
Efficient approximation algorithms

for the Subset-Sums Equality problem ⋆

Cristina Bazgan1 Miklos Santha2 Zsolt Tuza3

1 Université Paris-Sud, LRI, bât.490, F–91405 Orsay, France, bazgan@lri.fr
2 CNRS, URA 410, Université Paris-Sud, LRI, F–91405 Orsay, France,

santha@lri.fr
3 Computer and Automation Institute, Hungarian Academy of Sciences,

H–1111 Budapest, Kende u.13–17, Hungary, tuza@sztaki.hu

Abstract. We investigate the problem of finding two nonempty disjoint
subsets of a set of n positive integers, with the objective that the sums
of the numbers in the two subsets be as close as possible. In two versions
of this problem, the quality of a solution is measured by the ratio and
the difference of the two partial sums, respectively.

Answering a problem of Woeginger and Yu (1992) in the affirmative, we
give a fully polynomial-time approximation scheme for the case where
the value to be optimized is the ratio between the sums of the numbers
in the two sets. On the other hand, we show that in the case where the
value of a solution is the positive difference between the two partial sums,

the problem is not 2n
k

-approximable in polynomial time unless P=NP ,
for any constant k. In the positive direction, we give a polynomial-time
algorithm that finds two subsets for which the difference of the two sums
does not exceed K/nΩ(log n), where K is the greatest number in the
instance.

1 Introduction

Knapsack is a well known problem which was shown to be NP -complete in
1972 by Karp [3]. It remains NP -complete even if the size of each object is equal
to its value. This particular case is called the Subset-Sum problem. Ibarra and
Kim [2], gave a fully polynomial-time approximation scheme for the optimization
problem associated with Knapsack which, therefore, applies to Subset-Sum

as well. The most efficient fully polynomial-time approximation scheme known
for the Subset-Sum problem is due to Kellerer et al. [4]. The running time of
their algorithm is O(min{n/ε, n + (1/ε)2log(1/ε)}), and the space required is
O(n + 1/ε), where n is the number of the integers and ε the accuracy.

The input to an instance of Subset-Sum is a set of n positive integers
a1, . . . , an and another positive integer b. The question is to decide if there

⋆ This research was supported by the ESPRIT Working Group RAND2 no 21726 and
by the bilateral project Balaton, grant numbers 97140 (APAPE, France) and F-36/96
(TéT Alaṕıtvány, Hungary)

exists a set of numbers (a subset of {a1, . . . , an}) whose sum is equal to b. In the
optimization version the goal is to find a set of numbers whose sum is as large
as possible under the constraint that it does not exceed b.

Woeginger and Yu [7] introduced a related problem, called Subset-Sums

Equality. Given n positive integers, the question is to decide if there exist two
disjoint nonempty subsets whose sums are equal. They also defined a related
optimization problem that we call Subset-Sums Ratio; it requires to find two
disjoint subsets with the ratio of their sums being as close to 1 as possible. In
the same paper they proved the NP -completeness of Subset-Sums Equality,
and gave a polynomial-time 1.324-approximation algorithm for Subset-Sums

Ratio. They left as an open question to decide whether this problem has a
polynomial-time approximation scheme.

In this paper we answer their question in the affirmative, by showing the
stronger assertion that actually Subset-Sums Ratio has a fully polynomial-

time approximation scheme.

The problems defined by Woeginger and Yu have some interesting special
instances. Consider the case where the sum of the n numbers is less than 2n −1.
It is immediately seen by the pigeonhole principle that there always exist two
disjoint nonempty subsets whose sums are equal. Nonetheless, no polynomial-
time algorithm is known so far to find two such subsets effectively. We call
this latter problem Pigeonhole Subset-Sums. This problem is a well known
member of what Meggido and Papadimitriou [5, 6] call the class TFNP of total
functions. This class contains function problems associated with languages in
NP where, for every instance of the problem, a solution is guaranteed to exist.
Other examples in the class are Factoring, Second Hamiltonian Cycle

and Happynet.

