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Abstract. Kernelization algorithms in the context of Parameterized
Complexity are often based on a combination of reduction rules and
combinatorial insights. We will expose in this paper a similar strategy
for obtaining polynomial-time approximation algorithms. Our method
features the use of approximation-preserving reductions, akin to the no-
tion of parameterized reductions. We exemplify this method to obtain
the currently best approximation algorithms for Harmless Set, Dif-
ferential and Multiple Nonblocker, all of them can be considered
in the context of securing networks or information propagation.

1 Introduction

In this paper, for the purpose of illustrating our method, we will mainly deal with
maximization problems that are obtained from domination-type graph problems.
We first describe these problems, using standard graph-theoretic terminology.

Let G = (V,E) be an undirected graph and D ⊆ V .

1. D is called a dominating set if, for all x ∈ V \D, there is a y ∈ D ∩N(x).
V \D is known as an enclaveless set [28] or as a nonblocker set [17].

2. D is called a total dominating set if, for all x ∈ V , there is a y ∈ D ∩N(x).
V \D has been introduced as a harmless set or robust set (with unaminity
thresholds) in [6].

3. If D can be partitioned as D = D1 ∪D2 such that, for all x ∈ V \D, there
is a y ∈ D2 ∩ N(x), then (D2, D1) defines a Roman domination function
fD1,D2

: V → {0, 1, 2} such that fD1,D2
(V ) = 2|D2|+|D1|. According to [10],

|V | − fD1,D2(V ) is also known as the differential of a graph (as introduced
in [25]) if fD1,D2(V ) is smallest possible.

4. If for all x ∈ V \D, there are k elements inD∩N(x), then D is a k-dominating
set, see [14,16,21]. We will call V \D a k-nonblocker set.
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The maximization problems derived from these four definitions are: Non-
blocker, Harmless Set, Differential, and k-Nonblocker. Although
these problems are all better known from the minimization perspective, there is a
good reason to study them in this complementary way: All of these minimization
problems do not possess constant-factor approximations under reasonable com-
plexity assumptions (the reduction shown in [15] for (Total) Dominating Set
starts from Set Cover), while the complementary problems can be treated in
this favorable way. For Roman Domination, observe that the reduction shown
in [20] works from Set Cover, so that again (basically) the same lower bounds
follow. This move is related to differential approximation [3]. Notice that this
comes along with similar properties from the perspective of Parameterized Com-
plexity: While natural parameterizations of the minimizations lead to W[2]-hard
problems [18,20], the natural parameterizations of the maximization counter-
parts are fixed-parameter tractable. However, as this is more customary as a
combinatorial entity, let us refer (as usual) by γ(G) to the size of the smallest
dominating set of G, by γt(G) to the size of the smallest total dominating set,
by γR(G) to the Roman domination number of G, i.e., the smallest value of
a Roman domination function of G, and by γk(G) to the size of the smallest
k-dominating set of G.

Some graph-theoretic notations. Let G = (V,E) be a simple undirected graph.
We denote by N(x) the set of neighbors of vertex x; the cardinality of N(x) is
the degree of x. A vertex of degree zero is known as an isolated vertex, and a
vertex of degree one as a leaf. The number of vertices of a graph is called its
order. Given U ⊆ V , G[U ] denotes the subgraph induced by U . A repetition-free
sequence x1, . . . , xk of vertices is a path in G (of length k − 1) if xixi+1 ∈ E for
i = 1, . . . , k− 1. A chain is an induced path whose interior vertices are of degree
two in G. The diameter of G is the greatest length of a shortest path in G.

Main Results. We introduce a notion of approximation-preserving reductions
analogous to parameter-preserving reductions known in Parameterized Com-
plexity in order to obtain new approximation algorithms. We introduce a general
methodology to obtain constant-factor approximations for various problems. For
instance, along with an algorithmic version of the upper bound obtained in [24]
on the size of a total dominating set, we present a factor-two approximation
algorithm for Harmless Set, beating the previously known factor of three [6].
Moreover, we are deriving a factor- 113 approximation algorithm for Differen-
tial, which was set up as an open problem in [9], where this approximability
question could be only settled for bounded-degree graphs; our approach also
improves on the factor-4 approximation exhibited in [7]. Finally, we present
constant-factor approximation algorithms for k-Nonblocker.

