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Abstract
Classical clustering problems search for a partition of objects into a fixed number of clusters.
In many scenarios however the number of clusters is not known or necessarily fixed. Further,
clusters are sometimes only considered to be of significance if they have a certain size. We discuss
clustering into sets of minimum cardinality k without a fixed number of sets and present a general
model for these types of problems. This general framework allows the comparison of different
measures to assess the quality of a clustering. We specifically consider nine quality-measures
and classify the complexity of the resulting problems with respect to k. Further, we derive some
polynomial-time solvable cases for k = 2 with connections to matching-type problems which,
among other graph problems, then are used to compute approximations for larger values of k.
(‖ · ‖, f)-2-cluster (‖·‖, f)-2-cluster

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.1.2
Approximation, I.5.3 Clustering

Keywords and phrases Clustering, Approximation Algorithms, Complexity, Matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.148

1 Introduction

Clustering problems arise in different areas in very diverse forms with the only common
objective of finding a partition of a given set of objects into, by some measure, similar parts.
Most models consider variants of the classical k-means or k-median problem in the sense
that k is a fixed given integer which determines the number of clusters one searches for. In
some applications however it is not necessary to compute a partition with exactly k parts,
sometimes it is not even known which number for k would be a reasonable choice. We want
to discuss a clustering model which does not fix the number of clusters but instead requires
that each cluster contains at least k objects. This constraint can be seen as searching for
a clustering into parts of a specified minimum significance. For general classification or
compression tasks, one might consider small clusters as disposable outliers.

One concrete scenario for this type of partitioning is Load Balanced Facility Loca-
tion [11], a variant of the facility location problem where one is only interested in building
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profitable facilities. In this scenario a facility is not measured by the initial cost of building
it but by its profitability once it is opened. Consequently, it is only reasonable to build a
facility if there are enough (but maybe not too many) customers who use it but aside from
this constraint it is possible to build an unrestricted number of facilities. The considered
cardinality-constraint also models the basic principle of “hiding in a crowd” introduced by
the concept of k-anonymity [14] which introduces formal problems such as r-Gather [1] and
k-Member Clustering [4]. A cluster in this scenario is a collection of personal records
which has to have a certain minimum cardinality in order to be considered anonymous.

We want to consider the general task of computing a clustering into sets of minimum
cardinality k ∈ N with the objective to introduce an abstract framework to model such
types of problems. For this purpose, we define the generic problem (‖·‖, f)-k-cluster and
specifically discuss nine variants of it, characterised via three different choices for each f

and ‖ · ‖; a detailed description of these variants follows in Section 2. Our main contribu-
tions are the abstract model and the complexity- and approximation-results which become
more apparent due to this model, as they are derived mostly via similarities to other graph
problems. Section 3 compares the nine problem variants with respect to structural differ-
ences. In Section 4 and 5, we classify the complexity for small values of k by identifying
polynomial-time solvable cases with connections to matching-type problems and deriving
(also improving known) NP-hardness results for the remaining cases. Section 6 uses a large
variety of connections to other graph problems, including the results from Section 4, to
develop approximation-algorithms. A more detailed description of the results as well as the
comparison to results from related work follows in the respective sections and is summarised
in the conclusions.

2 General Abstract Model

In the following, we consider the general task of partitioning a set of n given objects into
sets of cardinality at least k. Our model represents the n input-objects as vertices of an
undirected graph G = (V, E). A feasible solution is any partitioning P1, . . . , Ps of V such
that |Pi| ≥ k for all i ∈ {1, . . . , s}, in the following we will refer to such a partition as
k-cluster. Recall that in contrast to the classical clustering problems like s-means or s-
median, the number of clusters s is not necessarily part of the input. Of course, one
does not search for just any k-cluster but for a partitioning which preferably only combines
objects which are in some sense “close”. This similarity can be very hard to capture and
the appropriate way to measure it highly depends on the clustering-task and the structure
of the input. We therefore consider an arbitrary given distance function d : V 2 → R+ which
for any two objects u, v ∈ V represents the distortion which is caused by combining u and v.
This general view allows to simultaneously study many different measures for dissimilarity.

In our model, the distance d is defined via a given edge-weight function wE : E → R+.
For two vertices u, v ∈ V we define d(u, v) := wE({u, v}) if {u, v} ∈ E, and if {u, v} /∈ E, the
distance d(u, v) is defined by the shortest path from u to v in G. We will say that d satisfies
the triangle inequality (and hence is a metric) if d(u, v) ≤ d(u, w)+d(w, v) for all u, v, w ∈ V .
Observe that our definition allows for distances d which do not satisfy this property, a simple
example is the complete graph over V = {u, v, w} with wE({u, v}) = wE({u, w}) = 1 and
wE({v, w}) = 3. Distances which are defined directly via an edge are the only possible ’non-
metric’ distances. Edges hence do not necessarily imply similarity but can reflect a difference
greater than the shortest path between two objects and make it more unattractive to cluster
them together; very different from the multiedges introduced in the hypergraph-model for
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k-anonymous clustering from [17], where hyperedges reflect similar groups.
The overall cost of a partitioning P1, . . . , Ps is always in some sense proportional to the

dissimilarities within each set or cluster Pi. On an abstract level, the global cost induced by
a partitioning P1, . . . , Ps is calculated by first computing the local cost of each cluster and
second by combining all this individual information. In this paper, we discuss three different
measures for the local cost caused by a cluster Pi:

Radius: rad(Pi) := minx∈Pi maxy∈Pi d(x, y).
Diameter: diam(Pi) := maxx∈Pi

maxy∈Pi
d(x, y).

