respect to ∆

Since each dominance relation focuses on specific considerations, it is then desir-
able to make use of complementary dominance relations. Moreover, when decid-
ing to use a dominance relation, a tradeoff must be made between its potential
ability of discarding many states and the time it requires to be checked. We
present now two other complementary dominance relations for ∆. The first one,
Dk

r , is very easy to establish and the second one, Dk
b , although more difficult to

establish, is considered owing to its complementarity with Dk
r and Dk

∆ε
.

Relation Dk
r is based on the following observation. When the residual capacity

associated to a state sk of phase k is greater than or equal to the sum of the
weights of the remaining items (items k+1, . . . , n), the only completion of sk that
can possibly lead to an efficient solution is the full completion J = {k+1, . . . , n}.
It is then unnecessary to generate extensions of sk that do not contain all the
remaining items. We define thus the dominance relation Dk

r on Sk for k =
1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
r s̃k ⇔







s̃k ∈ Sk−1,
sk = (s̃k

1 + vk
1 , . . . , s̃k

p + vk
p , s̃k

p+1 + wk), and
s̃k

p+1 ≤ W −
∑n

j=k wj

This dominance relation is quite poor, since at each phase k it can only appear
between a state that does not contain item k and its extension that contains
item k. Nevertheless, it is very easy to check since, once the residual capacity
W −

∑n
j=k wj is computed, relation Dk

r requires only one test to be established
between two states.

Dominance relation Dk
b is based on the comparison between extensions of a

state and an upper bound of all the extensions of another state. In our context,
a criterion vector u = (u1, . . . , up) is an upper bound for a state sk ∈ Sk if and
only if for all sn ∈ Ext(sk) we have ui ≥ sn

i , i = 1, . . . , p.
We can derive a general type of dominance relations as follows: considering

two states sk, s̃k ∈ Sk, if there exists a completion J of sk and an upper bound
ũ for s̃k such that sk

i +
∑

j∈J vj
i ≥ ũi, i = 1, . . . , p, then sk dominates s̃k.

This type of dominance relations can be implemented only for specific com-
pletions and upper bounds. In our experiments, we just consider two specific
completions J ′ and J ′′ defined as follows. Let Oi be an order induced by consid-
ering items according to decreasing order of ratios vk

i /wk (i = 1, . . . , p). Let rℓ
i

be the rank or position of item ℓ in order Oi. Let Omax be an order according to
increasing values of the maximum rank of items in the p orders Oi (i = 1, . . . , p)
and Osum be an order according to increasing values of the sum of the ranks of
items in the p orders Oi (i = 1, . . . , p). After relabeling items k+1, . . . , n accord-
ing to Omax, completion J ′ is obtained by inserting sequentially the remaining
items into the solution provided that the capacity constraint is respected. J ′′

is defined similarly by relabeling items according to Osum. To compute u, we
use the upper bound presented in [8, Th 2.2] computed independently for each
criterion value.



Finally, we define Dk
b a particular dominance relation of this general type for

k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
b s̃k ⇔







sk
i +

∑

j∈J′ vj
i ≥ ũi, i = 1, . . . , p

or

sk
i +

∑

j∈J′′ vj
i ≥ ũi, i = 1, . . . , p

where ũ = (ũ1, . . . , ũp) is the upper bound, according to [8, Th 2.2] for s̃k.

Dk
b is harder to check than relations Dk

r , Dk
∆ and Dk

∆
ε
since it requires much

more tests and state-dependent information.

4.3 Use of multiple dominance relations

In order to be efficient, we will use the dominance relations Dk
r , Dk

∆ε
, and Dk

b

at each phase. As underlined in the previous subsection, dominance relations
require more or less computational effort to be checked. Moreover, even if they
are partly complementary, it often happens that several relations are valid for a
same pair of states. It is thus natural to apply first dominance relations which
can be checked easily (such as Dk

r and Dk
∆ε

) and then test on a reduced set of

states dominance relations requiring a larger computation time (such as Dk
b ).

5 Computational experiments and results

5.1 Experimental design

All experiments presented here were performed on a bi-Xeon 3.4GHz with 3072Mb
RAM. All algorithms are written in C++. In the bi-objective case (p = 2), the
following types of instances were considered:

A) Random instances: vk
1 ∈R [1, 1000], vk

2 ∈R [1, 1000] and wk ∈R [1, 1000]
B) Unconflicting instances, where vk

1 is positively correlated with vk
2 : vk

1 ∈R

[111, 1000] and vk
2 ∈R [vk

1 − 100, vk
1 + 100], and wk ∈R [1, 1000]

C) Conflicting instances, where vk
1 and vk

2 are negatively correlated: vk
1 ∈R

[1, 1000], vk
2 ∈R [max{900−vk

1 ; 1}, min{1100−vk
1 ; 1000}], and wk ∈R [1, 1000]

D) Conflicting instances with correlated weight, where vk
1 and vk

2 are negatively
correlated, and wk is positively correlated with vk

1 and vk
2 : vk

1 ∈R [1, 1000],
vk
2 ∈R [max{900 − vk

1 ; 1}, min{1100 − vk
1 ; 1000}], and wk ∈R [vk

1 + vk
2 −

200; vk
1 + vk

2 + 200].

where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these in-
stances, we set W = ⌊1/2

∑n
k=1 wk⌋.