Organization of the paper. Section 2 explains the use of reduction rules within
maximization problems. It also exhibits the general method. Section 3 shows how
to employ our general method to one specific problem in a non-trivial way. Sec-
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tions 4 and 5 show that the same method can be also applied to other problems.
We conclude with discussing further directions of research.

All proofs and some more details that are omitted due to space restrictions
can be found in the long version of this paper [1].

2 Approximation preserving reductions for maximization
problems

A maximization problem P can be specified by a triple (IP ,SOLP ,mP), where

1. IP is the set of input instances of P;
2. SOLP is a function that associates to x ∈ IP the set SOLP(x) of feasible

solutions of x;
3. mP provides on (x, y), where x ∈ IP and y ∈ SOLP(x), a positive integer

which is the value of the solution y.

An optimum solution y∗ to x satisfies: (i) y∗ ∈ SOLP(x), and (ii) mP(y∗) =
max{mP(y) | y ∈ SOLP(x)}. The value mP(y∗) is also referred to as m∗P(x) for
brevity. The subscript P will be dropped when no ambiguity exists.

Given a maximization problem P, a factor-α approximation, α ≥ 1, associates
to each x ∈ IP some y ∈ SOLP(x) such that α ·mP(x, y) ≥ m∗P(x). A solution
y ∈ SOLP(x) satisfying α ·mP(x, y) ≥ m∗P(x) is also called an α-approximate
solution for x.

We are now going to present a first key notion for this paper.

Definition 1. An α-preserving reduction, with α ≥ 1, is a pair of mappings
instP : IP → IP and solP which, given y′ ∈ SOLP(instP(x)), produces some
y ∈ SOLP(x) such that there are constants a, b ≥ 0 satisfying a ≤ α · b and the
following inequalities:

1. m∗P(instP(x)) + a ≥ m∗P(x),
2. for each y′ ∈ SOLP(instP(x)), the corresponding solution y = solP(y′)

satisfies: mP(instP(x), y′) + b ≤ mP(x, y).

When referring to this definition, we mostly explicitly specify the constants
a and b for ease of verification. An important trivial example is given by a pair
of identity mappings that are α-preserving for any α ≥ 1. Notice that a similar
notion has been introduced in the context of minimization problems in [12,13,22].

Theorem 1. Let P = (IP ,SOLP ,mP) be some maximization problem. If the
pair (instP , solP) describes an α-preserving reduction and if, given some in-
stance x, y′ ∈ SOLP(instP(x)) is an α-approximate solution for instP(x), then
y = solP(y′) is an α-approximate solution for x.

Proof. We have to prove that α ·mP(x, y) ≥ m∗P(x). Now,

m∗P(x)

mP(x, y)
≤ m∗P(instP(x)) + a

mP(instP(x), y′) + b
≤ αmP(instP(x), y′) + αb

mP(instP(x), y′) + b
= α

as required. ut
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This shows that an α-preserving reduction leads to a special AP-reduction
as defined in [4]. But there, these reductions were mainly used to prove hardness
results, as it is also the case of [22] that we already mentioned. However, we use
this notion to obtain approximation algorithms.

The notion of an α-preserving reduction was coined following the successful
example of kernelization reductions known from Parameterized Complexity [18].
One of the nice features of those is that they are usually compiled from simpler
rules that are often based on some applicability conditions. In the following, we
describe that this also works out for approximation. We need two further notions
to make this precise.

We call an α-preserving reduction (instP , solP) strict if | instP(x)| < |x|
for all x ∈ IP , and it is called polynomial-time computable if the two mappings
comprising the reduction can be computed in polynomial time.