Many functions in TFNP (like the examples quoted above) have a challeng-
ing intermediate status between FP and FNP , the function classes associated
with P and NP . Although these problems are not NP -hard unless NP=co-NP ,
no polynomial-time algorithm is known for them.

Although the polynomial-time solvability of Pigeonhole Subset-Sums still
remains open, we will show that in a sense this problem is much better approx-
imable in polynomial time than Subset-Sums Equality. For this purpose, we
define a further related optimization problem that we call Subset-Sums Dif-

ference. Here the value of a solution is the positive difference between the sums
of the two sets plus 1. The same problem, with the additional constraint that
the sum of the numbers is less than 2n−1, is called Pigeonhole Subset-Sums

Difference.

The existence of a fully polynomial-time approximation scheme for Sub-

set-Sums Ratio implies that, for any constant k, there is a polynomial-time
2n/nk-approximation algorithm for Pigeonhole Subset-Sums Difference.
We will show an even stronger result, giving a polynomial-time 2n/nΩ(log n)-
approximation for this problem. This will follow from a more general theorem: we
will show that Subset-Sums Difference has a polynomial-time K/nΩ(log n)-
approximation algorithm where K is the largest number in the input. On the

other hand, we also present a negative result for Subset-Sums Difference,

proving that it is not 2nk

-approximable in polynomial time unless P = NP , for
any constant k.

Showing that Pigeonhole Subset-Sums (a total function) is better ap-
proximable than the corresponding NP search problem is somewhat analogous
to the result we have obtained in [1]. There we have shown that there is a
polynomial-time approximation scheme for finding another Hamiltonian cycle in
cubic Hamiltonian graphs if a Hamiltonian cycle is given in the input (again a
total function). On the other hand, finding the longest cycle is not even constant
approximable in cubic Hamiltonian graphs, unless P = NP .

The paper is organized as follows. In Section 2 we give the necessary defini-
tions. In Section 3 we describe a fully polynomial-time approximation scheme for
Subset-Sums Ratio, and in Section 4 we prove our results on Subset-Sums

Difference.

2 Preliminaries

Let us recall a few notions concerning approximability. Given an instance I of
an optimization problem A, and a feasible solution y of I, we denote by m(I, y)
the value of the solution y, and by optA(I) the value of an optimum solution of
I. The performance ratio of y is

R(I, y) = max

{

m(I, y)

optA(I)
,
optA(I)

m(I, y)

}

.

For a constant c > 1, an algorithm is a c-approximation if, for any instance I
of the problem, it returns a solution y such that R(I, y) ≤ c. We say that an
optimization problem is constant approximable if it admits a polynomial-time c-
approximation for some c > 1. An optimization problem has a polynomial-time

approximation scheme (a ptas, for short) if, for every constant ε > 0, there exists
a polynomial-time (1 + ε)-approximation for it. An optimization problem has a
fully polynomial-time approximation scheme (an fptas, for short) if, for every
constant ε > 0, there exists an (1 + ε)-approximation algorithm for it which is
polynomial both in the size of the input and in 1/ε. The set of problems having
an fptas is denoted by FPTAS.

An algorithm for a problem is called pseudo-polynomial if its running time is
polynomial in the size of the input and in the unary representation of the largest
number occurring in the input.

Let us now give the formal definitions of the problems to be investigated.

Subset-Sums Equality

Input: A set {a1, . . . , an} of positive integers.
Question: Are there two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n} such
that

∑

i∈S1

ai =
∑

i∈S2

ai ?

Pigeonhole Subset-Sums

Input: A set {a1, . . . , an} of positive integers such that
∑n

i=1 ai < 2n − 1.
Output: Two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n} such that

∑

i∈S1

ai =
∑

i∈S2

ai .

