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Abstract. We study the computational complexity of decision and op-
timization problems that may be expressed as boolean contraint satis-
faction problem with the global cardinality constraints. In this paper we
establish a characterization theorem for the decision problems and derive
some new approximation hardness results for the corresponding global
optimization problems.

1 Introduction

Constraints of the global nature arise naturally in some optimization problems.
For example, Min Bisection can be viewed as Min Cut with the restriction
that the two sets of vertices that determine the cut must be of equal size. It
is known that Min Cut is polynomial while Min Bisection is NP -hard. Min
Bisection, Max Bisection and other optimization problems can be written as
boolean constraint satisfaction problems where a feasible solution is a balanced
assignment (where the number of variables set to 1 is the same as the number of
variables set to 0). It was an increased interest in global optimization problems
recently, cf. [HZ01,FL01,JS04].

In this paper we study the complexity of decision and optimization problems
of the balanced versions of boolean constraint satisfaction problems depending
on the type of constraints. Schaefer [Sch78] established a dichotomy theorem for
the boolean constraint satisfaction problems distinguishing six polynomial time
solvable cases. For the decision versions we show that if the set of constraints
contains only equations of width 2 or it contains only conjunctions of literals,
then the balanced version is polynomial time solvable and otherwise it is NP -
complete.

Creignou [Cre95] and Khanna and Sudan [KS96] established a dichotomy
theorem for maximization versions of boolean constraint satisfaction problems
that classify the problems into polynomially solvable or APX -hard. The balanced
versions of these problems where also studied. Sviridenko [Svi01] proved that the
balanced version of Max Sat is 1/(1− 1

e
)-approximable. For the balanced version
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of Max 2Sat, Blaser and Manthey [BM02] established a 1.514-approximation
factor and Hofmeister [Hof03] a 4/3-approximation factor. Lower bound were also
studied for these problems. Holmerin [Hol02] showed that the balanced version
of Max E4-0H-Lin2 (see for the definition Section 2) cannot be approximated
within 1.0957 in polynomial time, unless P=NP. Also Holmerin and Khot [HK03]
showed that balanced version of Max E3-0H-Lin2 is hard to approximate within
4

3
−ε and in [HK04] they improved their result showing that this problem is hard

to approximate within 2 − ε, for any ε > 0, if NP 6⊆ ∩δ>0 DTIME (2nδ

), thus
obtaining the best possible inapproximability factor result for this problem. We
prove in this paper that all the cases that were considered by Creignou [Cre95]
and Khanna and Sudan [KS96] in the dichotomy theorem become APX -hard
and also that most of the trivial maximization constraint satisfaction problems
have their balanced version APX -hard.

Khanna, Sudan and Trevisan [KST97] established a classification theorem for
minimization versions of boolean constraint satisfaction problems. The complex-
ity of approximation of Min Bisection was for long time widely open. Feige and
Krautghamer [FK00] established an approximation algorithm for this problem
within O(log2 n) approximation factor. This result has been recently improved
to O(log1.5 n) by the recent result of Arora, Rao and Vazirani [ARV04]. Very
recently, Khot [Kho04] established that under the assumption that NP 6⊆ ∩δ>0

BTIME (2nδ

), for BTIME denoting randomized polynomial time, Min Bisec-
tion has no polynomial time approximation scheme. Under the assumption that
refuting SAT formulas is hard to approximate on average, Feige [Fei02] proved
also that Min Bisection is hard to approximate below 4

3
.

Holmerin [Hol02] studied the hardness of approximating some generalizations
of Min Bisection. In particular he showed that the balanced version of Min
E4-1H-Lin2 is not (2− ε)-approximable for any ε > 0, unless P=NP. We prove
several inapproximability result for balanced minimization problems. In particu-
lar, using the inapproximability result for Densest k Subgraph established by
Khot [Kho04], we prove that the balanced version of Min Monotone-E2Sat

has no polynomial time approximation scheme, if NP 6⊆ ∩δ>0 BTIME (2nδ

).

The paper is organized as follows: in Section 2 we introduce some prelim-
inary notation and definitions, and Section 3 contains our results on decision
problems. In Sections 4 and 5 we present our results concerning maximization
and minimization optimization problems.