Lemma 1. If (instP , solP) and (inst′P , sol
′
P) are two α-preserving reduc-

tions, then the composition (i, s) := (instP ◦ inst′P , sol′P ◦ solP) is also an α-
preserving reduction. If both (instP , solP) and (inst′P , sol

′
P) are strict (poly-

time computable, resp.), then the composition (i, s) is strict (poly-time com-
putable, resp.).

Reductions are often described in some conditional form:

if condition then do action

Our previous considerations apply also for this type of conditioned reductions,
apart from the fact that an instance may not change, assuming that the reduc-
tion was not applicable, which means that the condition was not true for that
instance. Further discussions can be found in the long version of the paper [1].

The general strategy that we follow can be sketched as follows:

1. Apply (strict, poly-time computable) α-preserving reduction rules as long as
possible.

2. Possibly modify the resulting graph so that it meets some requirements from
known combinatorial results on the graph parameter of interest.

3. Compute some solution for the modified graph that satisfies the mentioned
combinatorial bounds.

4. Construct from this solution a good approximate solution for the original
instance.

In order to illustrate the use of this strategy, let us elaborate on Non-
blocker, matching a result from [27]; the current record is given in [2]. This
goes along the lines of the kernelization result by Dehne et al. [17], but kernel-
ization needs no constructive proof of the combinatorial backbone result; the
non-constructive proof of [26] is hence sufficient.

1. Delete all isolates. (If the resulting graph is of minimum degree at least two,
we are ready to directly apply the algorithm of Nguyen et al. [27].)

2. Merge all leaf neighbors into a single vertex.
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3. Delete all leaves but one, which is x. This yields the graph G of order nG.
4. Create a copy G′ of the graph G; call the vertices in the new graph by

priming the names of vertices of G. Let H be the graph union of G and G′

plus the edge xx′. H is of minimum degree at least two by construction.
5. Take the algorithm of Nguyen et al. [27] to obtain a dominating set DH of
H satisfying |DH | ≤ 2

5nH . Should the solution DH contain x or x′, it is not
hard to modify it to contain the leaf neighbors y or y′, instead.

6. Hence, DG = VG∩DH is a dominating set for G with |DG| ≤ 2
5nG. Trivially,

NG = VG \DG is a nonblocker solution for G that is 5
3 -approximate.

7. As the merging and deletion reductions are α-preserving for each α ≥ 1,
we can safely undo them and hence obtain a 5

3 -approximate solution for the
original graph instance.

3 Harmless Set

We are now turning towards Harmless Set as the most elaborate example of
our methodology. First, we are going to present the combinatorial backbone of
our result. Let S2(G) be the set all vertices of degree two within G.

Theorem 2. (Lam and Wei [24]) Let G be a graph of order nG and of minimum
degree at least two such that G[S2(G)] decomposes into K1- and K2-components.
Then, γt(G) ≤ nG/2.

The proof of this theorem is non-constructive, as it uses tools from extremal
combinatorics. In [1], we show how to obtain a polynomial-time algorithm that
actually computes a total dominating set (TDS) D with |D| ≤ nG/2 under the
assumptions of Theorem 2. Our approximation algorithm for Harmless Set is
based on obtaining a (small enough) TDS in a graph H obtained from the input
G after a number of modifications (mainly vertex deletions). In the reduction
from G to H, we distinguish between the number of deleted vertices d (to get
from G to H) and the number of vertices a that are added to convert the TDS
DH to DG.

Theorem 3. Let G be a graph of order nG and let H be a graph of order nH
obtained from G by deleting d vertices and possibly adding some edges. Let DG

and DH be TDS solutions of G and Hsuch that a = |DG|− |DH | ≤ d. If |DH | ≤
c·nH and d ≤ γt(G), then V (G)\DG is a harmless set of G whose size nG−|DG|
is within a factor of (1− c)−1 from optimum.

