
Pseudo-polynomial algorithms for min-max and

min-max regret problems?

Hassene Aissi Cristina Bazgan Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France

{aissi,bazgan,vdp}@lamsade.dauphine.fr

Abstract

We present in this paper general pseudo-polynomial time algorithms to solve min-max
and min-max regret versions of some polynomial or pseudo-polynomial problems under
a constant number of scenarios. Using easily computable bounds, we can improve these
algorithms. This way we provide pseudo-polynomial algorithms for the min-max and and
min-max regret versions of several classical problems including minimum spanning tree,
shortest path, and knapsack.

Keywords: min-max, min-max regret, computational complexity, pseudo-polynomial.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires to specify
parameters, in particular objective function coefficients, which may be uncertain or imprecise.
Uncertainty/imprecision can be structured through the concept of scenario which corresponds
to an assignment of plausible values to model parameters. Each scenario s can be represented
as a vector in IRm where m is the number of relevant numerical parameters. Kouvelis and Yu
[2] proposed the maximum cost and maximum regret criteria, stemming from decision theory,
to construct solutions hedging against parameters variations. In min-max optimization, the
aim is to find a solution having the best worst case value across all scenarios. In min-max regret
problem, it is required to find a feasible solution minimizing the maximum deviation, over all
possible scenarios, of the value of the solution from the optimal value of the corresponding
scenario. Two natural ways of describing the set of all possible scenarios S have been considered
in the literature. In the interval data case, each numerical parameter can take any value
between a lower and upper bound, independently of the values of the other parameters. Thus,
in this case, S is the cartesian product of the intervals of uncertainty for the parameters. In
the discrete scenario case, S is described explicitly by the list of all vectors s ∈ S. In this
case, that is considered in this paper, we distinguish situations where the number of scenarios
is bounded by a constant from those where the number of scenarios is unbounded.

∗This work has been partially funded by grant CNRS/CGRI-FNRS number 18227. The second author was
partially supported by the ACI Sécurité Informatique grant-TADORNE project 2004.

1

Complexity of the min-max (regret) versions has been studied extensively during the last
decade. In [2], the complexity of min-max (regret) versions of several combinatorial optimiza-
tion problems was studied, including shortest path and minimum spanning tree. In general,
these versions are shown to be harder than the classical versions.

More precisely, if the number of scenarios is not constant, these problems become strongly
NP -hard, even when the classical problems are solvable in polynomial time.

On the other hand, for a constant number of scenarios, it was only partially known if these
problems are strongly or weakly NP -hard. Indeed, the reductions described in [2] to prove NP -
difficulty are based on transformations from the partition problem which is known to be weakly
NP -hard. These reductions give no indication as to the precise status of these problems. The
only known weakly NP -hard problems are those for which there exists a pseudo-polynomial
algorithm based on dynamic programming (shortest path, knapsack, minimum spanning tree
on grid graphs, . . .). We present in this paper general pseudo-polynomial algorithms for the
min-max (regret) versions of problems whose exact version and the associated search version
are pseudo-polynomial. These algorithms enable us to obtain alternative pseudo-polynomial
algorithms for min-max regret (versions) of shortest path and knapsack. Furthermore, we
obtain pseudo-polynomials algorithms for min-max regret (versions) of spanning tree in general
graphs and weighted perfect matching in planar graphs.

After introducing some preliminaries in Section 2, we develop general pseudo-polynomial
algorithms for min-max and min-max regret problems in Section 3. Improved versions of these
algorithms are obtained in Section 4 using bounds that can be easily determined.

2 Preliminaries

We consider in this paper the class of problems with a linear objective function defined as:{
min

∑m
i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}m

This class encompasses a large variety of classical combinatorial problems, some of which
are polynomial-time solvable (shortest path problem, minimum spanning tree, . . .) and others
are NP -difficult (knapsack, set covering, . . .).

In this paper, we focus on the subclass C of problems which can be solved in polynomial
or pseudo-polynomial time.

Denote by to(|I|) the running time of a (pseudo-)polynomial time algorithm solving in-
stance I of a problem P ∈ C.

Given a problem P ∈ C, the min-max (regret) version associated to P has for input a
finite set of scenarios S where each scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m). We

denote by val(x, s) =
∑m

i=1 cs
ixi the value of solution x ∈ X under scenario s ∈ S and by val∗s

the optimal value in scenario s.
The min-max optimization problem corresponding to P, denoted by Min-Max P, consists

of finding a solution x having the best worst case value across all scenarios, which can be stated
as:

min
x∈X

max
s∈S

val(x, s)

2

Given a solution x ∈ X, its regret, R(x, s), under scenario s ∈ S is defined as R(x, s) =
val(x, s) − val∗s . The maximum regret Rmax(x) of solution x is then defined as Rmax(x) =
maxs∈S R(x, s).