2 Preliminaries

We refer a general reader to [KST97,KSW97,KSTW01,CKS01] for a background
on the boolean constraint satisfaction problems.

A constraint is a boolean function f : {0, 1}k → {0, 1}. A constraint appli-
cation is a pair < f, (i1, . . . , ir) > where r is the arity of f and the iℓ ∈ [n]
indicate to which r of the n boolean variables a given constraint is applied. This
constraint application will be denoted in the following by f(xi1 , . . . , xir

).
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Let F = {f1, . . . , ft} be a finite collection of boolean functions. An F-set
of constraints on n boolean variables x1, . . . , xn is a collection of constraint
applications {fj(xj1 , . . . , xjrj

)}m
j=1 for some integer m, where fj ∈ F and rj is

the arity of fj . We say that an assignment satisfies an F-set of constraints if it
satisfies every constraint in the collection.

The satisfiability problem CSP(F) consists of deciding whether there exists
an assignment that satisfies a given F-set of constraints. kCSP(F) (respectively,
EkCSP(F)) is the variant of CSP(F) where each boolean function fj is a
function of at most (respectively, exactly) k variables, for j ≤ t. The problems
Max (Min) CSP(F) consist of finding a boolean assignment that maximizes
(minimizes) the number of constraints that are satisfied. Max (Min) kCSP(F)
(respectively, Max (Min) EkCSP(F)) are variants of Max (Min) CSP(F)
where each constraint depends on at most (respectively, exactly) k literals.

Given a problem A, the Balanced version of A is the problem A with a
new set of feasible solutions being assignments where the number of variables
set to true (denoted by 1) is the same as the number of variables set to false
(denoted by 0). Such assignments will be called balanced assignments.

We consider also a generalization of this problem. Given a problem A, the
α-Balanced version of A, 0 < α < 1, is the problem A with a new set of feasible
solutions being assignments with the number of true variables being an α ratio
of the total number of variables. Such assignments will be called in the following
α-balanced.

In this paper we study the complexity of decision and optimization problems
related to Balanced CSP(F) depending on the type of constraints defined by
a class F .

We will use basic notation of [Sch78]. We refer to [KMSV94] for the precise
definition of an E-reduction.

3 Complexity of Decision Problems

The decision complexity of boolean constraint satisfaction problems is well es-
tablished. In particular, Schaefer [Sch78] established the following remarkable
dichotomy theorem:

Theorem 1 (Dichotomy Theorem for CSP(F) [Sch78]). Given an F-set
of constraints, the problem CSP(F) is polynomial time computable if F satisfies
one of the conditions below, and CSP(F) is NP-complete otherwise.

1. Every function in F is 0-valid.

2. Every function in F is 1-valid.

3. Every function in F is weakly positive.

4. Every function in F is weakly negative.

5. Every function in F is affine.

6. Every function in F is bijunctive.



4 Cristina Bazgan and Marek Karpinski

Motivated by the above result, we aim at formulating analogous result for
balanced problems. Firstly we show that for any F-set of constraints, Balanced
CSP(F) is at least as difficult as CSP(F).

Lemma 1. If CSP(F) is NP-complete, then Balanced CSP(F) is also NP-
complete.

We turn now to a polynomial time case. We formulate our result in slightly
more general setting of the α-balanced problems.

Theorem 2. For any 0 < α < 1, α-Balanced E2-Lin2 is solvable in polyno-
mial time.

Proof. Let us consider first α = 1

2
. Given an instance I of Balanced E2-Lin2

on n variables and m equations, we construct some equivalence classes on the
set of literals by considering the equations one after another as follows. Given
an equation xi ⊕ xj = 0 (xi ⊕ xj=1), we distinguish the following cases.

– If literals xi, x̄i, xj , x̄j do not appear in a class, then we construct a new class
and we put together xi and xj (xi and x̄j respectively).

– If either xi or x̄i appears in a class Ck and xj , x̄j do not appear in a class,
then

• if xi ∈ Ck then we introduce xj (x̄j respectively) in Ck.
• if x̄i ∈ Ck then we introduce x̄j (xj respectively) in Ck.

