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t. Given an undire
ted graph with weights on its verti
es, the

k most vital nodes independent set problem 
onsists of determining aset of k verti
es whose removal results in the greatest de
rease in themaximum weight of independent sets. We also 
onsider the 
omplemen-tary problem, minimum node blo
ker independent set that 
onsists ofremoving a subset of verti
es of minimum size su
h that the maximumweight of independent sets in the remaining graph is at most a spe
i�edvalue. We show that these problems are NP-hard on bipartite graphs butpolynomial-time solvable on unweighted bipartite graphs. Furthermore,these problems are polynomial also on graphs of bounded treewidth and
ographs. A result on the non-existen
e of a ptas is presented, too.Keywords: most vital nodes, independent set, 
omplexity, NP-hard, ptas, bi-partite graph, bounded treewidth, 
ographMathemati
s Subje
t Classi�
ation: 05C85, 05C691 Introdu
tionIn many appli
ations involving the use of 
ommuni
ation or transportation net-works, we often need to identify vulnerable or 
riti
al infrastru
tures. By 
riti
alinfrastru
ture we mean a set of nodes/lines whose damage 
auses the largestin
rease in the 
ost within the network. Modeling the network by a weightedgraph, identifying a vulnerable infrastru
ture amounts to �nding a subset ofverti
es/edges of a given size whose removal from the graph 
auses the largestin
onvenien
e to a parti
ular property of the graph in question. In the literaturethis problem is referred to as the k most vital nodes/edges problem. A 
om-plementary problem 
onsists of determining a set of verti
es/edges of minimumsize whose removal involves that the 
ost within the network is at most a given
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2 Cristina Bazgan, Sonia Toubaline, and Zsolt Tuzavalue. In the literature this problem is referred to as the min node/edge blo
kerproblem.The problems of k most vital nodes/edges and min node/edge blo
ker havebeen studied for various problems, in
luding shortest path, spanning tree, max-imum �ow, assignment, and maximum mat
hing. The k most vital edges prob-lem with respe
t to shortest path was proved NP-hard [1℄. Later, k most vi-tal edges/nodes shortest path (and min node/edge blo
ker shortest path) wereproved not 2-approximable (not 1.36-approximable, respe
tively) if P6= NP [8℄.For spanning tree, k most vital edges is NP-hard [5℄ and O(log k)-approximable[5℄ and randomized 2-approximable [15℄. In [17℄ it is proved that k most vitaledges maximum �ow is NP-hard. Also k most vital edges and min edge blo
kerassignment are proved NP-hard and not 2-approximable (not 1.36-approximable,respe
tively) if P6=NP [2℄. For maximum mat
hing, min edge blo
ker is NP-hardeven for bipartite graphs [16℄, but polynomial for grids and trees [14℄.In this paper, we are interested in determining a subset of k verti
es ofthe graph whose deletion 
auses the largest de
rease in the maximum weightof an independent set. This problem is referred to as k Most Vital NodesIndependent Set. We also 
onsider the 
omplementary version of this problem,where given a threshold, we have to determine a subset of verti
es of minimum
ardinality that has to be removed su
h that in the resulting graph the maximumweight of an independent set is at most this threshold. This problem is referredto as Min Node Blo
ker Independent Set.In Se
tion 3 we 
onsider bipartite graphs. It turns out that a substantialjump in 
omplexity o

urs between unweighted and weighted graphs for theseproblems. More pre
isely we show that the unweighted versions are polynomialwhile the weighted versions are NP-hard and the most vital nodes problem evenhas no ptas, unless P=NP. In Se
tion 4 we deal with graphs with weights ontheir verti
es, whi
h have either a tree-like stru
ture or a representation asso
i-ated with trees. These in
lude trees themselves, 
y
les, more generally graphs ofbounded treewidth, and 
ographs (graphs 
ontaining no indu
ed P4). For these
lasses we design polynomial-time algorithms for the problems mentioned above.In fa
t, trees and 
y
les have treewidth 1 and 2, respe
tively, therefore ourgeneral algorithm for bounded treewidth works for the former 
lasses, too. Nev-ertheless, the algorithms on trees and 
y
les are simpler and this is why wein
lude them here. It should be noted further that for k �xed, there are onlypolynomially many subsets of k removable verti
es, therefore k Most VitalNodes Independent Set is solvable e�
iently on every graph 
lass where thelargest independent set is tra
table. On the other hand if k → ∞ then a formulaexpressing the present problems in se
ond-order monadi
 logi
 would have un-bounded length. Consequently, the general approa
h to linear-time algorithmsvia MSOL is not appli
able here. This fa
t is relevant for both treewidth and
liquewidth.