The min-max regret optimization problem corresponding to P, denoted by Min-Max
Regret P, consists of finding a solution x minimizing the maximum regret Rmax(x) which
can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

{val(x, s) − val∗s}

When P is a maximization problem, the max-min and min-max regret versions associated
to P are defined similarly.

In order to obtain our algorithms, we need to solve the exact version of a problem P,
denoted by Exact P, which consists of deciding whether there exists a solution with value
exactly v, for some specified v. The associated search problem consists of finding such a
solution whenever it exists. This notion was first discussed in [4]. In [1] a pseudo-polynomial
algorithm is given for the exact spanning tree problem and for the exact perfect matching
problem in planar graphs.

The procedure for deciding if there is a solution of value exactly value in an instance I of
Exact P is called Decide_Exact_P(I,value) and its running time is denoted by td(|I|).
The procedure used to construct a solution x with value exactly value for an instance I of P
is called Construct_Exact_P(I,value,x) and its running time is denoted by tc(|I|).

3 General pseudo-polynomial algorithms

In this section, we present general pseudo-polynomial algorithms to solve the min-max (regret)
versions of some polynomial or pseudo-polynomial time solvable problems.

Theorem 1. There is a pseudo-polynomial time algorithm for Min-Max (Regret) P if
Exact P and its search version are polynomially or pseudo-polynomially solvable.

Proof. Let P be a minimization problem such that Exact P and its search version are poly-
nomially or pseudo-polynomially solvable. Consider I an instance of Min-Max P defined on
a set S of k scenarios s1, . . . , sk, where each scenario s ∈ S is represented by (cs

1, . . . , c
s
m). Let

M = maxi,s cs
i .

The procedure for solving I consists of scanning in increasing order over all possible values
v = 0, . . . , mM and deciding whether there exists a feasible solution x of I with value αp in the
pth scenario for p = 1, . . . , k and v = max{α1, . . . , αk}. The k conditions can be equivalently
transformed into a unique condition

∑k
p=1 val(x, p)(mM + 1)p−1 =

∑k
p=1 αp(mM + 1)p−1.

Hence, this decision problem is equivalent to deciding whether there exists a solution with value
exactly

∑k
p=1 αp(mM + 1)p−1 in an instance I ′ of Exact P deduced from I by aggregating

the evaluations in the different scenarios. The coefficients of the objective function in I ′ are
c′i =

∑k
p=1 cp

i (mM + 1)p−1 for i = 1, . . . , m. Algorithm 1 computes an optimal solution for
the min-max version of P, as illustrated in Figure 1.

3

Algorithm 1 Pseudo-polynomial algorithm for min-max version
v ← 0
test ← false
while test 6= true do

for (α1, . . . , αk): max{α1, . . . , αk} = v do

value ←
∑k

p=1 αp(mM + 1)p−1

if Decide_Exact_P(I ′,value) then

Construct_Exact_P (I ′,value,x∗)
test ← true

if test 6= true then

v ← v + 1
opt ← v
Output opt and x∗

val(x, s2)

val(x, s1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

v

opt

opt

Figure 1: Illustration of Algorithm 1 for k = 2

The running time of Algorithm 1 is O(mkMktd(|I
′|) + tc(|I

′|)). The maximum value

appearing in I ′ is O((mM)k

m
). Since Exact P and its search version are solvable in polynomial

or pseudo-polynomial time, there exists a constant c such that td(|I
′|), tc(|I

′|) ≤ (mk−1Mk)c.
Thus Algorithm 1 is pseudo-polynomial.

Consider now an instance I of Min-Max Regret P. We first compute val∗s for all s ∈ S.
The procedure now consists of scanning in increasing order all possible values v = 0, . . . , mM−
maxs∈S val∗s and deciding whether there exists a feasible solution x with val(x, p) = αp for
p = 1, . . . , k where αp ≤ val∗p + v and there exists q ≤ k with αq = val∗q + v. Algorithm 2
computes an optimal solution for the min-max regret version of P, as illustrated in Figure 2.
The running time of Algorithm 2 is O(kto(|I|/k) + mkMktd(|I

′|) + tc(|I
′|)). Clearly this

4

algorithm is pseudo-polynomial.
For a maximization problem, max-min and min-max regret can be solved in a similar

way. 2

Algorithm 2 Pseudo-polynomial algorithm for min-max regret version

Compute val∗s for all s ∈ S
v ← 0
test ← false
while test 6= true do

for (α1, . . . , αk) : max{α1 − val∗1, . . . , αk − val∗k} = v do

value ←
∑k

p=1 αp(mM + 1)p−1

if Decide_Exact_P(I ′,value) then

Construct_Exact_P(I ′,value,x∗)
test ← true

if test 6= true then

v ← v + 1
opt ← v
Output opt and x∗

val(x, s2)

val(x, s1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

val∗

val∗2 + v

val∗1 + v

val∗2 + opt

val∗1 + opt

Figure 2: Illustration of Algorithm 2 for k = 2

Corollary 1. Min-Max (Regret) Spanning Tree, Min-Max (Regret) Shortest
Path, Min-Max (Regret) Weighted Perfect Matching in planar graphs, Max-Min
Knapsack, Min-Max Regret Knapsack, are solvable in pseudo-polynomial time.