Proof. As nH = nG − d, |DG| = |DH |+ a ≤ c(nG − d) + a = cnG + (a− cd) ≤
cnG + d − cd = cnG + (1 − c)d ≤ cnG + (1 − c)γt(G). Hence, nG − |DG| ≥
nG − cnG − (1 − c)γt(G) = (1 − c)(nG − γt(G)). This immediately yields an
approximation factor of (1− c)−1. ut

In the following, we will present reduction rules that produce a graph G
with the property (*) that each vertex of degree bigger than one has at most
one leaf neighbor. The surgery that produces a graph H from G as indicated
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in Theorem 3 includes removing all d leaves and adding edges to ensure that
H has minimum degree of two and satisfies that each component of H[S2(H)]
has diameter at most one. Notice that all leaf neighbors in G belong to some
optimum TDS of G without loss of generality. Due to (*), γt(G) ≥ d as required.
Moreover, given some TDS solution DH for H, we can produce a valid TDS
solution DG for G by adding all d leaf neighbors to DH . Notice that Theorem 3
leads to a factor-2 approximation algorithm for Harmless Set based on a
polynomial-time, constructive version of Theorem 2.

Now, we list α-preserving reductions for Harmless Set. All missing cor-
rectness proofs can be found in the long version of this paper [1]. We start with
two very simple rules.

Isolate Reduction. If there is some isolated vertex, produce the instance
({x}, ∅) that has trivially no solution.

Leaf Reduction. If there are two leaf vertices u, v with common neighbor w,
then delete u. (It would go into the harmless set.)

Observation 4 The Leaf Reduction is α-preserving for any α ≥ 1.

Hence from now on, no vertex can have two leaf neighbors.
We shall use the term chain to denote a path whose interior vertices are of

degree two in G. A chain with one leaf endpoint is a pendant chain. A floating
chain is a chain with two leaves. A support vertex is a non-pendant endpoint of
a pendant chain. Support vertices may have more than one pendant chain. We
shall reduce the length of pendant chains to at most two, based on the following
reduction rules.

Floating Chain Reduction. Delete all floating chains.
Clearly, a maximum harmless set (and a minimum TDS) can be computed

in linear time on such trivial connected components. Hence, we can verify the
definition with suitably chosen values for a = b, which proves:

Observation 5 The Floating Chain Reduction is α-preserving for any α ≥ 1.

Long Chain Reduction. Assume that G is a graph that contains a path
x − u − v − w − y, where u, v, w are three consecutive vertices of degree two,
where |N(y)| ≥ 2. Then, construct the graph G′ by merging x and y and deleting
u, v, w.

Theorem 6. The Long Chain Reduction is α-preserving for any α ≥ 1.

Proof. Let G be the original graph and G′ the graph obtained from G by deleting
the path u, v, w and merging x and y as described by the rule. We show that
a = b = 2 works out in our case by considering several cases.

(a) Let C be a maximum harmless set (HS) for G. The special case when N(x) =
{u} is easy to verify. In the following discussion, we can hence assume that x has
at least two neighbors. We now consider cases whether or not x ∈ C or y ∈ C.
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(a1) Assume that x ∈ C and y ∈ C. Hence, u,w are not dominated neither
by x nor by y. Since C is maximum, we can assume |C ∩ {u, v, w}| = 1, as
min{|N(x)|, |N(y)|} ≥ 2; hence, if all of u, v and w are in V \ C, then we can
replace w by another neighbor of y and obtain another optimum solution. Then,
C ′ = C \ {x, u, v, w} is a HS of G′, with |C ′| = |C| − 2.
(a2) Assume that x /∈ C and y /∈ C. First, let us discuss the possibility that
u /∈ C and w /∈ C. As C is maximum, the purpose of this is to dominate (i)
v and (ii) x and y. To accomplish (i), either u /∈ C or w /∈ C would suffice.
However, as C is maximum, condition (ii) means that N(x) \C = {u} and that
N(y) \ C = {w}. By our assumptions, min{|N(x)|, |N(y)|} ≥ 2. Hence, there is
a vertex z ∈ N(y), z 6= w. Now, C̃ = (C \ {z}) ∪ {w} is also a maximum HS
satisfying {v, w} ⊆ C̃. From now on, we assume that |C ∩ {u, v, w}| = 2 and
that |((N(x) ∪ N(y)) \ ({u,w} ∪ C)| ≥ 1. Hence, C ′ = C \ {u, v, w} is a HS of
G′ with |C ′| = |C| − 2.
(a3) Assume now that x ∈ C and y /∈ C. (Clearly, the case that x /∈ C and
y ∈ C is symmetric.) As u is not dominated by x, either (i) {u, v} ⊆ V \C or (ii)
{v, w} ⊆ V \C. In case (i), x is dominated by u, but y must (still) be dominated
by some vertex from N(y) \ {w}. In case (ii), symmmetrically y is dominated
by w, but x must be dominated by some vertex from N(x) \ {u}. In both cases,
C̃ = (C \ {x}) ∪ {v} is another maximum harmless set of G. This leads us back
to the previous item (i.e., |C ′| = |C| − 2.)