Complexity of most vital nodes for Independent Set 32 PreliminariesLet G = (V, E) be an undire
ted graph, with V = {v1, . . . , vn}, where ea
hvertex vi has a weight wi. For an edge vivj ∈ E, we 
ould write vi, vj ∈ e andif vi, vj ∈ V ′ then we 
onsider that e ⊂ V ′. When removing a set V ′ of verti
esfrom G, let us denote the remaining graph by G − V ′. If H is a subgraph of Gthen V (H) denotes the vertex set of H . Moreover, for a subset V ′ of verti
esfrom G, the subgraph indu
ed by V ′ is denoted by G[V ′]. A maximum-weightindependent set of G is a subset of verti
es of maximum total weight where anytwo verti
es are nonadja
ent. A minimum-weight vertex 
over of G is a subsetof verti
es of minimum total weight where every edge of G has at least onevertex in the set. We denote by α(G) the maximum weight of an independentset and by τ(G) the minimum weight of a vertex 
over. Moreover, α(k) representsthe minimum of α(G − V ′) after removing any set of verti
es V ′ of size k. Amat
hing is a set of mutually vertex-disjoint edges. The largest number of edgesin a mat
hing is denoted by ν(G).In this paper we are interested in the 
omplexity of the following problems.
k Most Vital Nodes Independent SetInput: An undire
ted graph G = (V, E) where ea
h vertex vi has a weight wi,and an integer k.Output: A subset V ′ ⊆ V of size k su
h that the maximum weight α(G − V ′)of an independent set in G − V ′ is minimum.Min Node Blo
ker Independent SetInput: An undire
ted graph G = (V, E) where ea
h vertex vi has a weight wi,and an integer U .Output: A subset V ′ ⊆ V of minimum 
ardinality su
h that the maximumweight α(G − V ′) of an independent set in G − V ′ is at most U .Remark 1. The exa
t versions of k Most Vital Nodes Independent Setand Min Node Blo
ker Independent Set are polynomial-time equivalent.Indeed, if an algorithm Ak solves k Most Vital Nodes Independent Setfor all 1 ≤ k ≤ n, then we 
an run Ak for k = 1, . . . , n and 
hoose the smallest kyielding optimum at most U . Conversely, if an algorithm BU solves Min NodeBlo
ker Independent Set with any bound U , we 
an apply binary sear
hto lo
ate the smallest U that requires the removal of at most k verti
es.Theorem 1. If there exists an algorithm that solves the k most vital nodes ver-sion of an optimization problem P on graphs with n verti
es in O(t) time, thenthe min node blo
ker version of P 
an be solved in O(t log log n) time.Proof. If the value of an optimum solution is at most U then the optimum sizeis 0. Otherwise, we 
ombine the algorithm for the k most vital nodes versionwith an a

elerated version of approximate binary sear
h. On the size k of a minnode blo
ker we maintain a lower bound ℓ and an upper bound u, initialized to
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ℓ0 = 1 and u0 = n. Instead of using a standard binary sear
h with v = ℓ+u

2
, weiteratively set v =

√
ℓu, as suggested in [7℄. More pre
isely, although 
omputingthe exa
t value √

ℓu 
an be time 
onsuming, it is shown in [7℄ that an approxi-mate value of √ℓu 
an be 
omputed without a�e
ting the time 
omplexity. Thenumber of tests for obtaining a lower bound ℓ and an upper bound u su
h that
u = ℓ + 1 is O(log log u0

ℓ0
) (see [7℄ for more details), whi
h means O(log log n)iterations in our 
ase. Sin
e one iteration takes O(t), �nding the smallest k forwhi
h the solution has value at most U takes total running time O(t log log n).2For the proof 
on
erning the non-existen
e of a ptas (polynomial-time ap-proximation s
heme) we shall use an approximation-preserving redu
tion, 
alled

