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1 Université Paris-Sud, LRI, bât.490, F–91405 Orsay, France, bazgan@lri.fr
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Abstract. It is proved that everywhere-dense Min 2SAT and everywhere-
dense Min Eq both have polynomial time approximation schemes.

1 Introduction

The approximability theory of dense instances of maximization problems
such as Max Cut, Max 2SAT has had many recent successes, start-
ing with [1] and [2]. (See [5] for a recent review.) In [1] it is proved in
particular that the dense instances of any problem in Max SNP have a
polynomial-time approximation scheme. In [4], it is proved that many of
these problems can be approximated in constant time with an additive er-
ror ǫn2 where n is the size of the input in a certain probe model (implying
that the dense versions have constant-time approximation schemes).

The case of dense instances of minimization problems (or edge-deletion
problems) seems to be harder. The case of Bisection was settled in [1].
In this paper, we bring a further contribution to this case by proving that
everywhere-dense Min 2SAT and everywhere-dense Min Eq both have
polynomial-time approximation schemes. Our main tool is a constrained
version of Bisection, which we call Paired Bisection: a pairing Π
of the vertices is given and we look only at the bisections which split
each pair of vertices in Π. The key step in the proof is an L-reduction
from Min Eq to Paired Bisection. Then we adapt the algorithm of [1]
for Bisection to Paired Bisection. This yields a polynomial-time ap-
proximation scheme for everywhere-dense Min Eq. A density preserving
L-reduction from Min 2SAT to Min Eq concludes the proof.

2 Preliminaries

We begin with some basic definitions.

Approximability. Let us recall a few definitions about approximability.
Given an instance x of an optimization problem A and a feasible solution



y of x, we denote by m(x, y) the value of the solution y, and by optA(x)
the value of an optimum solution of x. In this paper we consider mainly
minimization problems. The performance ratio of the solution y for an
instance x of a minimization problem A is

R(x, y) =
m(x, y)

optA(x)
.

For a constant c > 1, an algorithm is a c-approximation if for any
instance x of the problem it returns a solution y such that R(x, y) ≤ c.
We say that an optimization problem is constant approximable if, for
some c > 1, there exists a polynomial-time c-approximation for it. APX
is the class of optimization problems that are constant approximable.
An optimization problem has a polynomial-time approximation scheme

(a ptas, for short) if, for every constant ε > 0, there exists a polynomial-
time (1 + ε)-approximation for it.

L-reduction. The notion of L-reduction was introduced by Papadim-
itriou and Yannakakis in [6]. Let A and B be two optimization problems.
Then A is said to be L-reducible to B if there are two constants α, β > 0
such that

1. there exists a function, computable in polynomial time, which trans-
forms each instance x of A into an instance x′ of B such that optB(x′) ≤
α · optA(x),

2. there exists a function, computable in polynomial time, which trans-
forms each solution y′ of x′ into a solution y of x such that |m(x, y)−
optA(x)| ≤ β · |m(x′, y′) − optB(x′)|.

For us the important property of this reduction is that it preserves ptas’s;
that is, if A is L-reducible to B and B has a ptas then A has a ptas as
well.

Equivalence. Given n variables, an equivalence is an expression of the
form li ≡ lj where li, lj are literals. The equivalence li ≡ lj is true under
an assignment A iff A gives the same truth value (true or false) to li and
lj .

Graphs. As usual, we write G = (V (G), E(G)) for the undirected graph
with vertex set V (G) and edge set E(G). The vertices are indexed by the
integers 1, ..., n = |V (G)|. For two vertices u and v, uv denotes the edge
linking u to v. We denote by Γ (u) the set of neighbors of u. If S and
T are two disjoint subsets of V (G), we denote by e(S, T ) the number of
edges linking S to T .



Bisection. Let G = (V (G), E(G)) be an undirected graph with an even
number of vertices. A bisection of G is a partition of vertex set V (G) in
two equal size sets R and L. The value of the bisection is the number of
edges between R and L.

Paired Bisection. Let G = (V (G), E(G)) be a graph with |V | = 2n
and let a pairing Π of V (G) be fixed, Π = {{u1, v1}, ..., {un, vn}}, say,
(with ∪1≤i≤n{ui, vi} = V (G)). We say that a bisection {R, L} of G is
admissible with respect to Π, (admissible for short), iff it splits each pair
{ui, vi}, (i.e., for i = 1, . . . , n, either ui ∈ R and vi ∈ L or vi ∈ R and
ui ∈ L). We call Paired Bisection the problem of minimizing the value
of an admissible bisection where of course Π is part of the data. (See the
formal definition below.)