Subset-Sums Ratio

Input: A set {a1, . . . , an} of positive integers.
Output: Two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n} with

∑

i∈S1

ai ≥
∑

i∈S2

ai

such that the ratio
∑

i∈S1
ai

∑

i∈S2
ai

,

termed the value of the output, is minimized.

Subset-Sums Difference

Input: A set {a1, . . . , an} of positive integers.
Output: Two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n}, with

∑

i∈S1

ai ≥
∑

i∈S2

ai

such that the difference
∑

i∈S1

ai −
∑

i∈S2

ai + 1 ,

the value of the output, is minimized.

Remark : The reason to add 1 in the value of the solution in the above problem is
that otherwise the optimum value might be 0, and the performance ratio could
not be defined in that case.

Pigeonhole Subset-Sums Difference

Input: A set {a1, . . . , an} of positive integers such that
∑n

i=1 ai < 2n − 1.
Output: The same as for Subset-Sums Difference.

3 Subset-Sums Ratio ∈ FPTAS

In the first part of this section we give a pseudo-polynomial algorithm for the
Subset-Sums Ratio problem, that we use afterwards to construct an fptas.

3.1 A pseudo-polynomial algorithm

We assume that the n numbers are in increasing order, a1 < · · · < an, and we set
B =

∑n
i=1 ai. We are going to give an algorithm that finds an optimum solution

in time O(nB2).

The main part of the algorithm will be a dynamic programming procedure.
We will fill out (maybe partially) two tables, t[0..n, 0..B] with values in {0, 1},
and c[0..n, 0..B] whose entries are subsets of {1, . . . , n}. The completed parts of
the tables will satisfy the following properties for (i, j) 6= (0, 0):

1. t[i, j] = 1 if and only if there exists a set S ⊆ {1, . . . , n} with
∑

k∈S ak = j,
i ∈ S, and h /∈ S for all i < h ≤ n.

2. c[i, j] = S, where S ⊆ {1, . . . , n} is the (unique) subset satisfying the above
conditions, if such an S exists; and S = ∅ otherwise.

We stop this procedure if, for some j, two integers i1 6= i2 are found such that
t[i1, j] = t[i2, j] = 1. Actually, the procedure will be stopped when the first
(smallest) such j is found. Otherwise the tables will be filled out completely.
The procedure is as follows:

t[0, 0] := 1, c[0, 0] := ∅;
for i = 1 to n do t[i, 0] := 0, c[i, 0] := ∅;
for j = 1 to B do t[0, j] := 0, c[0, j] := ∅;
for j = 1 to B do

for i = 1 to n do

if (j ≥ ai and ∃ k ∈ {0, . . . , i − 1} with t[k, j − ai] = 1) then

t[i, j] := 1, c[i, j] := c[k, j − ai] ∪ {i};
else t[i, j] := 0, c[i, j] := ∅;

if (∃ i1 6= i2 with t[i1, j] = t[i2, j] = 1) then STOP.

If the optimum of the instance is 1, then the procedure is stopped when
the smallest integer is found which is the sum of two different subsets. The
minimality of the sum ensures that these subsets are in fact disjoint.

Otherwise the tables t and c will be completed and we continue the algorithm.
We call an integer j > 0 candidate if it is the sum of some input elements; that
is, if we have t[i, j] = 1 for some i. For each candidate j, let i(j) be the (unique)
integer with this property. Moreover, for every candidate j, let kj be the greatest
candidate less than j such that c[i(j), j]∩c[i(kj), kj] = ∅, if there is any. Then the
optimum solution is the couple (c[i(j), j], c[i(kj), kj]) for which j/kj is minimized.

One can see that the above algorithm is pseudo-polynomial.

3.2 The fptas

Similarly to the previous algorithm, we start with sorting the input in increasing
order; that is, after this preprocessing we have a1 < a2 < · · · < an.

For m = 2, . . . , n, let us denote by Im the instance of Subset-Sums Ratio

which consists of the m smallest numbers a1, . . . , am. At the top level, the algo-
rithm executes its main procedure on the inputs Im, for m = 2, . . . , n, and takes
as solution the best among the solutions obtained for these instances.