L-redu
tion, whi
h was introdu
ed by Papadimitriou and Yannakakis in [12℄.Let A and B be two optimization problems. Then A is said to be L-redu
ible to
B if there are two 
onstants a, b > 0 su
h that1. there exists a fun
tion, 
omputable in polynomial time, whi
h transformsea
h instan
e x of A into an instan
e x′ of B su
h that optB(x′) ≤ a·optA(x),2. there exists a fun
tion, 
omputable in polynomial time, whi
h transformsea
h solution y′ of x′ into a solution y of x su
h that |val(x, y)− optA(x)| ≤

b · |val(x′, y′) − optB(x′)|.For us the important property of this redu
tion is that if A is L-redu
ible to Band A has no ptas then B has no ptas.3 Complexity on bipartite graphsMaximum-weight independent set is polynomial-time solvable on bipartite graphs.We show in this se
tion that the k most vital nodes or min node blo
ker versionsbe
ome NP-hard on bipartite graphs, and most vital nodes has no ptas. Never-theless, these problems remain polynomial-time solvable in the unweighted 
ase.We �rst prove this latter fa
t.Theorem 2. k Most Vital Nodes Independent Set and also its 
omple-mentary problem Min Node Blo
ker Independent Set are polynomial forunweighted bipartite graphs. Moreover, if a largest mat
hing and a smallest ver-tex 
over are given with the input, these problems are solvable in linear time.Proof. Let G = (V, E) be a bipartite input graph on n verti
es. From K®nig'stheorem [10℄ we know that τ(G) = ν(G) holds; let us denote here their 
ommonvalue by t. The 
lassi
al proof of the equality τ = ν is algorithmi
 and alsoyields a maximum mat
hing M = {e1, . . . , et} and a minimum vertex 
over
X = {v1, . . . , vt} in polynomial time. Moreover, we have α(G) = n − t (knownas a Gallai-type identity) and V \ X is a largest independent set in G. Let usintrodu
e the further notation R = V \ V (M) and r = |R| = n − 2t; i.e., thenumber and the set of verti
es not 
ontained in any of the mat
hing edges in M .We 
an show now that these problems are solvable in linear time, as follows.
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k Most Vital Nodes Independent SetIf k ≤ |R|, we remove any k verti
es from R. Sin
e the remaining graph (oforder n − k) still 
ontains the mat
hing M of size t, the independen
e number
annot be larger than n − k − t. It is also 
lear that α 
annot be de
reased bymore than k if we remove just k verti
es, hen
e the solution obtained is optimal.If k > |R|, we remove the entire R and the verti
es of ⌊(k − r)/2⌋ edgesfrom M , and one further vertex if k − r is odd. This de
reases the size of Mby ⌈(k − r)/2⌉ and the independen
e number by ⌊(k + r)/2⌋, and hen
e thenew value is ⌈(n − k)/2⌉ (originally we had α(G) = (n + r)/2). This de
reaseis optimal, be
ause after the removal of k verti
es at least half of the remaining
n − k belong to the same vertex 
lass.Min Node Blo
ker Independent SetIf U ≥ n − t, no verti
es need to be removed. If t ≤ U < n − t, we remove
n − t − U verti
es of R. If U = t − ℓ where 1 ≤ ℓ ≤ t, we remove the entire Rand the 2ℓ verti
es of ℓ arbitrarily 
hosen edges from M . All these 
hoi
es areoptimal, as follows from the proof 
on
erning most vital nodes. 2We show in the following that these problems be
ome NP-hard in the weighted
ase. The following notion will be of essen
e.De�nition 1. Let G = (V, E) be an undire
ted graph. The bipartite in
iden
egraph of G is the bipartite graph H whose vertex set is V ∪ E and there is anedge in H between v ∈ V and e ∈ E if and only if e is in
ident to v in G.Theorem 3. k Most Vital Nodes Independent Set andMin Node Blo
kerIndependent Set are strongly NP-hard even for bipartite graphs.Proof. We �rst prove hardness for k Most Vital Nodes Independent Set.Let G = (V, E) be an instan
e of the de
ision problem asso
iated to Indepen-dent Set with n verti
es and m edges, and an integer ℓ; and let H denote thebipartite in
iden
e graph of G. The 
onstru
tion of H from G requires lineartime only. Ea
h vertex of E in H has weight 1 and ea
h vertex of V in H hasweight n2. Due to this rather unbalan
ed weighting, the unique maximum-weightindependent set in H is V ; i.e., α(H) = n3.We show in the following that if there is an independent set of size at least
ℓ in G then H 
ontains a set S of ℓ verti
es su
h that α(H − S) = (n − ℓ)n2,and otherwise removing any subset S of ℓ verti
es from H , we have α(H −S) ≥
(n−ℓ)n2+1. Sin
e verti
es from V have weight n2 and those from E have weight1, in order to have a maximum-weight independent set as small as possible afterremoving a set S of size ℓ, S has to be in
luded in V .If G 
ontains an independent set S of size ℓ, then removing S from the vertexset of H , we obtain a graph whose maximum-weight independent set is V \ S.This set has weight (n − ℓ)n2.If G 
ontains no independent set of size ℓ, then any S ⊂ V of size ℓ 
ontainsat least an edge e ∈ E in G, and this e in H is nonadja
ent to the entire V \ S.Thus, when we remove any set S of ℓ verti
es from H , α(H −S) ≥ (n− ℓ)n2 +1.