Summarizing, we have shown that from C we can construct a harmless set
C ′ for G′ with |C ′| = |C| − 2.

(b) Conversely, assume C ′ is some harmless set for G′. We distinguish two cases:

(b1) Assume that y ∈ C ′. Then, y is dominated by some z in its neighborhood
(in G′). We consider two cases according to the situation in G. (i) If z ∈ N(x),
then C = C ′ ∪ {x, u} is a HS in G. (ii) If z ∈ N(y), then C = C ′ ∪ {x,w} is a
HS in G. In both cases, |C| = |C ′|+ 2.
(b2) If y /∈ C, then again y is dominated by some z in its neighborhood (in G′).
We perform the same case distinction as in the previous case: (i) If z ∈ N(x),
then C = C ′ ∪ {u, v} is a HS in G. (ii) If z ∈ N(y), then C = C ′ ∪ {v, w} is a
HS in G. In both cases, |C| = |C ′|+ 2.
(c) The reasoning from (b) shows that, if C is an optimum solution for G, then
C ′ as obtained in part (a) of this proof is an optimum solution for G′. ut

Similarly, one sees the correctness of the following rule.

Cycle Chain Reduction. If G is a graph that contains a cycle x−u−v−w−x,
where u, v, w are three consecutive vertices of degree two, then construct G′ by
deleting u.

Finally, we deal with support vertices with multiple pendant chains. Assum-
ing the Long Chain Reduction has been applied, any pendant chain is of length
two or less. Accordingly, a support vertex where two of more pendant chains
meet does belong to some optimum solution. The following rule makes this idea
more precise.
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Pendant Chain Reduction. Assume that G = (V,E) is a graph that contains
two pendant chains with common endpoint v of which at least one path is of
length two. Then, construct the graph G′ = (V ′, E′) by deleting one of the two
pendant chains, keeping one which is of length two.

Theorem 7. The Pendant Chain Reduction is α-preserving for any α ≥ 1.

We are now ready to apply Theorem 3. Assume the graph G = (V,E) is
reduced according to the reduction rules described so far. Hence, G satisfies: (a)
G contains no chain of three vertices of degree two. (b) By the Leaf Reduction
rule, any vertex has at most one leaf neighbor. Let G′ be a graph isomorphic to
G so that each vertex v of G corresponds to a vertex v′ of G′, under the assumed
isomorphism f : V (G) −→ V (G′). We construct a graph H obtained from the
disjoint union of G and G′ simply by adding edges between each leaf neighbor
vertex v of G and v′ = f(v) ∈ V (G′). Then, we remove all leaves.

Due to the application of Pendant Chain Reduction to G (and G′), the ad-
dition of edges between corresponding leaf neighbors in G and G′ does not in-
troduce induced cycles with more than two consecutive degree-two vertices.

To the resulting graph H, apply Long Chain Reduction as long as possible.
Notice that an application of this rule does never decrease degrees, adds two
vertices to the solution and removes four vertices of the graph.