Dense Instances. A graph with n vertices is δ-dense if it has at least
δn2/2 edges. It is everywhere-δ-dense if the minimum degree is at least
δn. Similarly, a 2CNF formula or a set of equivalences on n variables is
everywhere-δ-dense if for each variable the total number of occurrences
of the variable and its negation is at least δn. A 2CNF formula (a set of
equivalences) on n variables is δ-dense if the number of clauses (equiva-
lences) is at least δn2. A set of instances is dense if there is a constant δ > 0
such that it is δ-dense and a set of instances is everywhere-dense if there is
a constant δ > 0 such that it is everywhere-δ-dense. So, everywhere-dense
implies dense but the converse is not true.

We now define the problems in question formally.

Min 2Sat

Input: A 2CNF formula F .

Solution: A truth assignment for the variables.

Value: The number of clauses satisfied by the assignment.

Min Eq

Input: A set of equivalences.

Solution: A truth assignment for the variables.

Value: The number of equivalences satisfied by the assignment.

Bisection

Input: A graph G = (V (G), E(G)).

Solution: A bisection of G.

Value: The number of edges in the bisection.



Paired Bisection

Input: A graph (V (G), E(G)) with |V | = 2n and a pairing Π of V (G),
Π = {{u1, v1}, ..., {un, vn}}.
Solution: A bisection of G which splits each pair {ui, vi}.
Value: The number of edges in the bisection.

All these problems are minimization problems, i.e., a solution with
value as small as possible is sought in each case.

3 The Results

Our main result is

Theorem 1. Everywhere-dense Min 2Sat and everywhere-dense Min

Eq both have ptas.

In the course of proving Theorem 1, we also obtain the next result,
which has some interest in view of the fact that the approximability status
of Bisection is wide open.

Theorem 2. Paired Bisection is APX-hard.

Remark. It is easy to see that (simply) dense instances of Min 2Sat or
Min Eq do not have a ptas if P 6= NP . As far as we know, these are the
only problems which are known to have a ptas in the everywhere-dense
case but not in the dense case.

The proof of Theorem 1 occupies the rest of the paper. First, we give
a density preserving L-reduction from Min 2Sat to Min Eq (Lemma 1).
As already mentioned, the key step in the proof of Theorem 1 is an L-
reduction from Min Eq to Paired Bisection (Lemma 2). The proof is
then easily completed by adapting the ptas for everywhere-dense Bisec-

tion of [1] to obtain a ptas for everywhere-dense Paired Bisection.

4 The Proofs

Lemma 1. There is an L-reduction from Min 2Sat to Min Eq.

Proof. Let F be a set of clauses with at most two literals on n variables
x1, . . . , xn. We construct a set of equivalences E as follows. We add a new
variable y and we replace each clause li ∨ lj in F by the following set of
equivalences: li ≡ ¬lj , li ≡ ¬y, lj ≡ ¬y. By inspection, one sees that if



li ∨ lj is satisfied by some assignment, at most 2 of these 3 equivalences
are true, so that the inequality opt(E) ≤ 2opt(F ) holds, showing that the
first condition of the definition of the L-reduction is satisfied. Now, sup-
pose that we have a solution of E (an assignment A for the variables that
appear in E). We can suppose that y = false in A since the complemen-
tary assignment satisfies the same number of equivalences. We consider
the same assignment for the variables in F . Let B denote this second
assignment. Now one sees that if li ∨ lj is satisfied by B then exactly 2
of the equivalences in E corresponding to li ∨ lj are satisfied, so that the
values satisfy m(F, B) = m(E, A)/2, showing that the second condition
of the definition of the L-reduction is also satisfied.

Lemma 2. Min Eq and Paired Bisection are mutually L-reducible

one to the other.

Proof. Firstly we construct a L-reduction from Paired Bisection to
Min Eq. Let G = (V (G), E(G)) be a graph and Π = {{u1, v1}, ..., {un, vn}}
a pairing of V (G). For convenience, we consider that each pair in Π is
ordered. We can then represent a bisection (L, R) of G by a vector of
n logical variables {x1, ..., xn} with the understanding that, if xi = true
then we put ui in L and vi in R and if xi = false then we put ui in R
and vi in L.

Now, for each edge uivj ∈ E(G) we introduce the equivalence xi ≡ xj .
For each edge uiuj ∈ E(G) or vivj ∈ E(G) we introduce the equivalence
xi ≡ ¬xj . Call E the set of all these equivalences. By inspection, one can
see that an edge of G contributes to the bisection (L, R) exactly when the
the corresponding equivalence holds. This implies clearly opt(E) = opt(G)
and the L-reduction in one direction.

For the reduction in the other direction, we replace each equivalence
xi ≡ ¬xj by the edges uiuj and vivj and each equivalence xi ≡ xj by the
edges uivj and viuj .