Average Distortion: avg(Pi) := 1
|Pi| ·minx∈Pi

∑
y∈Pi

d(x, y).

The overall cost of a k-cluster P1, . . . , Ps is then given by a certain combination of the
local costs f(P1), . . . , f(Ps) with f ∈ {rad, diam, avg}. In order to model the most common
problem-versions we consider the following three possibilities:

Worst Local Cost: The maximum cost of an individual cluster: max1≤i≤s f(Pi). Because
of its structure with respect to the values f(P1), . . . , f(Ps), denoted by ‖·‖∞ .

Worst Weighted Local Cost: The maximum cost of an individual cluster, weighted by its
size: max1≤i≤s |Pi|f(Pi), denoted by ‖·‖w

∞
.

Accumulated Local Cost: The sum of the distortion for each cluster, denoted by ‖ · ‖w

1
,

with respect to the cost of the individual clusters computed by:
∑s

i=1 |Pi|f(Pi).

Any combination of f ∈ {rad, diam, avg} with ‖ · ‖∈ {‖ · ‖w

1
, ‖ · ‖w

∞
, ‖ · ‖∞} yields a different

problem. (Structural properties discussed in Section 3 will explain why we do not consider
the unweighted 1-norm.) For a fixed k ∈ N, the general optimisation-problem is given by:

(‖·‖, f)-k-cluster
Input: Graph G = (V, E) with edge-weight function wE : E → R+, k ∈ N.
Output: k-cluster P1, . . . , Ps of V for some s ∈ N, which minimises ‖(f(P1), . . . , f(Ps))‖.

(‖·‖∞ , rad)-k-cluster, for example, searches for a k-cluster which minimises:

max
1≤i≤s

min
x∈Pi

max
y∈Pi

d(x, y).

Some of the variants of (‖ · ‖, f)-k-cluster are already known under different names. The
variant (‖ · ‖w

1
, diam)-k-cluster is also known as k-member clustering [4] and with

d chosen as the Euclidean distance, (‖ · ‖∞ , rad)-k-cluster is the so-called r-Gather
problem [1] (with r = k). Variant (‖ · ‖w

1
, avg)-k-cluster is Load Balanced Facility

Location [11] with unit demands and without facility costs and, with Euclidean distance,
also models Microaggregation [6].

Choosing between the cluster-measures and norms allows adjustment for specific types
of objects and different forms of output representation. The norm decides if the desired
output has preferably uniformly structured clusters with or without uniform cardinalities
(∞-norms) or builds clusters of object-specific irregular structure (1-norm). For cohesive
clustering, the diameter-measure is more suitable for the choice of f . Average distortion is
best used when the output chooses one representative of each cluster and projects all other
objects in this cluster to it; a scenario which for example occurs for facility-location type
problems. If the output does not project to one representative but considers clusters as
circular areas, the radius measure is the most reasonable choice for f . Optimal k-clusters
may differ for different choices of ‖ ·‖ and/or f as we will discuss in the next section. Still,
we will see that there are also very useful similarities.

ISAAC 2016
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3 Structural Properties of Optimal Partitions

The diverse behaviour for different choices of f and ‖ · ‖ is nicely displayed in the cluster-
cardinalities of optimal solutions. For the example V := {c, v1, v2, . . . , vn} with wE(c, vi) :=
1 for all i, we find that for radius and average distortion, the single cluster V is the optimal
solution with ‖ · ‖∞ or ‖ · ‖w

1
. If wE(vi, vj) := D for some large value D, any k-cluster with

more than one set is arbitrarily worse. For the diameter-measure however we know that in
general diam(S) ≤ diam(P ) for all sets S ⊆ P , which immediately yields:
I Proposition 1. For any k ∈ N and any ‖ · ‖∈ {‖ · ‖w

1
, ‖ · ‖w

∞
, ‖ · ‖∞}, optimal solutions

P1, . . . , Ps for (‖·‖, diam)-k-cluster can be assumed to satisfy |Pi| < 2k for all 1 ≤ i ≤ s.
For radius we only have the weaker property that rad(S) ≤ rad(P ) for all sets S ⊆ P such
that the center of P is contained in S. Average distortion lacks such monotone behaviour
entirely. Observe that a large cardinality of a cluster can sort of “smooth over” some larger
distances, for example for three vertices u, v, w with wE(u, v) := 3 and wE(u, w) := 1,
adding w to the cluster {u, v} decreases the average distortion from 3