6 Cristina Bazgan, Sonia Toubaline, and Zsolt TuzaDue to Remark 1, Min Node Blo
ker Independent Set is also stronglyNP-hard. 2We are going to prove an approximation hardness result, too. In the redu
-tion, the following problem will be used.Max k Vertex CoverInput: A graph G = (V, E) with k ≤ |V |.Output: The maximum number of edges in G that 
an be 
overed by a subset
V ′ ⊆ V of 
ardinality k.Max k Vertex Cover-B is the version of Max k Vertex Cover wherethe maximum degree of the graph is at most B.We shall apply the following version of some known results.Lemma 1. For appropriately 
hosen B, Max n/2 Vertex Cover-B has noptas on graphs G = (V, E) with m = Θ(n) and α(G) = τ(G) = n/2, where
n = |V | and m = |E|, unless P=NP.Proof. An approximation algorithm for Vertex Cover on graphs with τ(G) ≥
|V (G)|/2 is also an approximation algorithm with the same ratio for generalinstan
es ofVertex Cover [11℄. Using the APX-hardness ofVertex Cover-B[12℄ and the gap redu
tion from Vertex Cover-B toMax k Vertex Cover-B [13℄ for k ≥ n/2, we 
on
lude that Max k Vertex Cover-B has no ptason graphs with n verti
es when k ≥ τ(G) ≥ n/2. We 
an redu
e this lastproblem to the same problem on instan
es with k ≥ τ = n/2 by inserting 2τ −nisolated verti
es. Moreover, these last instan
es are redu
ible to instan
es where
k = 2τ = n/2 by inserting k − τ isolated edges. 2We extra
t the key points of the redu
tion in the following lemma on inde-pendent sets.Lemma 2. Let G = (V, E) be a graph with n verti
es and m edges, and let Hbe the bipartite in
iden
e graph of G. Then the following properties are valid.
(a) Suppose that G has maximum degree at most B, and the weights in H are

wv = B + 1 for all v ∈ V and we = 1 for all e ∈ E. Then, for any
V ′ ⊂ V and any independent set S disjoint from V ′ in H, there exists anindependent set S′ of H su
h that w(S′) ≥ w(S) and S′ ∩ V = V \ V ′.Thus, if S′ is maximal, then

S′ = (V \ V ′) ∪ {e ∈ E | e ⊂ V ′}and, in parti
ular, α(H − V ′) ≥ (B + 1) · (n − |V ′|).
(b) Under the 
onditions of (a), for any V ′ ⊂ V ∪E with |V ′| < |V | there existsa V ′′ ⊂ V su
h that |V ′′| = |V ′| and the maximum weight of an independentset in H − V ′′ is not larger than that in H − V ′. As a 
onsequen
e,

