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Abstract. In this paper we study the parameterized complexity of the
firefighter problem. More precisely, we show that Saving k-Vertices

and its dual Saving All But k-Vertices are both W[1]-hard for pa-
rameter k even for bipartite graphs. We also investigate several cases
for which the firefighter problem is tractable. For instance, Saving k-

Vertices is fixed-parameter tractable on planar graphs for parameter
k. Moreover, we prove a lower bound to polynomial kernelization for
Saving All But k-Vertices.

1 Introduction

The firefighter problem was introduced in [10] and can be used to model the
spread of a fire, a virus, or an idea through a network. It is a dynamic problem
defined as follows. Initially, a fire breaks out at some special vertex s of a graph.
At each time step, we have to choose one vertex which will be protected by a
firefighter. Then the fire spreads to all unprotected neighbors of the vertices on
fire. The process ends when the fire can no longer spread, and then all vertices
that are not on fire are considered as saved. The objective consists of choosing,
at each time step, a vertex which will be protected by a firefighter such that a
maximum number of vertices in the graph is saved at the end of the process.

The firefighter problem was proved to be NP-hard even for trees of maxi-
mum degree three [8] and cubic graphs [11]. From the approximation point of
view, the firefighter problem is e

e−1 -approximable on trees [3] and it is not n1−ε-
approximable on general graphs [1], if P 6= NP. However, very little is known
about the fixed parameter tractability of this problem. In [3], the authors give
fixed-parameter tractable algorithms and polynomial kernels on trees for each
of the following parameters: the number of saved leaves, the number of burned
vertices, and the number of protected vertices.

In this paper, we consider the parameterized complexity of the firefighter
problem on general graphs where, at each time step, b firefighters can be de-
ployed. This problem, called Saving k-Vertices, is defined as follows. Given
a graph G = (V, E), an initially burned vertex s ∈ V , and two integers b ≥ 1
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and k ≥ 0, can we protect b vertices at each time step such that at least k
vertices are saved at the end of the process? The dual problem, Saving All

But k-Vertices, is also studied and asks whether we can protect b vertices at
each time step such that at most k vertices are burned at the end of the pro-
cess. We show that Saving k-Vertices is W[1]-hard for parameter k when b is
fixed. In contrast, Saving All But k-Vertices is fixed-parameter tractable
for parameter k when b is fixed and it is W[1]-hard for parameter k when b is
part of the input. Saving k-Vertices is proved to be fixed-parameter tractable
when parameterized by k and the treewidth of the graph or when restricted
to planar graphs and parameterized by k. Both problems, Saving All But

k-Vertices and Saving All But k-Vertices, admit a kernel when parame-
terized by k and the vertex cover number. We also show that Saving All But

k-Vertices parameterized by k and b does not admit polynomial kernels unless
coNP⊆NP/poly. Our results are summarized in Table 1.

Our paper is organized as follows. Definitions, terminology and preliminaries
are given in Section 2. In Section 3, we give several parameterized tractability
results, and polynomial kernelization feasibility is studied in Section 4. Conclu-
sions are given in Section 5. Due to the space limit, some proofs are omitted and
could be found in the extended version.

Parameter(s) k k + b k + tw k + τ

Saving k-Vertices Tractability W[1]-hard, W[1]-hard, FPT FPT
XP, XP

FPT for planar graphs
Poly Kernel? no no open open

Saving All But Tractability W[1]-hard, XP FPT open FPT
k-Vertices Poly Kernel? no no open open

Fig. 1. Summary of results. The vertex cover number is denoted by τ , and the treewidth
by tw. Results in bold font are proved in this paper; the other results are a direct con-
sequence of these last results. Notice that vertex cover number is larger than treewidth.

2 Preliminaries

Graph terminology. All graphs in this paper are undirected, connected, finite and
simple. Let G = (V, E) be a graph. An edge in E between vertices u, v ∈ V will
be denoted by uv. The degree of a vertex u ∈ V , denoted by deg(v), is the number
of edges incident to u. The open (resp. close) neighborhood of a vertex v ∈ V
is the set N(v) = {u ∈ V : uv ∈ E} (resp. N [v] = N(v) ∪ {v}). Given a subset
S ⊆ V , the open (resp. close) neighborhood of S is the set N(S) =

⋃

u∈S N(u)
(resp. N [S] = N(S) ∪ S). We denote by d(u, v) the minimum length of a path
with endpoints u, v ∈ V . Throughout this paper, the vertex cover number will
be denoted by τ(G) or τ and the treewidth by tw(G) or tw.