Given any ε in the range 0 < ε < 1, we set

k(m) = ε2 · am/(2m) .

Let n0 ≤ n be the greatest integer such that k(n0) < 1. We now describe the
algorithm on the instance Im.

If m ≤ n0, then we apply the pseudo-polynomial algorithm of the previous
subsection to Im. Since an0

≤ 2n/ε2, this will take polynomial time.
If n0 < m ≤ n, then we transform the instance Im into another one that

contains only polynomial-size numbers. Set a′

i = ⌊ai/k(m)⌋ for i = 1, . . . ,m.
Observe that a′

m =
⌊

2m/ǫ2
⌋

is indeed of polynomial size. Let us denote by I ′m
the instance of Subset-Sums Ratio that contains the numbers a′

i such that
a′

i ≥ m/ε . Suppose that I ′m contains t numbers, a′

m−t+1, . . . , a
′

m. Since ε ≤ 1,
we have a′

m ≥ m/ε, and therefore t > 0. We will distinguish between two cases
according to the value of t.

Case 1: t = 1. Let j be the smallest nonnegative integer such that aj+1+. . .+
am−1 < am. If j = 0, then the solution will be S1 = {m} and S2 = {1, . . . ,m−1}.
Otherwise the solution will be S1 = {j, j + 1, . . . ,m − 1} and S2 = {m}.

Case 2: t > 1. We solve (exactly) I ′m, using the pseudo-polynomial algorithm
which will take only polynomial time on this instance. Then we distinguish
between two cases, depending on the value of the optimum of I ′m.

Case 2a: opt(I ′m) = 1. The algorithm returns the solution which realizes this
optimum for I ′m.

Case 2b: opt(I ′m) > 1. In this case we generate a sufficiently rich collection
of pairs of subsets in the following way. We consider 3t−1 pairs P (v̄,m), Q(v̄,m)
of disjoint sets,

P (v̄,m), Q(v̄,m) ⊆ {m − t + 1, . . . ,m} ,

parameterized by the vectors

v̄ = (v1, . . . , vt−1) ∈ {0, 1, 2}t−1.

The sets are defined according to the rule

m − t + i ∈ P (v̄,m) and m − t + i /∈ Q(v̄,m) if vi = 1,
m − t + i /∈ P (v̄,m) and m − t + i ∈ Q(v̄,m) if vi = 2,
m − t + i /∈ P (v̄,m) and m − t + i /∈ Q(v̄,m) if vi = 0,

for 1 ≤ i ≤ t − 1, and we put m into P (v̄,m). Define R1(v̄,m) = P (v̄,m) if
∑

i∈P (v̄,m) ai >
∑

i∈Q(v̄,m) ai, and R1(v̄,m) = Q(v̄,m) otherwise. Let R2(v̄,m)
be the other set.

The pair S1(v̄,m), S2(v̄,m) is defined as follows. Let j be the smallest non-
negative integer such that

∑

i∈R2(v̄,m)

ai +

m−t
∑

i=j+1

ai <
∑

i∈R1(v̄,m)

ai.

If j = 0, then S1(v̄,m) = R1(v̄,m) and S2(v̄,m) = R2(v̄,m) ∪ {1, . . . ,m − t}.
Otherwise, if m ∈ R1(v̄,m), then S1(v̄,m) = R2(v̄,m) ∪ {j, . . . ,m − t} and
S2(v̄,m) = R1(v̄,m). In the opposite case, where m ∈ R2(v̄,m), we define
S1(v̄,m) = R1(v̄,m) and S2(v̄,m) = R2(v̄,m) ∪ {j + 1, . . . ,m − t}. Finally,
we choose a vector v̄ ∈ {0, 1, 2}t−1 for which the ratio

∑

i∈S1(v̄,m)

ai /
∑

i∈S2(v̄,m)

ai

is minimized. The solution given by the algorithm is then S1 = S1(v̄,m) and
S2 = S2(v̄,m).