– If literals xi or x̄i and xj or x̄j appear in the same class Ck then I is not
satisfiable if {xi, x̄j} ⊆ Ck or {x̄i, xj} ⊆ Ck ({xi, xj} ⊆ Ck or {x̄i, x̄j} ⊆ Ck

respectively).
– If either xi or x̄i appears in a class Ck and either xj or x̄j appears in a class

Cℓ then

• if xi ∈ Ck and xj ∈ Cℓ then we put together the literals of both classes
Ck and Cℓ (we put together the literals of the class Ck with the negated
literals of the class Cℓ).

• if xi ∈ Ck and x̄j ∈ Cℓ then we put together the literals of the class Ck

with the negated literals of the class Cℓ (we put together the literals of
both classes Ck and Cℓ).

Suppose that at the end we obtain t equivalence classes C1, . . . , Ct. Denote
by a2i−1 and a2i the number of literals that appear positive and respectively
negative in Ci. Balanced E2-Lin2 on I consists of deciding if there exists a
partition of these 2t integers in two equal size sets P and N such that P and
N contain exactly one of a2i−1, a2i for i = 1, . . . , t. This problem in solvable
in polynomial time by dynamic programming [GJ76]. If such a partition P , N
exists then the following assignment is balanced and satisfies I:

– if a2i−1 ∈ P then we assign to the positive variables of Ci the value 1 and
to the negated variables of Ci the value 0.

– if a2i−1 ∈ N then we assign to the positive variables of Ci the value 0 and
to the negated variables of Ci the value 1.
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If α 6= 1

2
then as below we construct equivalence classes C1, . . . , Ct and

compute integers a1, . . . , a2t. We add two other integers a2t+1 = n|1 − 2α|,
a2t+2 = 0 and solve the above partition problem on this new instance. 2

The above result contrast interestingly with Theorem 4.
We define a new problem to be used later.

kOnes(E3-bH-Lin2), b ∈ {0, 1}
Input: A set of equations of the type xi1 ⊕ xi2 ⊕ xi3 = b on n boolean variables
x1, . . . , xn.
Question: Is there an assignment with exactly k variables set to 1, satisfying
all equations ?

Max Ones(F) consists of determining an assignment that satisfies all con-
straints of F-type and maximizes the number of variables assigned to 1.

Theorem 3 ([KSW97,KSTW01]). If every function in F is of the type xi1 ⊕
xi2 ⊕ xi3 = 0 or if every function in F is of the type xi1 ⊕ xi2 ⊕ xi3 = 1 then the
problem Max Ones(F) is APX-complete.

A consequence of the previous theorem is that kOnes(E3-0H-Lin2) and
kOnes(E3-1H-Lin2) are NP -complete.

Proposition 1. Balanced E3-0H-Lin2 and Balanced E3-1H-Lin2 are both
NP-complete.

Proof. We construct a reduction between kOnes(E3-0H-Lin2) and Balanced
E3-0H-Lin2. Given an instance I of kOnes(E3-0H-Lin2) on n variables x1, . . . , xn

we construct an instance I ′ on 2n variables x1, . . . , xn, y1, . . . , yn−k, z1, . . . , zk

as follows. For each equation xi1 ⊕ xi2 ⊕ xi3 = 0 from I, we associate in I ′ the
same equation and let us denote in the following this set of equations by A. We
add also to I ′ the following set of equations, called B, yi ⊕ yj ⊕ zℓ = 0 for every
i, j ∈ {1, . . . , n−k}, ℓ ∈ {1, . . . , k}, i 6= j. It is easy to see that in order for an as-
signment to satisfy B the variables y must have the same value and the variables
z must have the same value. Thus, an assignment that satisfies B has zi = 0,
i = 1, . . . , k. Suppose that yi = 0, i = 1, . . . , n − k then since the assignment
must be balanced we have xi = 1, i = 1, . . . , n but in this case the equations in A
are not satisfied. So, yi = 1, i = 1, . . . , n− k and due to the balanced condition,
the restriction of this assignment to variables x satisfies I and contains exactly
k variables 1 and n − k variables 0. In the similar way kOnes(E3-1H-Lin2) is
reducible to Balanced E3-1H-Lin2. 2

Theorem 4. For any k ≥ 3, b ∈ {0, 1}, Balanced Ek-bH-Lin2 is NP-complete.