Most of the time in the literature, experiments are made on instances of type
A. Sometimes, other instances such as those of type B, which were introduced in
[9], are studied. However, instances of type B should be viewed as quasi single-
criterion instances since they involve two non conflicting criteria. Nevertheless,
in a bi-objective context, considering conflicting criteria is a more appropriate



way of modeling real-world situations. For this reason, we introduced instances
of types C and D for which criterion values of items are conflicting. In instances
of type D, wk is positively correlated with vk

1 and vk
2 . These instances were in-

troduced in order to verify if positively correlated weight/values instances are
harder than uncorrelated weight/values instances as in the single-criterion con-
text [8,10].

For each type of instances and each value of n presented in this study, 10
different instances were generated. In the following, we denote by pTn a p criteria
instance of type T with n items. For example, 2A100 denotes a bi-objective
instance of type A with 100 items.

In the experiment, we give also, in some tables, the results obtained in [6] by
using relations Dk

r , Dk
∆ and Dk

b aiming at solving the exact version of the 0-1
multi-objective knapsack problem. These results are denoted by exact method.

In the experiment, the approximation method, respectively the exact method,
computes only NDε, respectively ND . Standard bookkeeping techniques, not
considered here, may be used to produce associated solutions.

5.2 Results

We first try to determine the best error function to use in relation Dk
∆

ε
. In

Table 1 we compare the CPU time in seconds and the size of NDε obtained for
these three polynomial error functions:

– e1(k) = 1/(⌊n/t⌋) if k is a multiple of t, 0 otherwise

– e2(k) = 2k/t
⌊n/t⌋(⌊n/t⌋+1) if k is a multiple of t, 0 otherwise

– e3(k) = 6(k/t)2

⌊n/t⌋(⌊n/t⌋+1)(2⌊n/t⌋+1) if k is a multiple of t, 0 otherwise

where t, which is a strictly positive integer in O(log n), expresses the frequency
of the application of the error. Table 1 shows clearly that the error function has
a significant impact on the CPU time and that error function e2 is significantly
better for all types of instances. Thus, in the following, we will use only error
function e2. Observe also that the size of NDε is always extremely smaller than
the number of non-dominated criterion vectors.

Table 1. Impact of different error functions in our approach

type avg. time in s. avg. |NDε| exact method [6]
e1 e2 e3 e1 e2 e3 avg t. in s. avg. |ND|

2A-400 51.775 34.347 50.022 332.1 199.8 134.3 307.093 4631.8
2B-1000 0.238 0.180 0.299 1.0 1.0 1.0 8.812 157.0
2C-300 74.308 50.265 68.974 615.3 326.4 227.5 373.097 1130.7
2D-150 65.144 47.398 67.758 703.0 384.3 263.1 265.058 3418.5

ε = 0.1 and frequency t = 1

Second, we show the impact of the frequency t in the error function e2. Table 2
shows that our approach is always faster by setting the frequency t = ⌊log n⌋.
Observe that the cardinality of NDε is inversely proportional to the frequency
t. For example the increase of a factor 3 of the frequency (from t = ⌊log n⌋ to
⌊3 logn⌋) leads to a decrease of about a factor 3 of the size of NDε.



Table 2. Impact of the frequency in the error function e2

avg. time in s. avg. |NDε| exact method [6]
type t = 1 ⌊log n⌋ ⌊2 log n⌋ ⌊3 log n⌋ t = 1 ⌊log n⌋ ⌊2 log n⌋ ⌊3 log n⌋ avg. t. in s. avg. |ND|

2A-400 34.347 4.536 5.441 7.664 199.8 31.3 16.1 11.9 307.093 4631.8
2B-1000 0.180 0.120 0.406 1.009 1.0 1.3 1.1 1.0 8.812 157.0
2C-300 50.265 7.511 8.084 11.618 326.4 53.6 27.3 18.8 373.097 1130.7
2D-150 47.398 10.874 11.935 16.156 384.3 70.1 35.8 26.4 265.058 3418.5

ε = 0.1 and error function e2

Lastly, we present, in Table 3, the performance of our approach on large size
instances. The largest instances solved here are those of type B with 20000 items
and the instances with the largest reduced (1 + ε)-approximation are those of
type D with 900 items. Observe that the average maximum cardinality of Ck,
which is a good indicator of the memory storage needed to solve the instances,
can be very huge. This explains why we can only solve instances of type D up
to 900 items.