Theorem 1. The above algorithm yields an (1+ε)-approximation, in time poly-

nomial in n and 1/ε.

Proof. The algorithm clearly works in polynomial time whenever the number
3t−1 of vectors is polynomial in Case 2b. Since opt(I ′m) > 1 in that case, all the
2t subsets of the set {a′

m−t+1, . . . , a
′

m} make up mutually distinct sums. Since

a′

m ≤ 2m/ε2,

we have
m

∑

i=m−t+1

a′

i < 2m2/ε2.

Therefore
2t ≤ 2m2/ε2,

and thus t ≤ 2 log(m/ε) + 1.
We will prove now that the algorithm indeed yields an (1 + ε)-approxima-

tion. Let m be an integer such that am is the greatest element occurring in an
optimum solution. Then, clearly, this optimum solution for In is optimum for
Im as well. We prove that the algorithm yields an (1 + ε)-approximation on the
instance Im.

If m ≤ n0, then the pseudo-polynomial algorithm yields an optimum solution.
Hence, let us suppose that m > n0.

In Case 1, if j = 0, then the given solution is optimum, and if j > 0, then
∑

i∈S1

ai /
∑

i∈S2

ai ≤ 1 + aj/am < 1 + ε.

In Case 2a, we have
∑

i∈S1
ai

∑

i∈S2
ai

≤

∑

i∈S1
k(m) · (1 + a′

i)
∑

i∈S2
k(m) · a′

i

= 1 +
|S1|

∑

i∈S2
a′

i

≤ 1 +
t

m/ε
< 1 + ε .

In Case 2b, let S1 = S1(v̄,m) and S2 = S2(v̄,m) for some v̄ ∈ {0, 1, 2}t−1. If
j = 0, then S1, S2 is an optimum solution. Otherwise, we have

∑

i∈R2(v̄,m)

ai +

m−t
∑

i=j+1

ai <
∑

i∈R1(v̄,m)

ai ≤
∑

i∈R2(v̄,m)

ai +

m−t
∑

i=j

ai.

Therefore

∑

i∈S1

ai /
∑

i∈S2

ai ≤ 1 + aj /
∑

i∈S2

ai ≤ 1 + aj/am < 1 + ε.

4 Subset-Sums Difference

Since Subset-Sums Ratio has a fptas, from the approximation point of view,
we cannot distinguish Subset-Sums Equality from Pigeonhole Subset-

Sums when the value of a solution is the ratio between the sums of the two sets.
The situation changes drastically when a harder problem is considered, where
the value of a solution is the difference between the two sums. In this section
we show that Pigeonhole Subset-Sums Difference has a polynomial-time
2n/nΩ(log n)-approximation, and on the other hand Subset-Sums Difference

is not 2nk

-approximable in polynomial time unless P = NP , for any constant k.
The fptas for Subset-Sums Ratio gives a polynomial-time 2n/nk-approxi-

mation for Pigeonhole Subset-Sums Difference when we take ε = 1/nk.
But, in fact, one can do better than that.

Theorem 2. Subset-Sums Difference has a polynomial-time K/nΩ(log n)-

approximation, where K is the greatest number in the instance.

Proof. We will describe a polynomial-time algorithm that finds a solution of
value at most K/nΩ(log n). Since the optimum value of each instance is at least
1 by definition, the assertion will follow.

Let a1 < a2 < · · · < an be an instance of Subset-Sums Difference, and
let us define a0 = 0. Consider the sequence

0 = a0 < a1 < a2 < · · · < an = K.