Parameterized complexity. Here we only give the basics notions on parameter-
ized complexity, for more background the reader is referred to [6, 9]. The pa-
rameterized complexity is a framework which provides a new way to express the
computational complexity of problems. A problem parameterized by k is called
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fixed-parameter tractable (fpt) if there exists an algorithm (called an fpt algo-
rithm) that solves it in time f(k).nO(1) (fpt-time). The function f is typically
super-polynomial and only depends on k. In other words, the combinatorial ex-
plosion is confine into f . A parameterized problem P with parameter k will be
denoted by (P, k). The XP class is the set of parameterized problems (P, k) that
can be solved in time ng(k) for a given computable function g.

One of the main tool to design such algorithms is the kernelization. A ker-
nelization algorithm transforms in polynomial time an instance I of a given
problem parameterized by k into an equivalent instance I ′ of the same problem
parameterized by k′ ≤ k such that |I ′| ≤ g(k) for some computable function g.
The instance I ′ is called a kernel of size g(k) (if g is a polynomial then I ′ is a
polynomial kernel). By applying any (even exponential) algorithm to a kernel of
a given problem, we can derive an fpt algorithm for that problem.

Conversely to the previous approach, we can prove the parameterized in-
tractability of a problem. To this end, we need to introduce the notion of param-

eterized reduction. An fpt-reduction is an algorithm that reduces any instance
I of a problem with parameter k to an equivalent instance I ′ with parameter
k′ = g(k) in fpt-time for some function g. The basic class of parameterized in-
tractability is W [1] and there is a good reason to believe that W [1]-hard problems
(according to the fpt-reduction) are unlikely to be FPT. We have the following
inclusions FPT ⊆ W[1] ⊆ XP.

Very recently a new result [2] has been introduced for proving the non ex-
istence of a polynomial kernel under a reasonable complexity hypothesis. This
result is based on the notion of OR-composition of parameterized problems. A
problem P parameterized by k is OR-compositional if there exists a polynomial
algorithm that receives as inputs a finite sequence (I1, k1), . . . , (IN , kN ) of in-
stances of (P, k) such that k1 = . . . = kN . The algorithm is required to output

an instance (I, k) of (P, k) such that k = k
O(1)
1 and (I, k) is a yes-instance if and

only if there is some i ∈ {1, . . . , N} such that (Ii, ki) is a yes-instance. We have
the following theorem.

Theorem 1. [2] Let (P, k) be a parameterized problem. If P is NP-complete

and (P, k) is OR-compositional then (P, k) has no polynomial kernel unless

coNP⊆NP/poly.

Finally, some of the results in this paper use the very general result of Cour-
celle [4] stating that any property of graphs definable in a monadic second or-
der (MSO2) formula can be decided in fpt-time when parameterized by the
treewidth. Another general theorem [7] based on MSO1 logic — a variant of the
MSO2 logic — states that any property of graphs definable in a MSO1 formula
can be decided in fpt-time when parameterized by the local treewidth.

Problems definition. In order to define the firefighter problem, we use an undi-
rected graph G = (V, E) and notations of [1]. Each vertex in the graph can be in
exactly one of the following states: burned, saved or vulnerable. A vertex is said
to be burned if it is on fire. We call a vertex saved if it is either protected by a
firefighter — that is the vertex cannot be burned in subsequent time steps — or
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if all paths from any burned vertex to it contains at least one protected vertex.
Any vertex which is neither saved nor burned is called vulnerable. At time step
t = 0, all vertices are vulnerable, except vertex s, which is burned. At each time
t > 0, at most b vertices can be protected by firefighters and any vulnerable
vertex v which is adjacent to a burned vertex u becomes burned at time t + 1,
unless it is protected at time step t. Burned and saved vertices remain burned
and saved, respectively.