2 to 4
3 . Examples

like this show that, even with triangle inequality for d, we can not in general restrict the
maximum cluster-cardinality for (‖ · ‖∞ , avg)-k-cluster, which is a bit unsetteling, given
that most applications also like to have some natural upper bound on the cardinality (not
too many customers). In a realistic scenario, we encounter sets of cardinality 2k or larger
in optimal solutions for (‖ · ‖∞ , avg)-k-cluster, if they contain an object (often called
outlier) which has a large distance from all objects. Deleting such outliers before computing
clusters is generally a reasonable pre-processing step, which makes large clusters in (‖ · ‖∞ ,

avg)-k-cluster unlikely.
In general, we would like the computation of global cost to somehow favour finer par-

titions in order to exploit the difference to clustering models which bound the number of
sets. This is the reason why we do not consider the unweighted 1-norm, formally computed
by ‖ (f(P1), . . . , f(Ps)) ‖1 :=

∑s
i=1 f(Pi). For the example V = {v1

i , v2
i : 1 ≤ i ≤ n} with

wE({v1
i , v2

i }) = 1 for i ∈ {1, . . . , n} and wE({vh
i , vk

j }) = n− 1 for i, j ∈ {1, . . . , n} with i 6= j

and h, k ∈ {1, 2}, the best 2-clustering w.r.t. ‖·‖1 with any choice for f is V itself, while the
most reasonable 2-clustering for most applications one can think of for this graph is obvi-
ously {{v1

i , v2
i } : 1 ≤ i ≤ n}. This makes ‖·‖1 very unattractive for our clustering-purposes,

observe that triangle inequality does not improve this behaviour, since the distance d for this
example satisfies it. Triangle inequality however makes a big difference for the worst-case
example in the beginning of the section and allows to conclude:

I Theorem 2. If d satisfies the triangle inequality, the restriction to partitions into sets of
cardinality at most 2k − 1 yields a 2-approximation for (‖ · ‖∞ , rad)-, (‖ · ‖w

1
, rad)- and

(‖·‖w

1
, avg)-k-cluster and is optimal for (‖·‖w

∞
, avg)- and (‖·‖w

∞
, rad)-k-cluster.

As we will look at the cases k = 2 and k = 3 in the next section, we further conclude:

I Corollary 3. If d satisfies the triangle inequality, sets in partitions for (‖ · ‖1, avg)-2-
cluster can be assumed to have cardinality two or three.

Proof. For a cluster S := {x1, x2 . . . , xr} with center x1 and r > 3, a further partitioning
into {x2i, x2i+1} for i ∈ {1, . . . , z − 1} with z = b r

2c and {x1, x2z, xr} does not increase the
global cost for (‖·‖1, avg)-2-cluster, since:

|S|avg(S) =
r∑

i=1
d(xi, xr) ≤ (r − 2z)d(x2z, xr) + d(xr, x2z−1) +

z−1∑
i=1

d(x2i, xr) + d(x2i+1, xr)

≤ |{x1, x2z, xr}|avg({x1, x2z, xr}) +
z−1∑
i=1

2avg({x2i, x2i+1}) J
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4 Connections to Matching Problems

The graph-representation we chose to define (‖ · ‖, f)-k-cluster reveals relations to other
well studied graph problems, interestingly in case of k = 2 not to classical clustering but to
matching problems. Some variants can be reduced to finding a minimum weight edge cover,
a problem which can be reduced to finding a minimum weight perfect matching (a simple
reduction is described, e.g., in the first volume of Schrijver’s monograph [[15], Section 19.3]).
As a consequence, a minimum weight edge cover can be found in O(n3) time by the results
of Edmonds and Johnson [8].

I Theorem 4. (‖·‖w

1
, avg)-2-cluster can be solved in O(n3) time.

Proof. (‖·‖w

1
, avg)-2-cluster searches for a 2-cluster P1, . . . , Ps minimising:

s∑
i=1

min{
∑
y∈Pi

d(x, y) : x ∈ Pi}.

In other words, for any graph G = (V, E), the global cost is the weight of the cheapest
edge-set E′ ⊂ V 2 for which the graph G′ := (V, E′) has s connected components P1, . . . , Ps

with at least 2 vertices such that the induced subgraph of each Pi is a star-graph. This
property is equivalent to E′ being a minimum weight edge cover for the complete graph
on V with edge-weights equal to the distance d; observe that the graph (V, E′) is a forest
without isolates and without paths of length three for every minimum weight edge cover E′

which means that its connected components are star-graphs. J

I Theorem 5. (‖·‖∞ , rad)-2-cluster can be solved in O(n2) time.