Proof (sketch). For every odd k, we can construct a reduction between Bal-
anced Ek-0H-Lin2 and Balanced E(k + 2)-1H-Lin2. Using an equivalence
between Balanced Ek-0H-Lin2 and Balanced Ek-1H-Lin2 for every odd k
and Proposition 1, we derive the NP -completeness of Balanced Ek-bH-Lin2,
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b ∈ {0, 1}, for every odd k. For every odd k, and b ∈ {0, 1}, we can construct a
reduction between Balanced Ek-bH-Lin2 and Balanced E(k + 1)-bH-Lin2.
Thus we can derive the NP -completeness of Balanced Ek-H-Lin2 for every
even k ≥ 4. 2

Monotone-2Sat is a trivial problem. In contrast to this, we show that
α-Balanced Monotone-E2Sat is, in fact, NP -hard.

Theorem 5. α-Balanced Monotone-E2Sat is NP-complete, for any α > 0.

Proof. We reduce α-Clique (cf. [GJ76]) to α-Balanced Monotone-E2Sat.
An instance of α-Clique has an input a graph on n vertices and we have to
decide if it contains a clique of size at least αn. The reduction is as follows: given a
graph G = (V,E) on n vertices, we construct an instance I on n boolean variables
x1, . . . , xn, one for each vertex of G. For any i, j ∈ V such that (i, j) /∈ E, we
add the clause x̄i ∨ x̄j . It is clear that if C is a clique in G of size αn, then the
assignment xi = 1 if i ∈ C and xi = 0 if i /∈ C satisfies each clause of I since
for each (i, j) /∈ E, xi or xj is false. Conversely, if an α-balanced assignment
satisfies I, then the set C = {i : xi = 1} is a clique of size αn. Since α-Clique
is NP -hard [GJ76], α-Balanced Monotone-E2Sat is NP -hard as well. 2

Theorem 6. Balanced Monotone-EkSat is NP-complete for any k ≥ 3.

Proof (sketch). A reduction from EkSat yields. 2

Since Balanced AND is trivial we can formulate the following

Theorem 7 (Characterization Theorem for Balanced CSP(F)). Given
an F-set of constraints, the problem α-Balanced CSP(F) is polynomial time
solvable (if every function in F is affine with width 2 or if every function in F
is a conjunction of literals), otherwise it is NP-complete.

4 Approximation of Global Maximum Constraint

Satisfaction

We state first the following known classification theorem of Max CSP(F) (cf.
[Cre95,KS96]).

Theorem 8 (Characterization Theorem for Max CSP(F) [Cre95,KS96]).
Max CSP(F) is either polynomial time computable or is APX-complete. More-
over, it is in P if and only if F is either 0-valid or 1-valid or 2-monotone.

Some upper bounds have been established for these balanced versions of Max
CSP(F). α-Balanced Max Sat was proven to be 1/(1 − 1

e
)-approximable

([Svi01]). α-Balanced Max 2Sat was proven to be 1.514-approximable ([BM02])
and Balanced Max 2Sat was proven to be 4/3-approximable ([Hof03]).

We state first the following direct lemma:

Lemma 2. Max CSP(F) is E-reducible to Balanced Max CSP(F).
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The following lemma shows that the three polynomial cases for Max CSP(F)
became difficult for the balanced version.

Theorem 9. Balanced Max Monotone-EkSat is APX-hard, for k ≥ 2.

A particular case of the following problem is equivalent to a Balanced Max
CSP(F) problem for some particular F as it will be proved later.

We introduce now a new problem.

Densest k Subgraph
Input: A graph G = (V,E) on n vertices where n is even.
Output: A subset S ⊆ V of size k that maximize the number of edges with
both extremities in S.

The hardness of the approximation of Densest k Subgraph remained open
for long time. Recently, Khot [Kho04] was able to establish such a result using
a special PCP technique.

Theorem 10 ([Kho04]). Densest k Subgraph has no polynomial time ap-

proximation scheme if NP 6⊆ ∩δ>0 BTIME(2nδ

).

More precisely, Khot [Kho04] has proved the previous result for Densest k
Subgraph when k = cn for c a constant.

Proposition 2. Densest k Subgraph is E-reducible to Densest n
2

Sub-
graph.

Proposition 3. Balanced Max Monotone-E2AND is E-equivalent to Dens-
est n

2
Subgraph.

Theorem 11. Balanced Max Monotone-EkAND, k ≥ 2, has no polyno-

mial time approximation scheme if NP 6⊆ ∩δ>0 BTIME(2nδ

).

