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Abstract. The Satisfactory Partition problem consists in deciding
if a given graph has a partition of its vertex set into two nonempty
sets V1, V2 such that for each vertex v, if v ∈ Vi then dVi

(v) ≥ s(v),
where s(v) ≤ d(v) is a given integer-valued function. This problem was
introduced by Gerber and Kobler [EJOR 125 (2000), 283–291] for s =
⌈ d

2
⌉. In this paper we study the complexity of this problem for different

values of s.
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1 Introduction

Gerber and Kobler introduced in [3] the problem of deciding if a given graph has
a vertex partition into two nonempty sets such that each vertex has at least as
many neighbors in its set as in the other. The complexity of this problem remains
open in their paper. They showed the strong NP -hardness of a generalization
of this problem where there are weights on the vertices and we ask for a vertex
partition into two nonempty sets such that for each vertex the sum of weights
of the neighbors in the same set is at least as large as the sum of weights of the
neighbors in the other set. The case where edges are weighted was also proved
to be strong NP -hard.

For a graph G = (V,E), vertex v ∈ V , and subset Y ⊆ V we denote by dY (v) the
number of vertices in Y that are adjacent to v; and, as usual, we write d(v) for the
degree dV (v) of v in V . Throughout, the subgraph of graph G = (V,E) induced
by Y ⊆ V will be denoted by G[Y ]. The general problem we are interested in is
as follows:

Satisfactory Partition

Input: A graph G = (V,E), and a function s : V → IN such that s(v) ≤ d(v),
for all v ∈ V .
Question: Is there a nontrivial partition (V1, V2) of V such that, for every v ∈ V ,
if v ∈ Vi then dVi

(v) ≥ s(v) ?



Considering A ⊂ V , a vertex v ∈ A is satisfied in A if dA(v) ≥ s(v). Moreover
A is a satisfactory subset if all of its vertices are satisfied in A. If A,B ⊆ V
are two disjoint, nonempty vertex subsets such that A and B are satisfactory
subsets, we say that (A,B) is a satisfactory pair . If, in addition, (A,B) is a vertex
partition then it will be called a satisfactory partition and a graph admitting
such a partition is said to be partitionable.

In our statement of the Satisfactory Partition problem, the function s
indicates the level of satisfaction required for the vertices to be satisfied. The
problem studied by Gerber and Kobler corresponds to s = ⌈d

2⌉. As remarked in
[3], this problem may have no solution. In particular, the following graphs are
not partitionable: complete graphs, stars, and complete bipartite graphs with at
least one of the two vertex classes having odd size. Some other graphs are easily
partitionable: cycles of size at least 4, trees which are not stars, and disconnected
graphs.

After stating some preliminary results (Section 2), we study in Sections 3-5
Satisfactory Partition for different values of s. For s ≤ ⌈d

2⌉ − 1, a result of
Stiebitz [5] indicates that the graph always has such a partition. The original
proof is not constructive, and we give here a polynomial-time algorithm that
finds such a partition (Section 3). For s = ⌈d

2⌉, we prove that for graphs with
maximum degree at most 4, both the decision and search problems are polyno-
mially solvable. This problem on general graphs remains open (Section 4). For
⌈d

2⌉ + 1 ≤ s ≤ d − 1, Satisfactory Partition is proved to be NP -complete
(Section 5). For s = d, the problem is trivial since it consists in deciding whether
the graph is disconnected.

2 Preliminary results

Firstly we establish a necessary and sufficient condition to obtain a satisfactory
partition.

Proposition 1. When s ≤ ⌈d
2⌉, a graph G = (V,E) is partitionable if and only

if it contains a satisfactory pair (A,B). Moreover, if a satisfactory pair (A,B) is
given, then a satisfactory partition of G can be determined in polynomial time.