Proof. For a graph G = (V, E), first check all vertices in V and find the smallest value
c > 0 such that each vertex v has distance at most c from at least one other vertex. This c

is obviously a general lower bound on the global cost, since each vertex needs at least one
partner. For k = 2, this c is also the optimal value since any minimal edge cover for the
graph G′ := (V, E′) with E′ := {(u, v) : 0 < d(u, v) ≤ c} yields a 2-cluster for G with radius
at most c for each cluster. J

With respect to diameter, this edge-cover strategy is not applicable for clusters of cardinality
larger than two. Even for k = 2 there are cases for which clusters of cardinality three are
required in every optimal solution. It seems difficult to define a correct way to compute
the diameter of a cluster by summing up certain edge-weights. We therefore consider the
following matching problem which is more involved but still solvable in O(n3m2 log n) [2]:
Simplex Matching
Input: Hypergraph H = (V, F ) with F ⊆ (V 2 ∪ V 3) and cost-function c : F → R satisfying:

1. {{u, v}, {v, w}, {u, w}} ⊂ F for all {u, v, w} ∈ F . (subset cond.)
2. c({u, v}) + c({v, w}) + c({u, w}) ≤ 2c({u, v, w}) for all {u, v, w} ∈ F . (simplex cond.)

Output: A perfect matching of H (that is a collection S of hyperedges such that every
vertex in V appears in exactly one hyperedge of S) of minimal cost.

I Corollary 6. (‖·‖w

1
, diam)-2-cluster can be solved in O(n9 log n) time.

Proof. Let G = (V, E) be an input graph for (‖·‖w

1
,diam)-2-cluster. The corresponding

input for Simplex Matching is the hypergraph H = (V, V 2∪V 3) which obviously satisfies
the subset condition. By Proposition 1, there exists an optimal solution for (‖ · ‖w

1
, diam)-

2-cluster among the perfect matchings for H. According to the original problem, the

ISAAC 2016



148:6 Building Clusters with Lower-bounded Sizes

cost-function c for any u, v, w ∈ V is defined as: c({u, v}) := 2d(u, v) and c({u, v, w}) :=
3 max{d(u, v), d(v, w), d(u, w)} and hence satisfies the simplex condition. Since this complete
hypergraph has O(n3) hyperedges, the overall running-time is in O(n9 log n). J

Diameter combined with the ∞-norms can be solved using Corollary 6 by fixing some max-
imum diameter D and multiplying all hyperedge-costs which exceed D with a large value
C, say C = n max{d(u, v) : u, v ∈ V }. This does not violate the simplex condition for the
cost-function and there exists a solution for (‖·‖∞ , diam)-2-cluster of value D for the ori-
ginal graph if and only if the hypergraph with adjusted costs has a (‖·‖w

1
, diam)-2-cluster

solution of value less than C. Relating to an easier problem, we can do a little better. If
we remove the hyperedges which exceed D instead of changing their cost, we arrive at a
hypergraph which still satisfies the subset condition (diam({u, v}) ≤ diam({u, v, w}) for any
u, v, w ∈ V ) and we are only interested in any perfect matching, regardless of its weight.
The computation of such a perfect matching is the problem called Simplex Cover [19]1.
The augmenting-path strategy from [16] for 2-gathering2, can be used to solve Simplex
Cover in time O(m2), where m is the number of hyperedges of the input graph.

I Corollary 7. (‖ · ‖∞ , diam)- and (‖ · ‖w

∞
, diam)-2-cluster and if d satisfies the triangle

inequality also (‖·‖w

∞
, avg)-2-cluster can be solved in O(n6 log n) time.

I Remark. We would like to point out that Simplex Matching is also an interesting
way to solve a sort of geometric version of (‖ ·‖w

1
, avg)-2-cluster, originally introduced as

microaggregation in [6], which considers clustering a set of vectors in Rd and measures
local cost for a cluster {x1, . . . , xt} by

∑t
i=1 ||xi−x||22 where x is the centroid 1

t (x1 +· · ·+xt).
With the hypergraph (V, V 2 ∪ V 3) with V = {v1, . . . , vn} representing {x1, . . . , xn} and
the cost-function c defined by: c({vi, vj , vk}) :=

∑
h∈{i,j,k} ||xh − 1

3 (xi + xj + xk)||22 for all
1 ≤ i < j < k ≤ n and c({vi, vj}) := 1

2 ||xi−xj ||22 for all 1 ≤ i < j ≤ n, the simplex condition
holds, since 2c({vi, vj , vk}) = 4

3 (c({vi, vj}) + c({vj , vk}) + c({vi, vk})). This construction
gives a polynomial-time algorithm to solve 2-microaggregation which improves on the
2-approximation from [7].

As powerful as Simplex Matching may seem, the estimated worst-case running-time is
fairly large. We believe that an augmenting path strategy which is specifically tailored to
the above problems can yield significant improvement. Observe that similar construction
for (‖ · ‖w

1
, rad)-2-cluster does not work, since the cluster-cardinality is not bounded by

three. Also, even if d satisfies the triangle inequality, the corresponding cost-function c

would not satisfy the simplex condition, since for the small example of three vertices u, v, w

with d(u, v) = d(u, w) = 1 and d(v, w) = 2, the cost with respect to radius would give
1 = c({u, v, w}) < 1

2 (c({u, v}) + c({u, w}) + c({v, w})) = 2. Similar problems arise for the
other so far unresolved variants of (‖·‖, f)-2-cluster.