Given a graph G = (V, E) and a vertex s initially on fire, a protection strategy

is a set Φ ⊆ V ×T where T = {1, 2, . . . , |V |}. We say that a vertex v is protected
at time t ∈ T according to the protection strategy Φ if (v, t) ∈ Φ. A protection
strategy is valid with respect to a budget b, if the following two conditions are
satisfied:

1. if (v, t) ∈ Φ then v is not burned at time t;
2. let Φt = {(v, t) ∈ Φ}; then |Φt| ≤ b for t = 1, . . . , |V |.

Thus at each time t > 0, if a vulnerable vertex v is adjacent to at least one
burned vertex and (v, t) /∈ Φ, then v gets burned at time t + 1. We now define
in the following the problems we study.

Saving k-Vertices

Input: A graph G = (V, E), a burned vertex s ∈ V and two integers k and b.
Question: Is there a valid strategy Φ with respect to budget b that saves at
least k vertices?

Saving All But k-Vertices

Input: A graph G = (V, E), a burned vertex s ∈ V and two integers k and b.
Question: Is there a valid strategy Φ with respect to budget b where at most k
vertices are burned?

Remark 1. For the Saving k-Vertices problem, we may only consider in-
stances for which any valid strategy Φ ⊆ V × T is such that |Φ| < k, otherwise
the answer is clearly yes.

Remark 2. For the Saving All But k-Vertices problem, we may assume that
for any valid strategy Φ ⊆ V × T , if (v, t) ∈ Φ then t < k, otherwise the answer
is necessarily no. Indeed, there is at least one newly burned vertex at each time
step, then if we protect a vertex at time step t ≥ k there will be at least k burned
vertices.

3 Parameterized tractability

We first show that Saving k-Vertices and its dual Saving All But k-
Vertices are both in XP but are fixed-parameter intractable even for bipartite
graphs.

Theorem 2. Saving k-Vertices is solvable in time nO(k).
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Proof. It follows from Remark 1 that the algorithm only have to try each of
the

(

n

k

)

possible sets of protected vertices. Notice that all of these configurations
does not necessarily correspond to a valid strategy. However, one can check if a
set D ⊆ V corresponds to a valid strategy with the following procedure. Let ri

be the number of firefighters we did not use from time step 1 to i − 1 (r1 = 0),
and Li = {v ∈ V : d(s, v) = i}. For each time step i = 1, . . . , k, protect vertices
in D ∩ Li. If |D ∩ Li| > b + ri then this strategy is not valid. Otherwise, set
ri+1 = ri + (b − |D ∩ Li|). It follows that the running time is nO(k). �

Theorem 3. Saving All But k-Vertices is solvable in time nO(k).

Proof. First of all, we need to introduce the notion of valid burning set. Given
a graph G = (V, E) and an initially burned vertex s ∈ V , a valid burning set is
a subset B ⊆ V with s ∈ B such that there exists a valid strategy for which, at
the end of the process, the burned vertices are exactly those in B. We have the
following lemma.

Lemma 1. Let G = (V, E) be a graph with an initially burned vertex s ∈ V .

Verifying if a subset B ⊆ V is a valid burning set can be done in linear time.

Proof. It follows from Remark 2 that we only have to considers the first k time
steps. Notice that the set of protected vertices must be exactly N(B). Moreover,
given a vertex v ∈ N(B) this vertex has a due date: it has to be protected before
or at time step d(s, v). Hence, at each time step t = 1, . . . , k, it suffices to protect
all the vertices in N(B) with due dates equal to t. If there are more firefighters
than vertices with due date equal to t then protect vertices with due date equal
to t + 1, then vertices with due date equal to t + 2 and so on until there are no
more firefighters. Clearly, if all vertices in N(B) are protected using the previous
procedure then the answer is yes. However, if, at a given time step t, there are
less firefighters than vertices with due date equal to t the answer is no. �

The algorithm then proceeds as follows. For each subset B ⊆ V with |B| =
k + 1 if B is a valid burning set then the answer is yes. If no valid burning set
were found then the answer is no. It follows from lemma 1 that the running time
is nO(k). �

The following result was also proved independently by Cygan et al. [5].