Proof. The necessary part is obvious. The sufficient part is proved as follows.
Let V1 = A and V2 = B. While there is a vertex v in V \ (V1 ∪ V2) such that
dV1

(v) ≥ s(v), insert v into V1. While there is a vertex v in V \ (V1 ∪ V2) such
that dV2

(v) ≥ s(v), insert v into V2. At the end, if C = V \ (V1 ∪ V2) 6= ∅, then

dV1
(v) < s(v) and dV2

(v) < s(v) for any v ∈ C. Since s(v) ≤ ⌈d(v)
2 ⌉, we have, for

any v ∈ C, dV1∪C(v) ≥ s(v) and dV2∪C(v) ≥ s(v). Thus we can insert all vertices
of C either into V1 or into V2, forming a satisfactory partition. 2

We show now how to determine satisfactory subsets efficiently.

Proposition 2. For any s ≤ d, it is decidable in polynomial time, if a subgraph
G[A] of a graph G contains a satisfactory subset.



Proof. The algorithm iteratively removes from G[A] the vertices v of degree less
than s(v), while it is possible.

If at the end of the algorithm we obtain a non-empty subgraph G[A′], then
G[A] contains a satisfactory subset A′ since dA′(v) ≥ s(v), for all v ∈ A′.

Conversely, suppose that the algorithm removes all vertices from A and that
G[A] would contain a satisfactory subset A′. The first vertex v of A′ considered
by the algorithm cannot be removed since its current degree is greater than or
equal to dA′(v) ≥ s(v). In this way no vertex of A′ could be removed. Thus, if
the entire set A gets deleted, then G[A] does not contain a satisfactory subset.2

A minimal satisfactory subset A is a satisfactory subset such that, for every
A′ ⊂ A, there exists a vertex u ∈ A′ with dA′(u) ≤ s(u) − 1.

Proposition 3. For any s ≤ d, if a graph contains a satisfactory subset, then
a minimal satisfactory subset A can be found in polynomial time.

Proof. Let A1 be a satisfactory subset of G. We construct a sequence of sub-
graphs of G, G[A1], ..., G[At] such that Ai+1 ⊂ Ai and each Ai is a satisfactory
subset:

In step i (i ≥ 1), we select a vertex v ∈ Ai, tentatively remove from Ai vertex
v and we iteratively remove from Ai \ {v} the vertices u of degree less than s(u)
until we obtain a set X which is either empty or a satisfactory subset. If X = ∅,
then we iterate the previous procedure for vertices v ∈ Ai until a set X 6= ∅ is
obtained, and in this case we continue the construction with Ai+1 = X. In the
other case, i.e. where all the sets X obtained are empty, we stop the algorithm
with t = i. The set A with the required properties is the set At.

It is clear that A is a satisfactory subset. We have to prove that A is minimal.
Suppose on the contrary, that there exists a subset A′ ⊂ A such that dA′(v) ≥
s(v) for all v ∈ A′. Choose any u ∈ A \ A′. Continuing the procedure from
At = A by removing u, a nonempty set At+1 ⊇ A′ would be generated, which
contradicts the previous assumption that At+1 = ∅ holds for all u ∈ A. 2

3 The case s ≤ ⌈d

2
⌉ − 1

Stiebitz [5] proved the following result:

Theorem 1 ([5]). Let G = (V,E) be a graph, and let a, b : V → IN be two
functions such that d(x) ≥ a(x) + b(x) + 1 for every x ∈ V . Then, there is a
nontrivial vertex partition (A,B) of V such that dA(x) ≥ a(x) for every x ∈ A,
and dB(x) ≥ b(x) for every x ∈ B.

Obviously, if we take a = b = s, Stiebitz’s result shows the existence of a
satisfactory partition for s ≤ ⌈d

2⌉ − 1. The proof in [5] is not constructive. We
show here how to determine such a partition in polynomial time.

Proposition 4. Algorithm 1 finds in polynomial time a satisfactory pair in any
graph for s ≤ ⌈d

2⌉ − 1.