5 Complexity Results

In [1], the problem r-gather, which is (‖ ·‖∞ , rad)-k-cluster with r = k with Euclidean
distance, was shown to be NP-complete for k ≥ 7. In [3] this result was strengthened
by a reduction from Exact-t-Cover to k ≥ 3, however for a type of problem where the

1 This covering problem is equivalent to {K2, K3}-packing an old, well studied generalisation of the
classical matching problem [5].

2 Confusingly, 2-gathering in [16] is not equivalent to the r-gathering problem from [1] with r = 2.
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cluster-center exists as an input vertex but is assigned to a different cluster (i.e., with the
radius of a cluster Pi calculated by: minx∈V maxy∈Pi

d(x, y)) which is not allowed in our
formal definition. We establish in the following a different reduction from the Exact-t-
Cover problem which shows NP-hardness for all our variants of k-cluster and extends for
all measures f which are strictly monotone with respect to radius, diameter or average
distortion. With Exact-t-Cover we refer to the problem of deciding for a given collection
C = {S1, . . . , Sr} of subsets of a universe X = {x1, . . . , xn} with |Si| = t for all i, if there
exists C ′ ⊂ C such that |C ′| = n/t and

⋃
S∈C′ S = X, which is NP-hard for all t ≥ 3 [9].

I Theorem 8. All variants of (‖ · ‖, f)-k-cluster are NP-hard for k ≥ 3 even with the
restriction to distances d which satisfy the triangle inequality.

Proof. (Sketch) We reduce from Exact-t-Cover with t = (k − 1)2. Let S1, . . . , Sr be
subsets of {x1, . . . , xn}, with |Si| = t. The graph G for (‖ · ‖, f)-k-cluster only contains
edges of weight one and vertices u1, . . . , un representing x1, . . . , xn and, for all i ∈ {1, . . . , r},
we have vertices w1

i , . . . , wk−1
i representing an arbitrary fixed partition P i

1, . . . , P i
k−1 of Si

with |Pij | = k−1 for all j, and some additional vertices vj for sets which are not in the cover.
Edges connect uj to with wiz

if uj ∈ P i
z . Other edges are included depending on f . We want

a solution C ⊂ {S1, . . . , Sr} with |C| = n/t for Exact-t-Cover to translate to the k-sets
of vertices {wz

i , uj : xj ∈ P i
z} for all i with Si ∈ C. Assigning vj to the set {w1

i , . . . , wk−1
i }

for i with Si 6∈ C then partitions the remaining vertices. There is a k-clustering which only
uses these types of clusters for wz

i if and only if S1, . . . , Sr is an exact cover.
For f = diam, we use ` := r− n

t vertices v1, . . . , v` and turn each of the sets {u1, . . . , un}
and w1

i , . . . , wk−1
i for i ∈ {1, . . . , r} into a clique, and connect each vh with h ∈ {1, . . . , `}

to all wz
i (i ∈ {1, . . . , r} and z ∈ {1, . . . , k}). With this, there exists an exact cover for

S1, . . . , Sr if and only if a there exists a k-cluster of maximum diameter one.
For f ∈ {rad, avg}, we use r vertices v1, . . . , vr and edges (vi, wz

i ) for i ∈ {1, . . . , r} and
z ∈ {1, . . . , k − 1} and further include vertices yj

i for i ∈ {1, . . . , n
t } and j ∈ {1, . . . , k − 1}

with edges (yi
1, yi

h) and (yi
1, vj) for each i ∈ {1, . . . , n

t }, h ∈ {2, . . . , k−1} and j ∈ {1, . . . , r}.
With this construction there exists an exact cover for S1, . . . , Sr if and only if there is a
clustering such that all clusters have cardinality k and radius one.

In particular, there exists an exact cover for S1, . . . , Sr if and only if there exists a k-
cluster with global cost 1, k and 2n + (k − 1)r + n

k−1 for radius with norm ‖ · ‖∞ , ‖ · ‖w

∞

and ‖·‖w

1
, respectively and k−1

k , k − 1 and 2n + 1
k (tr − n) for average distortion with norm

‖·‖∞ , ‖·‖w

∞
and ‖·‖w

1
, respectively. J

The previous section only provided polynomial-time solvability for roughly half of the vari-
ants of (‖·‖, f)-2-cluster. We will now complete the complexity-picture for k = 2.

I Theorem 9. (‖ · ‖w

1
, rad)-2-cluster is APX-hard, even with the restriction to distances

d which satisfy the triangle inequality.