This results in a graph H ′ of order nH′ with minimum degree at least two
containing no chain of three vertices of degree two. Hence, we can apply the
(algorithmic) version of Theorem 2 that returns a TDS DH′ for H ′ with 2|DH′ | ≤
nH′ . Undoing the c Long Chain Reductions that we applied, we obtain a TDS
DH for H with 2|DH | = 2(|DH′ |+ 2c) ≤ nH′ + 4c = nH . By symmetry, we can
assume that |DH ∩ V (G)| ≤ |DH ∩ V (G′)|. Now, we add all support vertices to
DH ∩ V (G) and further vertices to obtain DG by the following rules:

– If a support vertex already belongs to DH , then it could have been dominated
via the edge that we introduced. As this interconnects to another support
vertex, both already belonged to DH . We arbitrarily select two neighbors (in
G) of these support vertices and put them into DG. Hence, the mentioned
support vertices and the attached leaves are totally dominated.

– If a support vertex x did not already belong to DH , two cases arise: (a) If
it was dominated (in H) via an edge already belonging to G, then we do
nothing on top of what we said. (b) If the support vertex x was dominated (in
H) by an edge xy not belonging to G, then we must add another neighbor z
(in G) of x to DG. However, as (obviously) the vertex y belonged to DH and
was dominated by a neighbor (in G) in DH , we add (in total) two vertices
x, z for the two support vertices x, y. Seen from the other side, this covers the
case of a support vertex that already belonged to DH but was not dominated
via the edge that we introduced.

Altogether, we see that we delete all leaves and introduce at most that many
vertices into DG (in comparison to DH ∩ V (G)). By Theorem 3 and since all
reduction rules take polynomial time, we obtain:

Theorem 8. Harmless Set is factor-2 polynomial-time approximable.
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4 The differential of a graph

Let us start with an alternative presentation of this notion. Let G = (V,E) be
a graph. For D0 ⊆ V , let ∂(D0) :=

∣∣(⋃
x∈D0

N(x)
)
\D0

∣∣− |D0|. ∂(D0) is called
the differential of the set D0, and our aim is to find a vertex set that maximizes
this quantity. This maximum quantity is known as the differential of G, written
∂(G). The following combinatorial results are known:

Theorem 9. [8] Let G be a connected graph of order n. (a) If n ≥ 3, then
∂(G) ≥ n/5. (b) If G has minimum degree at least two, then ∂(G) ≥ 3n

11 , apart
from five exceptional graphs, none of them having more than seven vertices.

It is not hard to turn the first combinatorial result into a kernelization re-
sult, yielding a kernel bound of 5k, where k is the natural parameterization of
the Differential. In [7], this result was improved to a kernel whose order is
bounded by 4k. This way, we can also get a factor-4 approximation. However,
Theorem 9 suggests a possible improvement to a factor of 11

3 by our framework.

First, we have to show (see [1] more details) that the reduction rules presented
in [7] as kernelization rules can be also interpreted as α-preserving rules. We use
some non-standard terminology. A hair is a sequence of two vertices uv, where
u is a leaf and v has degree two. Then, u is also called a hair leaf.

Lemma 2. [7] Let G = (V,E) be a graph where none of the Differential
reduction rules listed in [1,7] applies. Then, G has the following properties:

(1) To each vertex, at most one leaf or one hair is attached, but not both together.

(2) If we remove all leaves and all hairs from G, then the remaining graph G̃ =
(Ṽ , Ẽ), henceforth called nucleus, has minimum degree of at least two.

(3) If a hair is attached to a vertex u in the nucleus, then no hair is attached to
any neighbor of u within the nucleus.

We compute a sufficiently big solution for the nucleus and then use:

Theorem 10. Let G be a graph of order nG and let H be a graph of order
nH obtained from G by deleting d vertices. Let DG = DG,1 ∪ DG,2 and DH =
DH,1 ∪ DH,2 be Roman DS solutions of G and H, with DH,2 = DG,2 and a =
|DG,1| − |DH,1| ≤ d. If |DH,1|+ 2|DH,2| ≤ c · nH and d ≤ γR(G), then ∂(V (G) \
DG) = nG − 2|DG,2| − |DG,1| is within a factor of (1− c)−1 from optimum.