5

Proof. Pseudo-polynomial algorithms for the exact versions of the Spanning Tree problem
and Weighted Perfect Matching in planar graphs are described in [1]. The search
versions of these problems can be solved by using self reducibility [3]. Exact versions of
Shortest Path and Knapsack can be solved in pseudo-polynomial time using dynamic
programming. 2

4 Improved algorithms using bounds

In order to obtain more efficient pseudo-polynomial time algorithms for the min-max and
min-max regret versions, we may use an upper and a lower bound of the optimum value. Such
bounds can be easily determined as shown by the following result.

Theorem 2. For any instance on a set of k scenarios of Min-Max P and Min-Max Regret
P, there exist a lower and an upper bound L and U of opt, such that U ≤ kL. Moreover, if P
is solvable in (pseudo-)polynomial time, then L and U are computable in (pseudo-)polynomial
time.

Proof. Consider an instance I of Min-Max P defined on a set S of k scenarios where each
scenario s ∈ S is represented by (cs

1, . . . , c
s
m) and let X be the set of feasible solutions of

I. We define the following instance I ′ of a single scenario problem minx∈X

∑
s∈S

1
k
val(x, s)

obtained by taking objective function coefficients c′i =
∑k

s=1
cs

i

k
, i = 1, . . . , m. Let x̃ be

an optimal solution of I ′. We take as lower and upper bounds L =
∑

s∈S
1
k
val(x̃, s) and

U = maxs∈S val(x̃, s). Clearly, we have

L = min
x∈X

∑

s∈S

1

k
val(x, s) ≤ min

x∈X

∑

s∈S

1

k
(max

s∈S
val(x, s)) = min

x∈X
max
s∈S

val(x, s) = opt

and
min
x∈X

max
s∈S

val(x, s) ≤ max
s∈S

val(x̃, s) ≤
∑

s∈S

val(x̃, s) = k
∑

s∈S

1

k
val(x̃, s) = kL

Consider now an instance I of Min-Max Regret P defined on a set S of k scenarios
and let X be the set of feasible solutions of I. Let x̃ ∈ X be an optimal solution of the single
scenario instance I ′ derived from I as for the min-max case. We take as lower and upper
bounds L =

∑
s∈S

1
k
(val(x̃, s) − val∗s) and U = maxs∈S(val(x̃, s) − val∗s). Clearly, we have

L = min
x∈X

1

k

∑

s∈S

(val(x, s) − val∗s) ≤ min
x∈X

1

k
k max

s∈S
(val(x, s) − val∗s) = opt

and

min
x∈X

max
s∈S

(val(x, s) − val∗s) ≤ max
s∈S

(val(x̃, s) − val∗s) ≤
∑

s∈S

(val(x̃, s) − val∗s) = kL

If any instance of P of size n is solvable in time p(n), where p is a polynomial, then L
and U are computable in p(|I|/k). Considering M = maxi,s cs

i , if any instance of P of size
n is solvable in time p(n, M), where p is a polynomial, then L and U are computable in
p(|I|/k, M). 2

6

Algorithm 3 Improved pseudo-polynomial algorithm for min-max version

Compute L, U and x̃
v ← L
test ← false
while test 6= true and v ≤ U − 1 do

for (α1, . . . , αk): max{α1, . . . , αk} = v and
∑k

p=1 αp ≥ kL do

value ←
∑k

p=1 αp(mM + 1)p−1

if Decide_Exact_P(I ′,value) then

Construct_Exact_P (I ′,value,x∗)
test ← true

if test 6= true then

v ← v + 1
if test = true then

opt ← v
else

opt ← U and x∗ ← x̃
Output opt and x∗

The search space can be narrowed by using bounds L and U . For solving min-max versions,
only solutions x ∈ X verifying L ≤ maxs∈S val(x, s) ≤ U and

∑k
p=1 val(x, p) ≥ kL are to be

checked. This gives rise to Algorithm 3, illustrated in Figure 3, whose running time is now
O(to(|I|/k) + (U − 1)ktd(|I

′|) + tc(|I
′|)).

val(x, s2)

val(x, s1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

U

UL

L

2L

2L

opt

opt

v

v

Figure 3: Illustration of Algorithm 3 for k = 2

Similar modifications and arguments hold for the min-max regret versions, giving an im-
proved algorithm with running time O((k + 1)to(|I|/k) + (U − 1)ktd(|I

′|) + tc(|I
′|)).

7

References

[1] F. Barahona and R. Pulleyblank. Exact arborescences, matching and cycles. Discrete
Applied Mathematics, 16:91–99, 1987.

[2] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer Aca-
demic Publishers, Boston, 1997.

[3] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[4] C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning tree.
Journal of the Association for Computing Machinery, 29(2):285–309, April 1982.

8