Proof. (Sketch) We reduce from Vertex Cover restricted to cubic graphs which is APX-
hard by [13]. Let G = (V, E) with V = {v1, . . . , vn} be the input for Vertex Cover, we
define G′ = (V ′, E′) by V ′ := {v1

i , v2
i : 1 ≤ i ≤ n} ∪ {ve : e ∈ E} and E′ = {{v1

i , v2
i } : 1 ≤

i ≤ n}∪{{v1
i , ve} : vi ∈ e} with weights wE({v1

i , v2
i }) = 1 and wE({v1

i , ve}) = 2. With these
definitions, G has a vertex cover of cardinality k if and only if there exists a solution for
(‖ · ‖w

1
, rad)-2-cluster with global cost 2n + 2k + 2m. Since m = 3n/2 and k ≥ n/2 for a

cubic graph, this reduction preserves non-approximability. J
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The reduction above can not be altered for the cases of (‖ · ‖, f)-2-cluster with some ∞-
norm which were not shown to be polynomial-time solvable so far. We therefore consider a
completely different problem for these cases to show:

I Theorem 10. (‖·‖w

∞
, avg)-, (‖·‖∞ , avg)- and (‖·‖w

∞
, rad)-2-cluster are all NP-hard, for

the latter two even with the restriction to distances d which satisfy the triangle inequality.

Proof. (Sketch) Reduction from (3, 3)-SAT, i.e., satisfiability with at most three variables in
each clause and where each variable occurs (positively or negatively) in at most three clauses,
which remains NP-hard by [18]. Let v1, . . . , vn be the vari-
ables and c1, . . . , cm be the clauses. We construct G by in-
troducing for each vi the subgraph displayed on the right.
For each clause cj we introduce a vertex yj connected with
edges of weight b to ti if vi is a literal in cj and to fi if v̄i is
a literal in cj . With a = 1

2 , b = 1
3 for (‖·‖∞ , rad)-, a = 2 ,

fi tixi

ai bi

aa

b b

b

b = 3
2 for (‖ · ‖∞ , avg)- and a = 1 , b = 1

2 and also additional edges {yi, yj} for all i 6= j of
weight one for (‖·‖w

∞
, avg)-2-cluster, the clause is satisfiable if and only if the clustering-

problem has a solution of global cost one. J

6 Approximation results

We will only consider the case where d satisfies the triangle inequality in this section. This
restriction is not just reasonable but in some sense necessary to achieve any kind of approx-
imation. If we reconsider the reduction from Theorem 8 and turn the constructed graph G

into a complete graph with additional edges of a large weight w, the difference in global cost
in case of “yes”- or “no”-instance of Exact-t-Cover increases with w, which implies:

I Proposition 11. If d violates the triangle inequality, there is no constant-factor approx-
imation for (‖·‖, f)-k-cluster in time polynomial in |V |, unless P = NP .

A closer look at the metric given by the shortest paths for the original construction from
Theorem 8, reveals that the global cost differs by a factor of two between “yes”- and “no”-
instance for some problem-variants. Explicitly this means:

I Proposition 12. There is no (2 − ε)-approximation in polynomial time for (‖ · ‖, f)-k-
cluster with f ∈ {rad, diam} and ‖·‖∈ {‖·‖∞ , ‖·‖w

∞
} for any ε > 0 unless P = NP , even

if d satisfies triangle inequality.

Known approximation results for clustering with size constraints include a 9-approximation
from [3] for Load Balanced Facility Location without facility cost, which is related
to (‖ · ‖w

1
, avg)-k-cluster here, but with the additional constraint that at each customer

should be assigned to the nearest open facility. The techniques used for this result highly rely
on the additional constraint, which unfortunately means that they can not be applied here.
Other approximations for this problem instead relax the constraint that each cluster needs
to contain at least k vertices; [11] for example presents a 2k-approximation which constructs
clusters of cardinality at least k/3. We will see that for our problem such an approximation
factor can be achieved without relaxing the cardinality constraints. In general, our results
however do not extend to Load Balanced Facility Location, since the addition of
facility-costs yields a very different type of problem; we especially lose the upper bound of
2k − 1 on the cardinality of clusters in an optimal solution from Theorem 2.

Other known approximation results however also apply here and can even be altered to
yield results for other problem-variants. The problem (‖ · ‖∞ , rad)-k-cluster is discussed
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under the name r-gather in [1], where r takes the role of k. The concept for the 2-
approximation presented there can be altered, even simplified, and also used to compute a
2-approximation for (‖·‖∞ , diam)-k-cluster.

I Theorem 13. (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster are 2-approximable for all k ≥ 2.

Proof. (Sketch) We try all values D that occur as pairwise distances d(u, v) for u, v ∈ V

for the following greedy strategy: Start with V1 := V and iteratively, until Vi = ∅, choose
ci ∈ Vi, build clusters P (ci) := {v ∈ Vi : d(ci, v) ≤ D} and set Vi+1 = Vi \P (ci). This yields
a partition of V into a finite number of clusters P (ci). If some cluster P (ci) has less than k

vertices, consider S(i, j) = {v ∈ P (cj)\{cj} : d(v, ci) ≤ D} and move min{|S(i, j)|, |P (cj)|−
k} vertices from S(i, j) to P (ci) for each j ∈ {1, . . . , i−1} until |P (ci)| ≥ k. If this procedure
is successful, we arrive at a k-cluster for V with maximum radius D and maximum diameter
2D. This procedure is successful for D = 2r∗ and D = D∗ if r∗ and D∗ are optimal values
for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster respectively. J

I Remark. A greedy procedure for (‖·‖∞ , avg)-k-cluster could build up the sets P (ci) by
successively adding argmin{d(v, ci) : v ∈ Vi \ P (ci)} until avg(P (ci)) exceeds D but moving
vertices from S(i, j) to P (ci) could unfortunately increase the average distortion of P (cj).
In [12] results from [10] for the so-called Proper Constraint Forest Problem are used
to compute an 8(k − 1)-approximation for Microaggregation. We will use a different
result from [10]: a 2-approximation for Lower Capacitated Tree Partitioning with
capacity k which is the problem of computing a spanning forest of minimal cost for which
each connected component has cardinality at least k. A spanning forest is characterised by
a set of edges and its cost is defined as the sum of the weights of these edges.