Theorem 4. Saving k-Vertices parameterized by k is W[1]-hard even for

bipartite graphs with a fixed budget.

Proof. We construct an fpt-reduction from the W[1]-hard problem Multi-Colored

Clique [12] to Saving k-Vertices. We first recall the definition of the former
problem.

Multi-Colored Clique

Input: A graph G = (V, E), an integer k, and a proper k-coloring of G (i.e.,
every two adjacent vertices have different colors).
Parameter: k
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Question: Is there a k-clique (i.e., a complete subgraph on k vertices) in G?

Let I be an instance of Multi-Colored Clique consisting of a graph G =
(V, E), an integer k, and a proper k-coloring. We construct an instance I ′ of
Saving k-Vertices consisting of a graph G′ = (V ′, E′), a burned vertex s ∈ V ′,

and two integers k′ and b as follows. Set k′ =
∑k

i=1 i +
(

k
2

)

+ 1 and b = 1. We
construct G′ from G as follows: add a new vertex s; for every vertex v ∈ V
add a path Pv =< s, v1, . . . , vk−1, vk = v > where v1, . . . , vk−1 are new vertices;
remove every edge uv ∈ E and add an edge-vertex xuv adjacent to u and v.

Suppose that there is a clique C ⊆ V of size k in G. Let Φ be the following
valid strategy for I ′: at each time step i = 1, . . . , k, first locate a vertex v such
that v ∈ C and no vertex in Pv is protected; then protect vertex vi in the
path Pv. At time step k + 1, Φ protects any non-burned vertex. Clearly, Φ saves
∑k

i=1 i + 1 vertices and
(

k
2

)

edge-vertices.

Conversely, suppose that a valid strategy Φ saves at least k′ vertices in G′.
Remark that Φ protects a vertex adjacent to a burned vertex at each time step.
Indeed, suppose on the contrary that Φ protects a vertex that is not adjacent to
a burned vertex. Notice that this vertex is either an edge-vertex or a vertex in a
path Pv. If it is an edge-vertex xuv then we could protect either u or v instead of
xuv to save at least the same number of vertices. If it is a vertex vi that belongs
to the path Pv then we could protect vi−1 instead of vi to save more vertices. It
follows that Φ protects exactly one vertex on each path Pv. Let C ⊂ V ′ be the
set of endpoints (different of s) of every path having a protected vertex. Since

we save at least
∑k

i=1 i+
(

k

2

)

+1, the corresponding set C is a clique in G of size
k. �

Theorem 5. Saving All But k-Vertices parameterized by k is W[1]-hard
even for bipartite graphs.

Proof. We construct an fpt-reduction from the W[1]-hard problem Regular

Clique [12] to Saving All But k-Vertices. We first give the definition of
the former problem.

Regular Clique

Input: A regular graph G = (V, E) and an integer k.
Parameter: k
Question: Is there a k-clique in G?

In this reduction, a busy gadget denotes a (b + k)-star with center c (i.e., a
tree with one internal vertex c and b + k leaves). Attaching a busy gadget to
a vertex v means to create a copy of a (b + k)-star and makes c adjacent to v.
Thus, if v is burning at a given time step then c has to be protected, otherwise
more than k vertices would burn.

Let I be an instance of Regular Clique consisting of a d-regular graph
G = (V, E) and an integer k. We construct an instance I ′ of Saving All But

k-Vertices consisting of a graph G′ = (V ′, E′), a burned vertex s ∈ V ′, and
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two integers k′ and b as follows. Set k′ = k and b = b1 + b2 where b1 = k(n− k)
and b2 = kd −

(

k

2

)

. We construct G′ from G as follows: add a new vertex s
adjacent to all vertices of G; attach b1 + b2 − (n − k) busy gadgets to s; attach
n− k busy gadgets to every vertex in V ; remove every edge uv ∈ E and add an
edge-vertex xuv adjacent to u and v (see Figure 2). Notice that, at time step 1,
there are only n − k firefighters that can be placed freely because of the busy
gadgets. s

n − k

b1 + b2 − (n − k)

Fig. 2. The construction of G
′. Added vertices are black and a triangle represents a

busy gadget.