Proof (sketch). We can E-reduce Balanced Max Monotone-EkAND to
Balanced Max Monotone-E(k + 1)AND, for k ≥ 2, and thus using Propo-
sitions 2, 3 and Theorem 10 (Khot’s result [Kho04]) the result follows. 2

We consider in the following the balanced version of affine constraints.
Max E2-1H-Lin2, that is Max Cut, is known to be APX -hard [PY91] and

Balanced Max E2-1H-Lin2 that is Max Bisection is known to be APX -
hard [PY91,Has97]. Each instance of Max E2-0H-Lin2 is satisfied by the trivial
assignment 0. We show a relation between the complexity of Balanced Max
Monotone-E2AND and Balanced Max E2-0H-Lin2 (or Balanced Max
Uncut).

Proposition 4. Balanced Max Monotone-E2AND is E-reducible to Bal-
anced Max E2-0H-Lin2.

Thus we establish an inapproximability result for Balanced Max Uncut.
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Theorem 12. Balanced Max UnCut has no polynomial time approximation

scheme if NP 6⊆ ∩δ>0 BTIME(2nδ

).

Proof. The result is a consequence of Propositions 3, 4 and Theorem 10. 2

When k is odd, Max Ek-bH-Lin2 is trivial since the assignment b for all
variables satisfies all equations. When k is even, Max Ek-0H-Lin2 is also trivial
since the assignment 0 for all variables satisfies all equations. For k ≥ 4 even,
Max Ek-1H-Lin2 is not know to be hard to approximate.

Theorem 13. Balanced Max Ek-bH-Lin2 is APX-hard, for k ≥ 3, b ∈
{0, 1}.

Proof. We construct an E-reduction between Balanced Max E2-1H-Lin2 and
Balanced Max E3-1H-Lin2. Given an instance I of Balanced Max E2-
1H-Lin2 on n variables x1, . . . , xn and m equations, we construct an instance
I ′ on 3n variables x1, . . . , xn, y1, . . . , yn, z1, . . . , zn as follows. For each equation
xi1 ⊕ xi2 = 1 from I, we associate in I ′ the equations xi1 ⊕ xi2 ⊕ zℓ = 1, for
ℓ = 1, . . . , n and let us call in the following this set of equations A. We add also
to I ′ the following equations zi ⊕ zj ⊕ yℓ = 1 for i 6= j, i, j, ℓ ∈ {1, . . . , n}. This
last set of equations is called B. It is easy to see that opt(I ′) ≥ n× opt(I) + |B|
since the same assignment for variables x, zi = 0, i = 1, . . . , n and yi = 1,
i = 1, . . . , n satisfies in A, n× opt(I) equations. Since there are Θ(n2) equations
of the type zi ⊕ zj ⊕ yℓ = 1 and zi ⊕ zj ⊕ yt = 1 for some fixed i and j and
ℓ, t ∈ {1, . . . , n} then yℓ = yt and so all variables y have the same values and
this value is 1. We can prove similarly that all variables z have the same values.
Since the assignment is balanced, then variables z have values 0 and thus the
variables x form a balanced solution.

For every odd k, we can construct an E-reduction between Balanced Max
Ek-0H-Lin2 and Balanced Max E(k + 2)-1H-Lin2. Using an E-equivalence
between Balanced Max Ek-0H-Lin2 and Balanced Max Ek-1H-Lin2 for
every odd k, we derive the APX -hardness of Balanced Max Ek-bH-Lin2,
b ∈ {0, 1}, for every odd k. For every odd k and b ∈ {0, 1}, we can construct
an E-reduction between Balanced Max Ek-bH-Lin2 and Balanced Max
E(k + 1)-bH-Lin2. Thus we can derive the APX -hardness of Balanced Max
Ek-H-Lin2 for every even k ≥ 4. 2

Balanced Max Ek-bH-Lin2 was studied for particular cases of k and b = 0.
More precisely, Holmerin [Hol02] proved that Balanced Max E4-0H-Lin2
cannot be approximated within 1.0957 in polynomial time, unless P=NP. Also
Holmerin and Khot showed in [HK03] that Balanced Max E3-0H-Lin2 is
hard to approximate within 4

3
− ε and in [HK04] they improved their result

showing that Balanced Max E3-0H-Lin2 is hard to approximate within 2−ε

if NP 6⊆ ∩δ>0 DTIME (2nδ

), thus obtaining the best possible inapproximability
bound result for this problem (under this assumption).