I Corollary 14. (‖·‖w

1
, avg)-k-cluster is 2k-approximable for all k ≥ 2.

I Remark. For k = 2, Theorem 4 showed that (‖ · ‖w

1
, avg)-k-cluster can be solved in

polynomial time which also translates to Lower Capacitated Tree Partitioning with
capacity k = 2; tree partitioning with capacity two is equivalent to weighted edge-cover.
Essential for the result above is the fact that components of a minimal spanning forest do not
contain paths of length 2k or more. This property implies the existence of a central vertex
which can reach all vertices in its component in at most k steps and allows to bound the
average distortion. This property does not prevent a component from containing arbitrarily
many vertices. An algorithm for (‖ · ‖w

1
, diam)- or (‖ · ‖w

1
, rad)-k-cluster requires such

an upper bound on the cardinality to prove an approximation factor. We therefore consider
Lower Capacitated Path Partitioning, the restriction of Lower Capacitated Tree
Partitioning to paths as connected components. With triangle inequality, [10] provides a
4-approximation for this problem and it is clear that minimal solutions can be assumed to
have connected components with at most 2k − 1 vertices each, which yields:

I Corollary 15. (‖·‖w

1
, diam)-k-cluster is (8k − 7)-approximable for all k ≥ 2.

One advantage of the unified model for (‖·‖, f)-k-cluster is that if d satisfies the triangle
inequality, the different measures relate in the following way:

avg(Pi) ≤ rad(Pi) ≤ diam(Pi) ≤ 2rad(Pi) (1)

This relation with Corollary 15 immediately yields:
I Proposition 16. (‖·‖w

1
, rad)-k-cluster is (16k − 14)-approximable for all k ≥ 2.

ISAAC 2016
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By definition, the two ∞-norms also relate optimal values in the following way for every
choice of f ∈ {rad,diam,avg}, where we denote by opt(G, d, ‖ · ‖, f, k) the global cost of an
optimal solution for (‖·‖, f)-k-cluster on G with distance d:

opt(G, d, f, ‖· ‖
w

∞
, k) ≥ k · opt(G, d, f, ‖· ‖∞ , k) (2)

This equation is helpful to derive approximations for the weighted ∞-norm:

I Corollary 17. (‖·‖w

∞
, diam)-k-cluster is 4-approximable and (‖·‖w

∞
, rad)-k-cluster is

8-approximable for all k ≥ 2.

For (‖ ·‖w

∞
, avg)-k-cluster we do not have a result for (‖ ·‖∞ , avg)-k-cluster to transfer.

Interestingly, a variant with different norm and measure can be used instead:

I Corollary 18. (‖·‖w

∞
, avg)-k-cluster is (4k − 2)-approximable for all k ≥ 2.

Proof. We first show that opt(G, d, avg, ‖· ‖w

∞
, k) ≥ opt(G, d,diam, ‖· ‖∞ , k). Consider any

set P in an optimal solution for (‖·‖∞ , avg)-k-cluster. Triangle inequality yields:

|P |avg(P ) = min
c∈P

∑
p∈P

d(c, p) ≥ min
c∈P

max
u,v∈P

d(u, c) + d(v, c) ≥ max
u,v∈P

d(u, v) = diam(P )

Theorem 13 and Proposition 1 produce a 2-approximation for (‖ · ‖∞ , diam)-k-cluster
for which each set contains at most 2k − 1 vertices. The weighted ∞-norm of the average
distortion of this partition is at most 2(2k − 1)·opt(G, d,diam, ‖· ‖∞ , k), and hence yields a
(4k − 2)-approximation for (‖·‖w

∞
, avg)-k-cluster. J

At last, we want to present an approximation which exploits the unified model in an even
more surprising way. The solutions for k = 2 derived in Section 4 for two different problem-
variants are combined to compute an approximate solution for k = 4. Explicitly, we will
combine the Simplex Matching approach for (‖ · ‖w

1
, diam)-2-cluster and the Edge

Cover approach for (‖·‖1, avg)-2-cluster.

I Theorem 19. The problem (‖ · ‖w

1
, diam)-4-cluster can be approximated in polynomial

time within a factor of 35
6 .