α(H − V ′) ≥ α(H − V ′′) = (B + 1) · (n − |V ′|) + |{e ∈ E | e ⊂ V ′′}|.
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an be found e�
iently.Proof. (a) If S 
ontains all verti
es of V \ V ′, then we have nothing to prove.Otherwise we modify S step by step, keeping it independent and not de
reasingits value, until it 
ontains the entire V \V ′. Hen
e, assume that v ∈ V is a vertexsu
h that v /∈ V ′ ∪ S. If v has no neighbor in S ∩ E, then S ∪ {v} is a properextension. Suppose that this is not the 
ase; i.e., there is an edge e ∈ E ∩S su
hthat v ∈ e. We now modify S to (S \NH(v))∪{v}, where NH(v) denotes the setof verti
es adja
ent to v in H , that is the set of edges in
ident to v in G. In thisway we have removed at most B neighbors of v from S, ea
h of weight 1, andinserted v of weight B + 1, hen
e the total weight of the modi�ed set is at least
w(S). Moreover, the set remains independent be
ause all neighbors of v havebeen removed. Thus, after |(V \ V ′) \ S| steps, the required set S′ is obtained.
(b) If V ′ ⊂ V , then V ′′ = V ′ is a proper 
hoi
e. Hen
e suppose V ′∩E 6= ∅. Let usintrodu
e the notation n′ = |V ′∩V |, m′ = |E(G[V ′∩V ])\(V ′∩E)|. By (a) we seethat α(H−V ′) = (B +1) ·(n−n′)+m′ holds. Choose e ∈ V ′∩E and v ∈ V \V ′,and modify V ′ to the set (V ′ \ {e}) ∪ {v}. This keeps 
ardinality un
hanged,while the �rst term (B + 1) · (n − n′) de
reases by pre
isely B + 1. Moreover,sin
e G has maximum degree at most B, the se
ond term m′ 
an in
rease byat most B when we insert v into the set, and 
an further in
rease by at most 1when we omit e. Thus, sum does not in
rease. Repeatedly eliminating all e ∈ Efrom V ′, the required V ′′ is obtained. Then (a) implies that the independent setof maximum weight in H − V ′′ 
onsists of all v /∈ V ′′ and all e ⊂ V ′′. 2Theorem 4. k Most Vital Nodes Independent Set has no ptas even forbipartite graphs if P 6= NP .Proof. We prove the non-existen
e of a ptas for k = n/2, 
onstru
ting an L-redu
tion from Max n/2 Vertex Cover-B to n/2 Most Vital Nodes In-dependent Set, where instan
es of the former problem are restri
ted to graphs
G of maximum degree at most B and also satisfying α(G) = τ(G) = n/2.In this 
ase, let H denote the bipartite in
iden
e graph of the input graph
G = (V, E), the latter having n verti
es and m edges. The verti
es of H haveweight wv = B + 1 for all v ∈ V and we = 1 for all e ∈ E.Consider �rst an optimum solution V ′ in G. As τ(G) = n/2 has been as-sumed, opt1 = m holds and V ′ 
overs all edges of G. Then removing V \ V ′from the vertex set of H , we obtain a graph in whi
h the maximum weight ofan independent set is ((B +1)/2) ·n, as implied by part (a) of Lemma 2. On theother hand, parts (a) and (b) together yield that after the removal of any n/2verti
es from H , there always remains an independent set of at least that largeweight, thus

opt2 =
B + 1

2
· n ≤ (B + 1) · opt1,the upper bound being valid sin
e opt1 ≥ n/2 surely holds by the assumption

τ(G) = n/2.
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es in H , and denote val2 = α(H −
V ′). Now we apply part (b) of Lemma 2 to obtain an appropriate set V ′′ of n/2verti
es, whi
h is a subset of V . We view V \ V ′′ as a solution in G and denoteits value by val1. In this way we obtain
val2−opt2 ≥ α(H−V ′′)−opt2 = ((B + 1) · (n − |V ′′|) + |E(G[V ′′])|)− B + 1

2
·n

= |E(G[V ′′])| = opt1 − val1,the last equation being valid be
ause opt1 = m and E(G[V ′′]) is pre
isely theset of edges not 
overed by the verti
es of V \ V ′′. This 
ompletes the proof ofthe theorem. 24 Graph 
lasses related to tree stru
turesIn this se
tion we 
onsider graph 
lasses representable over tree stru
tures, andprove that they admit algorithms solving the 
onsidered problems in polynomialtime. E�
ient solvability for the graph 
lasses in the �rst two subse
tions areimplied by the results of the third subse
tion, too, but the methods for theformer are simpler.4.1 TreesTheorem 5. k Most Vital Nodes Independent Set is polynomial on trees.On trees of order n the algorithm runs in O(nk2) time, for any k ≥ 1.Proof. Our general approa
h is to �nd not only a set of k most vital nodes butsimultaneously also the value of a 
orresponding largest independent set. Forthis purpose we view the input as a rooted tree with an arbitrarily 
hosen root,and organize 
omputation a