Theorem 14 (Characterization Theorem for Balanced Max CSP(F)).
Balanced Max CSP(F) is APX-hard.
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5 Approximation of Global Minimum Constraint

Satisfaction

A classification theorem for Min CSP(F) was formulated in [KST97].
We can show directly, like for the decision and maximization constraint sat-

isfaction problems, that the balanced version of a minimization problem is at
least as hard as an underlying problem.

Lemma 3. Min CSP(F) is E-reducible to Balanced Min CSP(F).

Min Monotone-EkSat for k ≥ 2 are trivial problems. For the balanced
situation we formulate

Proposition 5. Balanced Max Monotone-E2AND is E-reducible to Bal-
anced Min Monotone-E2Sat.

We derive now

Theorem 15. Balanced Min Monotone-E2Sat has no polynomial time ap-

proximation scheme if NP 6⊆ ∩δ>0 BTIME(2nδ

).

Proof. The result is a consequence of Proposition 5 and Theorem 11. 2

We first show that a hardness approximation result for Balanced Min
Monotone-E2Sat implies a hardness approximation result for Min Bisec-
tion.

Proposition 6. Balanced Min Monotone-E2Sat is E-reducible to Min
Bisection.

Proof. Given an instance I of Balanced Min Monotone-E2Sat on n vari-
ables x1, . . . , xn and m clauses, we construct an instance I ′ of Min Bisection on
n+2 variables x1, . . . , xn and two new variables y and z and 3m equations as fol-
lows : for each clause x1∨x2 we add 3 equations x1⊕x2 = 1, x1⊕z = 1, x2⊕z = 1.
We have opt(I ′) ≤ 2opt(I) since the assignment satisfying opt(I) clauses in I and
z = 0 and y = 1 satisfies 2opt(I) equations in I ′. Given a balanced assignment
v for I ′ satisfying val′ equations, we can consider z = 0. If y = 1 then, the
restriction of v on x variables is balanced and satisfies val′

2
clauses. If y = 0 then

the restriction of v on x variables satisfies val′

2
clauses in I but is not balanced.

Observe that the balanced assignment obtained by changing the value of an x
variable from 1 to 0 satisfies at most val′

2
clauses. 2

We establish now an E-reduction between Balanced Max UnCut and
Min Bisection.

Proposition 7. Balanced Max E2-0H-Lin2 is E-reducible to Balanced
Min E2-1H-Lin2.

We formulate now
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Theorem 16. Balanced Min Monotone-EkSat, k ≥ 2, has no polynomial

time approximation scheme if NP 6⊆ ∩δ>0 BTIME(2nδ

).

Proof (sketch). We can E-reduce Balanced Min Monotone-EkSat to Bal-
anced Min Monotone-E(k + 1)Sat, for k ≥ 2, and thus using Theorem 15,
the result follows. 2

Min E2-0H-Lin2 is Min UnCut that is known to be APX -hard by [GVY93]
and thus Balanced Min E2-0H-Lin2 is Balanced Min UnCut is also APX -
hard. Min E2-1H-Lin2 that is Min Cut is polynomial solvable. Balanced
Min E2-1H-Lin2 is Min Bisection for which the hardness of approximation
was proved very recently [Kho04]. For k ≥ 3, Min Ek-1H-Lin2 is trivial since
the assignment 0 for all variables satisfies no equation. When k is odd, Min
Ek-0H-Lin2 is also trivial since the assignment 1 for all variables satisfies no
equation and when k ≥ 4 is even, it is not known if Min Ek-0H-Lin2 is hard to
approximate.

Theorem 17 ([HK03]). Balanced Min E3-bH-Lin2, b ∈ {0, 1}, is NP-hard
to approximate within any constant factor.

The proof of the above result uses a PCP technique. We can prove without
using directly a PCP method a somewhat weaker result

Theorem 18. Balanced Min Ek-bH-Lin2, b ∈ {0, 1}, is APX-hard for every
k ≥ 3.
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