Notice that at most n/3 of the consecutive differences ai − ai−1 can be as large
as 3K/n; that is, at least 2n/3 differences are smaller than 3K/n. From these
differences smaller than 3K/n, we choose every second one (in the order of their
occurrence), and create the sequence

a
(1)
1 < a

(1)
2 < · · · < a

(1)

n(1) ,

to which we adjoin a
(1)
0 = 0. We also set K(1) = a

(1)

n(1) , where K(1) < 3K/n and

n(1) ≥ n/3.
We repeat this type of “difference selection” t = ⌊log3 n⌋ times, creating the

sequences

0 = a
(i)
0 < a

(i)
1 < a

(i)
2 < · · · < a

(i)

n(i) = K(i)

for i = 2, . . . , t, with K(i) < 3K(i−1)/n(i−1) and n(i) ≥ n(i−1)/3. After that,
we still have n(t) ≥ n/3t ≥ 1 numbers, from which we select the smallest one,

namely a
(t)
1 .

Observe that each number in each sequence represents a signed subset-sum,
some of the input elements occurring with “+” and some with “−” (and some
missing). The numbers with the same sign specify a subset, and the difference
between the sum of the numbers of the “+” subset and of the “−” subset is at
most the modified value of K.

We are going to show that K(t) = K/nΩ(log n). We have

K(1) <
3K

n
,

and

K(i) <
3K(i−1)

n(i−1)

for i = 2, . . . , t. Taking the product of these inequalities, we obtain

K(t) <
3t(t+1)/2 · K

nt
= K/nΩ(log n).

Since the value of the solution is at most K(t), the statement follows.

Corollary 3. Pigeonhole Subset-Sums Difference has a polynomial-time

2n/nΩ(log n)-approximation.

Finally, we show a simple non-approximability result for Subset-Sums Differ-

ence which is in strong opposition with the approximability of Pigeonhole

Subset-Sums Difference.

Theorem 4. If P 6= NP , then, for any constant k, Subset-Sums Differ-

ence is not 2nk

-approximable in polynomial time.

Proof. We prove that if Subset-Sums Difference were 2nk

-approximable in
polynomial time, then Subset-Sums Equality would admit a polynomial-time
algorithm. Given an instance I = {a1, a2, . . . , an} of Subset-Sums Equality,
we create (in polynomial time) an instance I ′ = {b1, b2, . . . , bn} of Subset-Sums

Difference where bi = 2nk

·ai. The size of I ′ is polynomial in the size of I, and
clearly I is a positive instance if and only if the value of an optimum solution for
I ′ is 1. Let q denote this optimum value, and let s be the value of the solution

for I ′ given by the 2nk

-approximation algorithm.
We claim that q = 1 if and only if s = 1. The “if” part is trivial. For the

“only if” part, let us suppose that s > 1. We have

s ≤ 2nk

· q ,

because the solution was given by a 2nk

-approximation algorithm. Since every

element in I ′ is a multiple of 2nk

, the value of a solution for I ′ is either 1 or

greater than 2nk

. Therefore, we also have

s > 2nk

,

and thus q > 1.

References

1. C. Bazgan, M. Santha and Zs. Tuza, On the approximation of finding a(nother)
Hamiltonian cycle in cubic Hamiltonian graphs, 15th Annual Symposium on The-
oretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol.
1373 (1998), 276–286.

2. O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the Knapsack and
Sum of Subset problems, J. ACM, 22:4 (1975), 463–468.

3. R. M. Karp, Reducibility among combinatorial problems, in: Complexity of Com-
puter Computations (R. E. Miller and J. W. Thatcher, eds.) (1972), 85–103.

4. H. Kellerer, R. Mansini, U. Pferschy and M. G. Speranza, An efficient fully poly-
nomial approximation scheme for the Subset-Sum problem, manuscript, 1997.

5. N. Megiddo and C. Papadimitriou, On total functions, existence theorems and
computational complexity , Theoretical Computer Science, 81 (1991), 317–324.

6. C. Papadimitriou, On the complexity of the parity argument and other inefficient
proofs of existence, Journal of Computer and System Sciences 48 (1994), 498–532.

7. G. J. Woeginger and Z. Yu, On the equal-subset-sum problem, Information Pro-
cessing Letters 42 (1992), 299–302.