ording to a postorder traversal.Consider any tree T with verti
es v1, . . . , vn. Ea
h vertex vi 
an have threepositions in a solution, that we shall denote by marks +,−, 0 as follows:
• `+' means that vi is sele
ted into an independent set;
• `−' means that vi is sele
ted for deletion;
• `0' means that vi is none of the above two types.In a solution exa
tly k marks `−' have to o

ur.The subtree rooted in vi is denoted by Ti. For ea
h i = 1, . . . , n, ea
h ∗ ∈

{+,−, 0}, and ea
h j = 0, 1, . . . , k, a value zi(j, ∗) will be 
omputed. This zi(j, ∗)represents the minimum a
hievable weight of a largest independent set on Tiunder the 
onditions that exa
tly j verti
es are removed from Ti and vi has mark
∗. For the re
ursive 
omputation the 
hildren of vi with degree d will be denotedby vi1 , . . . , vid

. We traverse T in postorder and apply dynami
 programming.Re
ursion. If vi is marked `+', then all its 
hildren must have `−' or `0', sin
eotherwise two verti
es sele
ted for the independent set would be adja
ent. More-over, zi(j, ∗) requires that the total number of verti
es marked `−' should be
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tly j in Ti. On the other hand, we have one and only one way to make the�nal result as small as possible: de
ide whi
h of the verti
es should be markedwith `−'. On
e this has been de
ided, the distribution of `+' and `0' positionsaims at maximizing the total weight of `+'. This leads to the following generalre
ursions:
zi(j, +) = wi + min

j1,...,jd≥0

j1+...+jd=j

d∑

ℓ=1

min (ziℓ
(jℓ,−), ziℓ

(jℓ, 0)) ,

zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d∑

ℓ=1

min (ziℓ
(jℓ,−), max (ziℓ

(jℓ, +), ziℓ
(jℓ, 0))) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d∑

ℓ=1

min (ziℓ
(jℓ,−), max (ziℓ

(jℓ, +), ziℓ
(jℓ, 0))) ,For a leaf vi we 
learly have zi(0, +) = wi and zi(1,−) = zi(0, 0) = 0. Further,to indi
ate that all other 
ombinations of j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0}are infeasible, we set a dummy symbol zi(j, ∗) = NIL for them. In the re
ursivestep, terms with value NIL on the right-hand side are negle
ted, ex
ept when allterms are the same, and in this 
ase we de�ne zi(j, ∗) = NIL, too.Finding an optimal solution. Assuming that T has root vi0 , after the removalof k properly 
hosen verti
es the smallest possible value of α is

min (zi0(k,−), max (zi0(k, +), zi0(k, 0))) .In fa
t, inserting a new vertex v0 with weight w0 = 0 as new root and parentfor vi0 does not 
hange the optimum, and then we would have z0(k, +) ≤ opt =
z0(k, 0) ≤ z0(k,−). A set of k most vital nodes 
an also be determined in O(n)additional steps if we make a little more administration. At the re
ursive stepfor ea
h zi(j, ∗) we register for ea
h edge viviℓ

the 
orresponding value of jℓ inthe optimal distribution (j1, . . . , jd) for j and also the mark ∗ ∈ {+,−, 0} of
iℓ whi
h gave the optimum for vi. On
e these data are available for all vi andall pairs (j, ∗), we 
an traverse T in preorder and sele
t the verti
es having `−'mark for the most vital set.E�
ient implementation. The key point is to �nd in polynomial time a bestdistribution (j1, . . . , jd) for the `max' and `min' fun
tions a
ting on the sums.This 
an be done, despite that the number of possibilities 
an even be exponentialif d is proportional to n.If d = 2 then we have at most j + 1 
ombinations of feasible pairs j1, j2.Hen
e, optimal 
hoi
e 
an be made in O(k) steps for any one parti
ular j, andin O(k2) steps for all 0 ≤ j ≤ k. If d is larger, we 
an split the 
hildren of vi intotwo sets of (nearly) equal size, {vℓ | 1 ≤ ℓ ≤ ⌊d/2⌋} and {vℓ | ⌊d/2⌋+1 ≤ ℓ ≤ d},make all 
omputation in them separately, and then 
ombine the results for vi.(Splitting 
orresponds to inserting a `supernode' above ea
h of the two sets,
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h has weight zero and be
omes a virtual 
hild of vi.) This requires d − 1rounds for vi. Sin
e T is a tree, those d − 1 sum up to n − 2, thus the overallrunning time is O((k2 + 1)n), and never ex
eeds O(n3). (Here `+1' is needed for
k = 0.) Note that there are no `hidden large 
onstants' in the `O' notation. 2Theorem 6. Min Node Blo
ker Independent Set is polynomial on trees.On trees with n verti
es the algorithm runs in O(n3 log log n) time.Proof. The above algorithm in one iteration for any 1 ≤ v ≤ n runs in O(v2n) =
O(n3) time. Hen
e, using Theorem 1, �nding the smallest k for whi
h the solutionhas value at most U takes total running time O(n3 log log n). 2Remark 2. The algorithm proposed in Theorem 5 solves the k Most VitalNodes Independent Set problem on paths in O(kn) time. In fa
t, in thegeneral time bound O(nk2) for trees, the fa
tor k2 o