Algorithm 1 Determination of a satisfactory pair (s ≤ ⌈d
2⌉ − 1)

Find a minimal satisfactory subset A ⊆ V

B ← V \ A

if G[B] contains a satisfactory subset then

(A, B̃) is a satisfactory pair, B̃ being a satisfactory subset of G[B]
else

while (G[A] or G[B] has no satisfactory subset) do

if G[B] has no satisfactory subset then

Let v ∈ A such that dA(v) ≤ s(v)
A ← A \ {v}; B ← B ∪ {v}

end if

if G[A] has no satisfactory subset then

Let v ∈ B such that dB(v) ≤ s(v)
A ← A ∪ {v}; B ← B \ {v}

end if

end while

(Ã, B̃) is a satisfactory pair where Ã and B̃ are satisfactory subsets of G[A] and
G[B], respectively

end if

Proof. Using Proposition 3, the first step is computable in polynomial time.
Using Proposition 2, the if and while conditions are polynomial-time decidable.
We justify that in the while loop the selection of a vertex v is always possible.
For this, we show that at the beginning of each iteration in the while loop,
G[A] and G[B] are such that all their subgraphs contain a vertex u of degree at
most s(u); and in addition at least one of G[A] and G[B] is such that all their
subgraphs contain a vertex u of degree at most s(u)− 1. In fact, before entering
the while loop, each subgraph of G[A] contains a vertex u of degree at most
s(u), since A is a minimal satisfactory subset. Also, before entering the while
loop, G[B] has no satisfactory subset, which means that each of its subgraphs
contains a vertex u of degree strictly smaller than s(u). At the end of an iteration
of the while loop after moving v from A to B for example, the degree of vertices
in G[B ∪ {v}] increases with at most one, so in each subgraph of G[B ∪ {v}],
there is a vertex u of degree at most s(u). Since we are inside the while loop
only if one of the graphs G[A] and G[B] is such that none of the subgraphs has
a satisfactory subset, the corresponding graph has in each subgraph a vertex u
of degree at most s(u)− 1 that can increase to at most s(u) after moving vertex
v into the other vertex class. Hence, the operations inside the loop can always
be performed.

We show now that the number of iterations is polynomially bounded. Con-
sider any iteration of the while loop. Assume, without loss of generality, that
G[B] has no satisfactory subset. By the choice of v, since dA(v) ≤ s(v), we have
dB(v) ≥ s(v) + 1. Thus, the number of edges between A and B decreases by at
least one and thus the algorithm finishes after at most |E| iterations. 2



Theorem 2. Satisfactory Partition for s ≤ ⌈d
2⌉ − 1 is polynomial-time

solvable.

Proof. From Propositions 1 and 4. 2

By slightly modifying Algorithm 1 replacing s by a or b in appropriate places
we obtain the following result:

Theorem 3. Let G = (V,E) be a graph, and let a, b : V → IN be two functions
such that d(x) ≥ a(x)+b(x)+1 for every x ∈ V . Then, we can find in polynomial
time a nontrivial vertex partition (A,B) of V such that dA(x) ≥ a(x) for every
x ∈ A, and dB(x) ≥ b(x) for every x ∈ B.

4 The case s = ⌈d

2
⌉

In this section we show that for graphs G with ∆(G) ≤ 4 it is polynomial-
time solvable to decide if the graph is (not) partitionable, and also to find a
satisfactory partition if it exists. In particular, all cubic graphs except K4 and
K3,3 are partitionable and all 4-regular graphs except K5 are partitionable.

Firstly we prove two propositions.

Proposition 5. Each cubic graph containing a triangle, except K4, is partition-
able.

Proof. Let G be a cubic graph, G 6= K4, and let C be a triangle of G with
vertices v1, v2, v3. Remark that a vertex outside C cannot have all its neighbors
on C since G 6= K4.

If each vertex of V \ V (C) has at most one neighbor on C then V1 = V (C)
and V2 = V \ V (C) form a satisfactory partition.

Suppose that there is a vertex v4 with two neighbors v1, v2 on C. If v3 and v4

have a common neighbor v5, then V1 = {v1, v2, v3, v4, v5} and V2 = V \ V1 6= ∅
form a satisfactory partition of G. Otherwise V1 = {v1, v2, v3, v4} and V2 =
V \ V1 6= ∅ form a satisfactory partition of G. 2

Proposition 6. Each cubic graph containing a cycle of size 4, except K4 and
K3,3, is partitionable.