Suppose that we have a k-clique in G. Let Φ be the following valid strategy for
I ′: at time step 1, the strategy uses the n − k remaining firefighters to protect
all the original vertices V in G′ except those in the k-clique. At time step 2,
all the k vertices in the clique are burned. Since there are n − k busy gadgets
attached to each vertex in the k-clique we need to protect b1 = k(n−k) vertices.
Moreover, there are kd−

(

k

2

)

edge-vertices adjacent to the vertices in the clique,
since it remains b2 = b− b1 firefighters we can protect them all. Hence, no more
than k vertices are burned at the end of the process.

Conversely, suppose that there is no k-clique in G. A time step 1, any valid
strategy has to place the n − k remaining firefighters on vertices that are not
edge-vertices otherwise at least k′ + 1 vertices will burn. At time step 2, since
there is no k-clique, there will be at least kd −

(

k
2

)

+ 1 edge-vertices adjacent
to the k burned vertices. For the same reason as before, it remains b2 = b − b1

firefighters which is not enough to protect these edge-vertices. Therefore, given
any valid strategy there will be at least k′ burned vertices. �

We note that the parameters in the reduction used in Theorem 5 are linearly
related. Since Regular Clique cannot be solved in time no(k) unless FPT =
M[1] [12], we obtain the following lower bound that shows that the algorithm
given in Theorem 3 is optimal.

Corollary 1. Saving All But k-Vertices cannot be solved in time no(k)

unless FPT = M[1].

The following results show that Saving k-Vertices and Saving All But

k-Vertices are fixed-parameter tractable in several cases.

Theorem 6. Saving All But k-Vertices parameterized by k and the budget

b is FPT.
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Proof. We describe a recursive algorithm that solves Saving All But k-Vertices

in time O∗(2k2(b+1)+kb). Let G = (V, E) be a graph with an initially burned ver-
tex s0 ∈ V . We may assume that |N(s0)| < b + k otherwise the answer is no.
Since a solution of the problem will protect none or up to b vertices of N(s0), the

algorithm must decide which of the
∑b

i=0

(

b+k
i

)

possible subsets of N(s0) to pro-
tect at time step 1. At time step 2, the newly burned vertices are exactly those
in N(s0) that were not protected. Notice that we can merge every burned vertex
into a single burned vertex s1 without changing the answer of the instance. We
may also assume that |N(s1)| < b + k + r where r is the number of firefighters

we did not use in the previous time step. The algorithm has now
∑b+r

i=0

(

b+k+r

i

)

possible subsets to protect at time step 2. Clearly, we may apply the previous
procedure recursively. Moreover, it follows from Remark 2 that there are at most
k recursive calls. The value of r is then at most bk, and the running time of the
algorithm is O∗(2k(b+k+r)) = O∗(2k2(b+1)+kb) �

The following two theorems were also proved independently in [5].

Theorem 7. Saving k-Vertices parameterized by k is FPT for planar graphs.

Theorem 8. Saving k-Vertices parameterized by the treewidth and k is FPT.

4 Kernelization feasibility

In this section, we provide a kernelization for Saving k-Vertices (resp. Saving

All k-Vertices) when parameterized by τ and k. Moreover, we show that
Saving All But k-Vertices parameterized by k and b does not admit a
polynomial kernel unless coNP⊆NP/poly.

Theorem 9. Saving k-Vertices admits a kernel of size at most O(2τk).

Proof. Let G = (V, E) be a graph where the fire breaks out at vertex s ∈ V and
there are b firefighters available at each time step. A set S ⊆ V is called a twins

set if for every v, u ∈ S, v 6= u, we have N(u) = N(v) and uv /∈ E. Consider the
following reduction rule.

Rule: If there exists a twins set S such that |S| ≥ k + 1 then delete |S| − k
vertices of S.

Let G′ = (V ′, E′) be the graph obtained by iteratively applying the above
rule to every twins set in G. Notice that the procedure runs in polynomial time.
Let C ⊆ V ′ be a minimum vertex cover and let D = V ′ \ C be an independent
set. The number of distinct twins set in D is at most 2τ (one for each subset in
C). Moreover, each twins set in G′ has at most k vertices. Therefore, the size of
the reduced instance is at most O(2τk).