We can turn the (non-constructive) combinatorial reasoning of [8] into a
polynomial-time algorithm (see [1]), which allows us to conclude:

Theorem 11. Differential is factor- 113 polynomial-time approximable.
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5 Multiple Nonblocker sets

We shall assume k > 1 in this section and, as usual, we consider a combinatorial
upper bound on the size of some feasible solution of the minimization problem.

Theorem 12 ([16]). Let G be a graph of order nG and a minimum degree at
least k. Then γk(G) ≤ k

k+1nG.

The known non-constructive proof can be turned into a polynomial-time
algorithm (see [1]) computing a k-dominating set D with |D| ≤ k

k+1nG.

Theorem 13. For a given graph G of order nG and minimum degree at least k,
one can compute a k-dominating set D with |D| ≤ k

k+1nG in polynomial time.

Our approximation algorithm is based on obtaining a k-dominating set in a
graph H obtained from the input G after adding the complete bipartite graph
Kk,k and after a number of modifications.

Theorem 14. Let G be a graph of order nG and let H be a graph of order nH
obtained from G by deleting d vertices and adding 2k new vertices, d > k. Let DG

and DH be k-dominating set solutions of G and H such that a = |DG|− |DH | =
d − k. If |DH | ≤ c · nH for some c < 1 and d ≤ γk(G), then V (G) \ DG is a
k-nonblocker of G whose size nG − |DG| is within a factor of (1 − c)−1 from
optimum.

This result is understood modulo the additive constant k(2c− 1) < k.
Given a graph G as input, we construct a graph G′ obtained from G by adding

a complete bipartite graph Kk,k with (new) vertices u1, . . . , uk, v1, . . . , vk. This
transformation is an L-reduction (as defined in [4]) and thus the approximation
ratio is preserved. Now, we present reduction rules that when applied to G′

produce a graph H with minimum degree at least k. Our reduction rules mainly
deal with vertices of degree k− 1 or less. We refer to such vertices as low-degree
vertices. Each such vertex must be in any k-dominating set.

Low-Degree Vertex Deletion. If a low-degree vertex v has only low-degree
neighbors, then delete v. If there is a vertex u with at least k + 1 low-degree
neighbors, then delete the edge between u and one low-degree neighbor of u.

Observation 15 Low-Degree Vertex Deletion is α-preserving for any α ≥ 1.

Low-Degree Merging. Consider a graph that has been subject to the Low-
Degree Vertex Deletion rule. For every vertex v of degree at least k, having q
low-degree neighbors w1, . . . , wq, with q ≤ k, connect v to v1, . . . , vq (from the
Kk,k that was added as described above). Finally, delete all low-degree vertices.

Observation 16 Low-Degree Merging is α-preserving for any α ≥ 1.

The reductions above take polynomial time, so that Theorem 14 allows us to
conclude:

Theorem 17. k-Nonblocker is factor-(k + 1) polynomial-time approximable
(modulo an additive constant less than k).
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6 Conclusions

We presented a framework for obtaining approximations for maximization prob-
lems, inspired by similar reasonings for obtaining kernelization results. We see
five directions from this approach:

– Paraphrasing [19], we might say that not only FPT, but also polynomial-time
maximization is P-time extremal structure. This should inspire mathemati-
cians working in combinatorics to work out useful bounds on different graph
parameters. We started on domination-type parameters, and this might be
a first venue of continuation, for example, along the lines sketched in [11,23].

– Conversely, approximation algorithms that stay within the combinatorial
grounds of their problem tend to reveal (combinatorial) insights into the
problem that might get lost when moving for instance into the area of Math-
ematical Programming.

– The notion of α-preserving reduction is similar to the local ratio techniques [5]
that allowed to re-interpret many approximation algorithms (for minimiza-
tion problems) in a purely combinatorial fashion. We see hope for similar
developments using α-preserving reduction for maximization problems.

– The fact that α-preserving reductions are inspired by FPT techniques should
allow to adapt these notions for parameterized approximation algorithms.

– Reductions are often close to practical heuristics and hence allow for fast
implementations.
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