Proof. Let G be a cubic graph other than K4 and K3,3. If G contains a triangle
then G is partitionable by Proposition 5. Otherwise let C = v1v2v3v4 be a cycle
of size 4. A vertex outside C cannot have more than two neighbors on C since
otherwise G contains a cycle shorter than C.

If each vertex of V \ V (C) has at most one neighbor on C, then V1 = V (C)
and V2 = V \ V (C) form a satisfactory partition.

Otherwise, suppose that a vertex v5 has neighbors v1 and v3. Since G 6= K3,3

there is no vertex of G with the three neighbors v2, v4, v5. Thus, a vertex vi

with i ≥ 6 has at most two neighbors among {v2, v4, v5}. If all vertices vi with
i ≥ 6 have at most one neighbor among {v2, v4, v5} then V1 = {v1, v2, v3, v4, v5}



and V2 = V \ V1 6= ∅ form a satisfactory partition of G. Otherwise, let v6 be a
vertex that has v2, v4 as neighbors. If all vertices vi with i ≥ 7 have at most one
neighbor among {v5, v6}, then V1 = {v1, v2, v3, v4, v5, v6} and V2 = V \ V1 6= ∅
form a satisfactory partition of G. Otherwise, there is another vertex v7 with
neighbors v5, v6. In this case V1 = {v1, v2, v3, v4, v5, v6, v7} and V2 = V \ V1 6= ∅
form a satisfactory partition of G. 2

We show now how to determine a satisfactory partition.

Algorithm 2 Determination of a satisfactory partition for cubic and 4-regular
graphs

Let G be an (ℓ + 1)-regular graph (ℓ = 2 or 3).
Search a shortest cycle C.
if |C| ≥ 5 then

V1 ← V (C); V2 ← V \ V (C)
else

V1 ← V (C)
while there exists a vertex v ∈ V \ V1 with at least ℓ neighbors in V1 do

V1 ← V1 ∪ {v}
end while

V2 ← V \ V1

end if

Theorem 4. All cubic graphs except K4 and K3,3 are partitionable in polyno-
mial time.

Proof. Let G be a cubic graph, G 6= K4 and K3,3. Let us verify that Algorithm 2
with ℓ = 2 is correct.

If |C| = k ≥ 5, then there are no two vertices on C with a common neighbor
v outside C, since otherwise there exists in G a cycle of length at most ⌊k/2⌋+2.
For k ≥ 5 this would be a cycle shorter than C. So, each vertex outside C has at
least two neighbors among V \V (C) and thus V1 = V (C) and V2 = V \V (C) 6= ∅
form a partition where each vertex is satisfied.

If |C| ≤ 4, then the proofs of the above propositions show that in the partition
(V1, V2) each vertex is satisfied. 2

Theorem 5. All 4-regular graphs except K5 are partitionable, in polynomial
time.

Proof. Let us see in the following that Algorithm 2 with ℓ = 3 is correct.
If |C| ≥ 5, then as above, V1 = V (C) and V2 = V \ V (C) 6= ∅ form a

satisfactory partition.
If |C| = 4, then there is no vertex outside C with three neighbors on C, and

thus V1 = V (C) and V2 = V \ V (C) 6= ∅ form a satisfactory partition.



If |C| = 3, then denote C = v1v2v3. If each vertex of V \V (C) has at most two
neighbors on C, then G is partitionable, and V1 = V (C) and V2 = V \V (C) form
a satisfactory partition. Otherwise let v4 be a vertex with neighbors v1, v2, v3.
If each vertex vi, i ≥ 5 has at most two neighbors among v1, v2, v3, v4 then G is
partitionable. Otherwise, since G 6= K5, let v5 be a vertex with three neighbors
among v1, v2, v3, v4. Then V1 = {v1, v2, v3, v4, v5} and V2 = V \ V1 6= ∅ form a
satisfactory partition of G. 2

Thus, all cubic graphs except K4 and K3,3 are partitionable and all 4-regular
graphs except K5 are partitionable. These results cannot be extended for regular
graphs with degree greater than 4 since there are 5-regular graphs, different from
K6 and K5,5 that are not partitionable, and there are 6-regular graphs different
from K7 that are not partitionable (see Figure 1).