It is straightforward to check that the reductions of Lemma 3 and
Lemma 4 map an everywhere-dense set of instances into another everywhere-
dense set of instances.

Corollary 1. Paired Bisection is APX-hard.

Proof. In [3] it is proved that the following problem is APX-hard: given
a set of equivalences find an assignment that minimize the number of
equivalences that we have to remove such that the new set of equivalences
is satisfiable. There is a simple L-reduction between the above problem



and Min EQ (we replace each equivalence ℓi ≡ ℓj by ℓi ≡ ¬ℓj) that
implies that Min EQ is APX-hard. The Lemma follows immediately
from Lemma 1.

Theorem 3. Everywhere-dense Paired Bisection has a ptas.

As already mentioned, our ptas is a rather straightforward modifica-
tion of the ptas of [1] for everywhere-dense Bisection. The main differ-
ence is the fact that in our case we don’t have to care of the “equal sides”
condition which is implicit in the pairing Π, and our algorithm is in fact
simpler than that of [1].

Let the input be (G, Π) with Π = {{u1, v1}, ...,{un, vn}} and G =

(V (G), E(G)). Let ǫ be the allowed error and α = 4δ2ε
25 . As in [1] we run

two distinct algorithms and select the solution with the smallest value.
The first algorithm gives a good solution for the instances whose minimum
value is at least αn2 and the second for the instances whose minimum
value is less than αn2.

1. First algorithm (Algorithm for the case of “large” bisection)

Let yi indicate the side (0 for Left, 1 for Right) of the vertex ui in the
bisection (L, R). [1] use smooth polynomial integer programming for the
instances with large optimum value. We just have to check that we can
express the value of Paired Bisection as a degree 2 polynomial in the
yi’s:

∑

aijyiyj +
∑

biyi + d

where each |aij | ≤ c, |bi| ≤ cn, |d| ≤ cn2 for some fixed constant c. We
can use

Paired Bisection = min
∑

uivj∈E(G)

(yi(1 − yj) + yj(1 − yi))

+
∑

uiuj∈E(G)

[1 − (yiyj + (1 − yi)(1 − yj))]

+
∑

vivj∈E(G)

[1 − (yiyj + (1 − yi)(1 − yj))]

This program can be solved approximately in polynomial time by an
algorithm of [1].

2. Second algorithm (Algorithm for the case of a “small” bisection)

This second algorithm is again similar to that of [1]. However, it will
be seen that important differences appear and we felt the need for a new



(albeit sketched) correctness proof although this proofs relies heavily on
[1]. Actually, the proof of correctness of the algorithm of [1] for the case
of small bisection relies on the property that one can assume that the
vertices in one side of the bisection have no negative bias. (Lemma 5.1 in
[1]. We define the bias of a vertex u as the difference between the number
of edges it sends to his side in the bisection and the number of edges it
sends to the other side.) There is apparently no analogue to this property
in our case. [1] use exhaustive sampling for the case of a “small” bisection.
Here we sample the set of pairs Π rather than the set of vertices. Actually,
we will work with pairs all along the way. Let S be the set theoretical
union of m = O((log n)/δ) pairs picked randomly from Π. We can assume
by renaming that S = ∪m

i=1{ui, vi}.
Let (Lo, Ro) be an optimal admissible bisection of G and let SL =

S ∩ Lo, SR = S ∩ Ro. Again by renaming, we can assume that SL =
{u1, ..., um} and SL = {v1, ..., vm}. (Actually, the algorithm which does
not know the partition (SL, SR), will be run for each of the 2m−1 admis-
sible partitions of S.)

As in [1], the placement is done in two stages. In the first stage, pairs
of vertices are placed on the basis of their links with S. (An important
difference with the algorithm of [1] occurs here: in the algorithm of [1],
only “right” vertices are placed at this step.) In the second step, the
remaining pairs are placed on the basis of their links with the vertices
placed during the first step and with S. In the description below, we let
L and R denote the current states of the left-hand side (resp. right-hand
side) of the bisection constructed by the algorithm. Thus, we start with
L = SL, R = SR.

1. Let

T1 = {i > m : |Γ (ui)∩SR|+|Γ (vi)∩SL| ≤ (|Γ (ui)∩SL|+|Γ (vi)∩SR|)/2}

T2 = {i > m : |Γ (ui)∩SL|+|Γ (vi)∩SR| ≤ (|Γ (ui)∩SR|+|Γ (vi)∩SL|)/2}
For each i ∈ T1 we put ui in L and vi in R. For each i ∈ T2 we put ui

in R and vi in L.
2. Let L1 = SL ∪ (∪i∈T1

{ui}) ∪ (∪i∈T2
{vi}) denote the set of vertices

placed on the left side after the completion of stage 1, and similarly,
let R1 = SR ∪ (∪i∈T1

{vi}) ∪ (∪i∈T2
{ui}) denote the “right” vertices.