Table 3. Results of our approach on large size instances

type n
time in s. |NDε| avg.

min avg. max min avg. max maxk{|C
k|}

A

100 0.024 0.042 0.072 6 10.1 15 2456.7
1000 88.121 94.050 103.402 65 68.5 76 321327.6
2000 896.640 1030.813 1398.060 111 123.9 132 1489132.4
2500 1635.230 1917.072 2081.410 127 138.6 147 2585169.9

B

1000 0.084 0.118 0.144 1 1.3 2 5596.4
10000 245.572 269.731 318.808 2 3.3 4 1160906.4
20000 2424.700 2816.606 3166.580 4 5.3 7 5424849.6

C
100 0.140 0.210 0.316 21 25.3 32 9964.2

1000 378.135 419.595 471.269 139 150.2 162 923939.4
2000 3679.770 4296.847 4749.160 255 272.0 285 4256900.6

D
100 1.948 2.356 2.828 50 52.9 57 93507.9
500 605.837 640.026 681.286 185 196.4 203 3034228.2
900 4154.610 4689.373 5177.200 297 313.0 329 10276196.8

ε = 0.1, error function e2 and frequency t = ⌊log n⌋

5.3 Comparison with an exact method

The results of a comparative study between the exact method presented in [6]
and our approximation method using relations Dk

r , Dk
∆

ε
, and Dk

b are presented

in Table 4. We have selected the method presented in [6] since, as shown in this
paper, it is the most effective method currently known.

The two methods have been compared on the same instances and the same
computer. Table 4 presents results for instances of type A, B, C, and D for
increasing size of n for instances that can be solved by the exact method. We give
for each series the “average error” that refers to the measured error a posteriori
which is the smallest value of ε such that the returned set is indeed a reduced
(1 + ε)-approximation.

Considering the CPU time, the approximation method, of course, is always
faster than the exact method (up to more than 600 times faster for instances
2B4000). Observe that, although the cardinality of NDε is very small with regard
to the cardinality of ND , the quality of the reduced (1+ε)-approximation is very
good since for an error a priori ε = 0.1, the error a posteriori varies from 0.0023
to 0.0183.



Table 4. Comparison between the exact method presented in [6] and the approximation method

type n
exact method [6] approximation method

avg. t. in s. avg. |ND| avg. t. in s. avg. |NDε| avg. error

A
100 0.328 159.3 0.042 ( ÷ 8 ) 10.1 ( ÷ 16 ) 0.0159
700 5447.921 4814.8 32.275 ( ÷ 169 ) 49.5 ( ÷ 97 ) 0.0060

B
1000 8.812 157.0 0.118 ( ÷ 75 ) 1.3 ( ÷ 121 ) 0.0041
4000 6773.264 1542.3 11.220 ( ÷ 604 ) 1.8 ( ÷ 857 ) 0.0023

C
100 2.869 558.2 0.210 ( ÷ 14 ) 25.3 ( ÷ 22 ) 0.0178
500 4547.978 7112.1 44.368 ( ÷ 103 ) 88.3 ( ÷ 81 ) 0.0064

D
100 40.866 1765.4 2.356 ( ÷ 17 ) 52.9 ( ÷ 33 ) 0.0183
250 3383.545 8154.7 62.970 ( ÷ 54 ) 110.9 ( ÷ 74 ) 0.0098

Approximation: ε = 0.1, e2 and frequency t = ⌊log n⌋
The decrease factors of the avg. CPU time and of the size of the returned set,
corresponding respectively to avg. t. in s. of exact method / avg. t. in s. of
approximation method and |ND|/|NDε|, are given into brackets

6 Conclusions

The purpose of this work was to design a practically efficient fptas, based on a
dynamic programming algorithm, for solving the approximation version of the
0-1 multi-objective knapsack problem. We showed indeed that by using several
complementary dominance relations, and sharing the error appropriately among
the phases, we obtain an fptas which is experimentally extremely efficient.

While we focused in this paper on the 0-1 multi-objective knapsack problem,
we could envisage in future research to apply dominance relations based on
similar ideas to the approximation version of other multi-objective problems
which admit dynamic programming formulations, such as the multi-objective
shortest path problem or multi-objective scheduling problems.

References

1. Ehrgott, M.: Multicriteria optimization. LNEMS 491. Springer, Berlin (2005)
2. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and

optimal access of web sources. In: IEEE Symposium on Foundations of Computer
Science. (2000) 86–92

3. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria combina-
torial optimization. Working Paper 3756-95, Sloan School (1995)

4. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria flow, knap-
sack, and scheduling problems. Working Paper 3757-95, Sloan School (1995)

5. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack
problems. Management Science 48(12) (2002) 1603–1612

6. Bazgan, C., Hugot, H., Vanderpooten, D.: An efficient implementation for the 0-1
multi-objective knapsack problem. In: 6th Workshop on Experimental Algorithms,
WEA’07, LNCS. Volume 4525. (2007) 406–419

7. Weignartner, H., Ness, D.: Methods for the solution of the multi-dimensional 0/1
knapsack problem. Operations Research 15(1) (1967) 83–103

8. Martello, S., Toth, P.: Knapsack Problems. Wiley, New York (1990)
9. Captivo, M.E., Climaco, J., Figueira, J., Martins, E., Santos, J.L.: Solving bicriteria

0-1 knapsack problems using a labeling algorithm. Computers and Operations
Research 30(12) (2003) 1865–1886

10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin
(2004)