Proof. (Sketch) Consider as input any graph G = (V, E) with induced distances d. First,
compute an optimal solution P1, . . . , Ps for (‖ · ‖w

1
, diam)-2-cluster, for which the op-

timal value ‖(diam((P1), . . . ,diam(Ps))‖w

1
is at most D∗ :=opt(G, d,diam, ‖· ‖w

1
, 4), simply

because any 4-cluster is also a 2-cluster. Next, consider the complete graph G′ = (P, P 2)
with vertices P := {p1, . . . , ps} and edge-weights w defined by w(pi, pj) := min{d(u, v) : u ∈
Pi, v ∈ Pj}. It can be shown that D∗ ≥ 3·opt(G′, w, avg, ‖ · ‖w

1
, 2) and use an optimal solu-

tion S1, . . . , Sq for (‖·‖w

1
, avg)-2-cluster on G′, such that |Si| ≤ 3 for all i by Corollary 3.

The partition S = {
⋃

pi∈Sj
Pi : 1 ≤ j ≤ q} is a 4-cluster for G. If Sq = {pi, pj , pk} with

center pi for some i, j, k ∈ {1, . . . , s} with |Pj | = 3, we replace the cluster P = Pi ∪ Pj ∪ Pk

in S by the two clusters P ′ := Pj ∪ {ui} and P ′′ := P \ P ′, where we choose ui ∈ Pi such
that w(pi, pj) = min{d(ui, v) : v ∈ Pj}. These new clusters satisfy:

|P ′|diam(P ′) ≤ 4(diam(Pj) + w(pi, pj)) < 2|Pj |diam(Pj) + 4w(pi, pj) and

|P ′′|diam(P ′′) ≤ 5
2 |Pi|diam(Pi) + 5

2 |Pk|diam(Pk) + 5w(pi, pk)
Consider any set R ∈ S which is not the result of splitting up a cluster. Worst case
is R = Pi ∪ Pj ∪ Pk with pi as center of Sq = {pi, pj , pk}, we know that |R| ≤ 7 and
diam(R) ≤ diam(Pi) + diam(Pj) + diam(Pk) + w(pi, pj) + w(pi, pk), hence:

|R|diam(R) ≤ 7
2 (‖Pi|diam(Pi) + |Pj |diam(Pj) + |Pk|diam(Pk)) + 7(w(pi, pj) + w(pi, pk))
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Overall, this yields:∑
R∈S

|R|diam(R) ≤ 7
2

r∑
i=1
|Pi|diam(Pi)+6

∑
R⊂Pi∪Pj

w(pi, pj)+7
∑

R=Pi∪Pj∪Pk

w(pi, pj)+w(pi, pk)

≤ 7
2 ‖(diam((P1), . . . ,diam(Ps))‖w

1
+7

q∑
i=1
|Si|avg(Si) ≤ 7

2 D∗ + 7
3 D∗ = 35

6 D∗ . J

I Remark. Equation 1 translates the above result to a 35
3 -approximation for (‖ ·‖w

1
, rad)-4-

cluster. Since the approximation-ratios from Theorem 19 are significantly better than the
path-partitioning approximation from Corollary 15 (factor 25 and 50 respectively), it would
be interesting to nest this construction further and extend it for larger values of k.

7 Conclusions

We have introduced and discussed the general problem (‖ · ‖, f)-k-cluster in order to
model clustering-tasks which do not fix the number of clusters but require each cluster to
contain at least k objects. The nine chosen problem-variants in this paper generalise many
previous models but, of course, do not capture every possible way to measure the quality of
the clustering. We however tried to cover many previous models while maintaining a clear
framework in which similarities turned out to be quite fruitful.

Our NP-hardness result for k = 3 for all variants of (‖ · ‖, f)-k-cluster generalises all
known complexity-results for these types of problems. Further, we completely characterise
the complexity with respect to k with the following results for (‖·‖, f)-2-cluster:

k = 2 rad diam avg

‖ · ‖∞ in P (Edge Cover) Th.5 in P (Simplex Cover) Cor.7 NP-complete Th.10

‖ · ‖
w

∞ NP-complete Th.10 in P (Simplex Cover) Cor.7 NP-complete Th.10

‖ · ‖
w

1 APX-hard Th. 9 in P (Simplex Matching) Cor.6 in P (Weighted Edge Cover) Th.4

The restriction to distances d which satisfy the triangle inequality already simplified exact
solvability for the general NP-hard problem (‖ · ‖w

∞
, avg)-2-cluster which turned out to

be solvable with Simplex Cover in this case. We further showed that this restriction is
necessary for approximations in time polynomial in the number of objects and derived a
number of approximation strategies, mostly based on different other graph-problems. Our
approximation-ratios (which are the best and/or only ones known) are:

rad diam avg

‖ · ‖∞ 2 Th.13 2 Th.13 ?

‖ · ‖
w

∞ 8 Cor.17 4 Cor.17 4k − 2 Cor.18

‖ · ‖
w

1 16k − 14 Prop.16 8k − 7 Cor.15 2k Cor. 14

An interesting open question is whether (‖·‖∞ , avg)-k-cluster can be approximated within
some constant ratio or at least within some ratio in O(k). The lack of monotonicity for
average distortion makes this measure the most challenging for approximation.
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