Correctness of the rule: Suppose that there exists a valid strategy Φ that saves
at least k vertices in G. We have the following observation.
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Observation 1 Let G = (V, E) be a graph, S ⊆ V be a twins set, and Φ be a

valid strategy with respect to budget b that saves at least k vertices. If Φ protects

a subset S1 ⊆ S then protecting any subset S2 ⊆ S instead of S1 such that

|S2| = |S1| leads to a valid strategy Φ′ that saves exactly the same number of

vertices.

It follows from Observation 1 that if Φ protects a vertex in a twins set that
has been deleted by the reduction rule then we can protect instead any other
non-deleted vertex in the same twins set. Moreover, it follows from Remark 1
that Φ protects no more than k vertices in G. Since there are k vertices in any
twins set in G′, we can always apply Observation 1. Hence there is a strategy
Φ′ for the reduced instance that saves at least k vertices in G′. Conversely, if a
strategy saves at least k vertices in G′ then this strategy clearly saves at least k
vertices in G. �

Theorem 10. Saving All But k-Vertices admits a kernel of size at most

O(2τkτ).

Proof. First we may assume that b < τ , otherwise it suffices to protect all the
vertices in the vertex cover at time step 1 to stop the fire. The reduction is the
same as the one describes in Theorem 9 but we use the following slightly different
reduction rule.

Rule: Let S ⊆ V be a twins set. If |S| ≥ kb then delete |S| − kb vertices of S.

Similarly to the proof of Theorem 9, the size of the kernel is O(2τkb) = O(2τkτ).

Correctness of the rule: It follows from Remark 2 that there are at most kb
protected vertices in any twins set at the end of the process. Using the same
argument as in Theorem 9, the result follows. �

Theorem 11. Saving All But k-Vertices parameterized by k and the bud-

get b has no polynomial kernel unless coNP⊆NP/poly.

Proof. We show that Saving All But k-Vertices is OR-compositional. Let
I1 = (G1, s1, k1, b1), ..., IN = (GN , sN , kN , bN ) be a sequence of Saving All

But k-Vertices instances with k1 = . . . = kN and b1 = . . . = bN . First we
may assume that N < 2p(b1,k1) where p(b1, k1) = k2

1(b1 +1)+ k1b1, otherwise we
could apply the fpt algorithm of Theorem 6 to each input instance. The output
instance is the first input instance for which the fpt algorithm return yes if such
instance exists, and the last instance otherwise. Clearly, the output instance is
yes if and only if there exists a yes instance in the input sequence. Moreover,
the procedure runs in time O(N.2p(b1,k1)n) = O(N2n).

When N < 2p(b1,k1) we construct the output instance I = (G, s, k, b) as
follows. Set k = k1 + ⌈log2N⌉ and b = b1. Build a perfect binary tree (i.e., a tree
in which every vertex other than the leaves has two children and all leaves are
at the same distance from the root) of height ⌈log2N⌉. For each i = 1, . . . , N ,
identify a leave of the tree with vertex si. Identify remaining leaves with a copy
of sN . Attach b−1 vertices to every non-leaf vertex of the tree. By construction,
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the only burned vertices from time step 1 to ⌈log2N⌉ are on a path from s to
some si. It follows that there exists a yes-instance Ii for some i if and only if
there exists a valid strategy for I such that no more than k = ki + ⌈log2N⌉
vertices are burned at then end of the process. Since k = O(k1 + p(b1, k1)) and
b = b1 it follows that Saving All But k-Vertices is OR-compositional. Using
Theorem 1 and the NP-completeness of Saving All But k-Vertices the result
follows. �

5 Conclusion

In this paper, we study the parameterized complexity of the firefighter problem
on general graphs when more than one firefighter is available at each time step.
We establish some tractable and intractable cases and study the existence of
a polynomial kernel. Several interesting questions remain open. Does Saving

k-Vertices or Saving All But k-Vertices admit a polynomial kernel for
parameters τ and k? Is Saving All But k-Vertices fixed-parameter tractable
when parameterized by tw and k?
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