Let J = {m + 1, ..., n}\(T1 ∪ T2). For each i ∈ J
(a) if |Γ (ui)∩R1|+ |Γ (vi)∩L1| ≤ |Γ (ui)∩L1|+ |Γ (vi)∩R1| then we
add ui in L and vi in R;
(b) otherwise we add vi in L and ui in R.



Let us sketch now a proof of correctness of the second algorithm.
(algorithm for “small” bisection). We denote by opt(G) = opt(G, Π) the
value of an optimum admissible bisection of G.

Lemma 3. With high probability,

1. T1 contains each index i with the property that |Γ (ui)∩Ro|+ |Γ (vi)∩
Lo| ≤ (|Γ (ui) ∩ Lo| + |Γ (vi) ∩ Ro|)/4

2. T2 contains each index i with the property that |Γ (ui)∩Lo|+ |Γ (vi)∩
Ro| ≤ (|Γ (ui) ∩ Ro| + |Γ (vi) ∩ Lo|)/4

Also with high probability, each pair in the set {(ui, vi) : i ∈ T1 ∪ T2} is

placed as in the optimum solution.

Proof. The proof is completely similar to that of Lemma 5.2 in [1] and
is omitted. We remark in passing that sample size O(

√
log n/δ) suffices

(instead of m = O((log n)/δ) used in [1]).

Lemma 4. n − (m + |T1| + |T2|) ≤ 5opt(G)
2δn

.

Proof. The proof of this Lemma is again very similar to the proof of
Lemma 5.3 in [1] and is omitted.

Lemma 5. If opt(G) < αn2 then with high probability the value of the

bisection given by algorithm 2 is at least (1 + ε)opt(G) where ε = 25α
4δ2 .

Proof. We need first some notations. Let U = ∪i∈J{ui, vi} and let u = |J |.
(U is the set of vertices which are placed during step 2.) Let UL = U ∩
L, UR = U ∩R, Uopt

L = U ∩Lo and Uopt
R = U ∩Ro. Let m(G, sol) denote

the value of the bisection given by the algorithm, Let d(U) = e(UL, UR)
and dopt(U) = e(Uopt

L , Uopt
R ). For each i ∈ J , we define

val(i) = |Γ (vi) ∩ L1| − |Γ (vi) ∩ R1|

if the case (a) of stage 2 of the algorithm occurs for the index i, and

val(i) = |Γ (ui) ∩ L1| − |Γ (ui) ∩ R1|

otherwise. We denote by d1 the number of edges of G with exactly one
extremity in R1. Let us check that we have

m(G, sol) = d1 +
∑

i∈J

val(i) + d(U). (1)

Indeed, assume that case (a) occurs for the index i. (The treatment of
case (b) is similar.) This means that ui ∈ L, vi ∈ R. Then, apart from



edges linking UL to UR (which are separately counted), |Γ (vi) ∩ L1| new
edges contribute to the bisection, and |Γ (vi) ∩ R1| are to be subtracted,
since they are counted in d1 and do not contribute to the bisection.

We see, using Lemma 3, that with high probability, the optimum value
of an admissible bisection is

opt(G) = d1 +
∑

i∈J

valopt(i) + dopt(U)

where
valopt(i) = |Γ (vi) ∩ L1| − |Γ (vi) ∩ R1|

if ui ∈ Uopt
L and

valopt(i) = |Γ (ui) ∩ L1| − |Γ (ui) ∩ R1|

if ui ∈ Uopt
R . The bisection of U constructed in stage 2 minimizes

∑

i∈J val(i).
We have thus

∑

i∈J

val(i) ≤
∑

i∈J

valopt(i).

This implies, with (1)

m(G, sol) ≤ d1 +
∑

i∈J

valopt(i) + dopt(U) − dopt(U) + d(U)

= opt(G) − dopt(U) + d(U) ≤ opt(G) + d(U)

≤ opt(G) + u2 ≤ opt(G) +
25opt(G)2

4δ2n2

≤ opt(G)

(

1 +
25α

4δ2

)

using Lemma 8.

The correctness follows now from our choice of α.

5 Open problems

The major open problem is of course the approximability or inapprox-
imability of Bisection. Can our approximation hardness theorem for
Paired Bisection help?

The true complexity of approximate Min 2SAT in the dense case is
another interesting question. It is known that the case of “large” bisection
can be done in constant time (see [4]). Can overall constant time be
achieved?
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