Fig. 1. Non-partitionable 5-regular and 6-regular graphs

We consider now graphs with maximum degree at most 4. As usual, the mini-
mum and maximum degree of G will be denoted by δ(G) and ∆(G), respectively.

Proposition 7. A graph G with δ(G) = 3 and ∆(G) ≤ 4 is partitionable if and
only if it contains two vertex-disjoint cycles.

Proof. (If) Immediate from Proposition 1. (Only if) If G is partionable then each
vertex has at least two neighbors in its part, so each part contains a cycle. 2

Proposition 8. Let G be a graph with ∆(G) ≤ 4. Then G is partitionable if
and only if we can add in G at most two disjoint edges between vertices of degrees
1 or 2, such that the resulting multigraph contains two vertex-disjoint cycles.

Proof. (If) If G contains two disjoint cycles C1, C2 then V (C1) and V (C2) can
be completed to form a satisfactory partition, using Proposition 1.

If G has no two disjoint cycles but adding one edge (vi, vj) the graph G′ =
(V,E ∪ {(vi, vj)}) has two disjoint cycles C1, C2 then (vi, vj) belongs to one of



these cycles. Then V (C1) and V (C2) form a satisfactory pair once we remove
(vi, vj) since vi and vj have degree at most two.

Assume now that the addition of two non-adjacent edges (vi, vj), (vk, vℓ) is
such that the new graph contains two disjoint cycles. Since these two edges are
not adjacent, as above, the two disjoint cycles can be completed to a satisfactory
partition.

(Only if) Let (V1, V2) be a satisfactory partition of G. If Vi (i = 1, 2) contains
no cycle, then we add one edge between two degree-1 vertices of a tree component
inside Vi. If the tree in question is just an edge, then we add a parallel edge
creating a multiple edge. 2

Theorem 6. Let G be a graph with ∆(G) ≤ 4. We can decide in polynomial
time if G is (not) partitionable, and find a satisfactory partition of G if it exists.

Proof. There is a polynomial number of choices to add at most two non-adjacent
edges in G. For a fixed choice, we first verify if there are multiple edges. If there
are two non-adjacent multiple edges, then we have found two disjoint cycles;
if there is one multiple edge, then we search a cycle in the graph obtained by
removing the two vertices incident to this edge. The graph is partitionable if and
only if such a cycle exists. If the graph has no multiple edges, then we apply
a polynomial algorithm that finds two disjoint cycles in a graph if they exist
(Bodlaender [1]), to decide if the graph is partitionable. 2

5 The case ⌈d

2
⌉ + 1 ≤ s ≤ d − 1

Chvátal introduced in [2] the decomposition problem of bicoloring the vertices
of a graph in such a way that each vertex has at most one neighbor with a
different color. He gave a polynomial-time algorithm for this problem for graphs
with maximum degree 3. For graphs with vertices of degree 2 and 3 this problem
coincides with Satisfactory Partition when s = ⌈d

2⌉. Theorem 6 contains
this result. Chvátal also proved the NP -hardness of this problem for graphs with
minimum degree δ(G) = 3 and maximum degree ∆(G) = 4. This result implies
the following result for our problem.

Theorem 7. Satisfactory Partition is NP-complete when s = d − 1, even
for graphs with δ(G) = 3 and ∆(G) = 4.

Observe that Chvátal’s problem coincides with Satisfactory Partition

when s = ⌈d
2⌉+1 or s = d−1 for graphs G with δ(G) = 4 and ∆(G) = 5. In order

to prove the NP -hardness of Satisfactory Partition when ⌈d
2⌉+1 ≤ s ≤ d−1,

we just need to adapt Chvátal’s construction using a graph with δ(G) = 4 and
∆(G) = 5.

Theorem 8. Satisfactory Partition for ⌈d
2⌉+1 ≤ s ≤ d−1 is NP-complete

even for graphs G with δ(G) = 4 and ∆(G) = 5.



Before proving this theorem, we define a problem used in the reduction.

Bicoloring Hypergraphs

Input: A hypergraph H = (V,E).
Question: Is there a coloring with two colors Red and Blue of the vertices such
that no hyperedge is monochromatic?

Bicoloring Hypergraphs is NP -hard even if all hyperedges have size 3 ([4]).

Proof. The reduction is from Bicoloring Hypergraphs with hyperedges of
size 3. Given an input hypergraph H = (V,E) where V = {v1, . . . , vn} and
E = {e1, . . . , em}, we construct a graph G = (V ′, E′) such that H is bicolorable
if and only if G is partitionable. We first briefly describe Chvátal’s construction,
which uses the following graph Qd that is a sequence of d triangles (see Figure 2
(a)).

(a)

(z, e, ℓ)

(e, ℓ)

(y, e, ℓ)

(a, e, ℓ)

(x, e, ℓ)

(b)

Fig. 2. (a) Graph Qd for d = 4; (b) The gadget Te,ℓ

Graph G contains two subgraphs B0, B1 and subgraphs Ai for each vi ∈ V .
B0 and B1 are graphs Qn+m−2 and Ai is Q2di−1, where di is the number of
hyperedges of H containing vi. In each Bℓ, ℓ = 0, 1 the first n consecutive vertices
of degree 2 are labeled by (v1, ℓ), . . . , (vn, ℓ); the remaining m consecutive vertices
of degree 2 are labeled by (e1, ℓ), . . . , (em, ℓ). The 2di + 1 vertices of degree 2
in Ai are labeled by v∗

i and (vi, ej , 0), (vi, ej , 1) if vi belongs to hyperedge ej .
Another gadget used by Chvátal is the graph of Figure 2 (b). For each ℓ = 0, 1
and for each hyperedge e of H containing vertices x, y, z, we add the graph Te,ℓ.
This graph has the property that if the three vertices of degree 1 are in the
same part of a satisfactory partition then the other two vertices of Te,ℓ are in
the same part. Also, if two of the three vertices of degree 1 are in different parts
of a satisfactory partition then the vertex of degree 2 could be in either of the
two parts of the partition.

We specify in the following the edges in G that link the subgraphs A1, . . . , An,
B0, B1. Each v∗

i is joint with (vi, 0) and (vi, 1) for i = 1, . . . , n. Subgraphs B0

and B1 are joined to subgraphs Aj , j = 1, . . . , n using gadgets Te,ℓ, e ∈ E and
ℓ = 0, 1, by identifying vertices with the same labels. With this construction
Chvátal proves the NP -hardness of this decomposition problem.

We introduce the gadget C5,w (see Figure 3) in order to transform any vertex
of the graph of Chvátal’s construction of degree 2 or 3 to a vertex of degree 4 or



5 while preserving the reduction. The property of this gadget is that its vertices
are necessarily in the same part of a satisfactory partition.

w

Fig. 3. The gadget C5,w

We identify vertex w of such a gadget C5,w with vertices (vi, 0) and (vi, 1)
for i = 1, . . . , n and with vertices (vi, ej , 0) and (vi, ej , 0) of the graphs Ai. Also,
we identify vertex w of such a gadget C5,w with vertices (a, e, ℓ) of gadgets Te,ℓ.

We justify in the following that H is bicolorable if and only if G′ is parti-
tionable.

Suppose firstly that G′ is partitionable. It is easy to see that all vertices in B0

must belong to the same part of the satisfactory partition. The same property
holds for B1 and also for Ai for vi ∈ V . Subgraphs B0 and B1 must be in the
different parts of the satisfactory partition since otherwise all vertices of G would
be in the same part. We construct a vertex bicoloring of H from this partition as
follows: if Ai is in the same part as B0 then vi is colored Red, and if it is in the
same part as B1 then vi is colored Blue. Given a hyperedge e of H containing
vertices x, y, z, it is easy to see using the properties of Te,ℓ that e cannot be
monochromatic, since otherwise (e, 0) and (e, 1) would be in the same part of
the partition.

Suppose that H is bicolorable. All vertices of Ai in G corresponding to ver-
tices vi in H of the same color belong to the same part. This partition can be
extended to a satisfactory partition. 2
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