urs due to the presen
eof verti
es with more than one 
hild. This observation implies further that thealgorithm proposed in Theorem 6 solves Min Node Blo
ker IndependentSet on paths in O(n2 log log n) time.4.2 Cy
lesTheorem 7. k Most Vital Nodes Independent Set is polynomial on 
y-
les. On 
y
les of order n the algorithm runs in O(kn2) time, for any k ≥ 1.Proof. Let S∗ = {v1, . . . , vr} ⊂ V be a maximum-weight independent set of agiven 
y
le C = (V, E). An optimal solution V ′ ⊂ V of k Most Vital NodesIndependent Set must 
ontain at least one node of S∗, sin
e otherwise α(C −
V ′) is not smaller than α(C). Thus, for ea
h vj ∈ S∗, j = 1, . . . , r, we determinethe k − 1 further nodes to remove in the resulting path as follows. We delete vjfrom C and determine a maximum-weight independent set in the resulting path
C−vj by applying the algorithm given in Theorem 5 in order to �nd an optimalsolution R∗

j ⊂ V \ {vj} of k− 1 Most Vital Nodes Independent Set on thepath C−vj . Then, an optimal solution for k Most Vital Nodes IndependentSet on C is R∗
ℓ ∪ {vℓ} su
h that α(C − vℓ −R∗

ℓ ) = min1≤j≤r α(C − vj − R∗
j ). Ifthe root is 
hosen to be an endpoint of the path, the 
omplexity of the algorithmgiven in Theorem 5 for path C−vj is O(kn). Sin
e |S∗| ≤ n, in this way k MostVital Nodes Independent Set is solved in O(kn2). 2Theorem 8. Min Node Blo
ker Independent Set is polynomial on 
y
les.On 
y
les of order n the algorithm runs in O(n3 log log n) time.Proof. The theorem follows from Theorem 7 and Theorem 1. 24.3 Graphs of bounded treewidthA tree de
omposition of a graph G = (V, E) without isolated verti
es is a pair

(T,X ) where



Complexity of most vital nodes for Independent Set 11� T = (X, F ) is a tree graph with a set X = {x1, . . . , xm} of nodes and a set
F of lines ;� X = {X1, . . . , Xm} is a set system over V (i.e., over the vertex set of G),where ea
h Xq is asso
iated with node xq of T ;� ea
h edge vivj ∈ E of G is 
ontained in at least one Xq for some 1 ≤ q ≤ m;� for any vi ∈ V , if vi ∈ Xq′ and vi ∈ Xq′′ , then vi ∈ Xq for all q su
h that xqlies on the xq′�xq′′ path in T .The width of (T,X ) is max

1≤q≤m
|Xq|−1, and the treewidth of G, denoted by tw(G),is the smallest integer t for whi
h G admits a tree de
omposition of width t. Forunde�ned details on tree de
omposition we refer to [9℄.Theorem 9. k Most Vital Nodes Independent Set is polynomial on boundedtreewidth graphs. On graphs of order n, the algorithm runs in O(nk2) time forany k ≥ 1.Due to spa
e limitation, the proof of this result is omitted and will appearin the extended version of the paper.Theorem 10. Min Node Blo
ker Independent Set is polynomial on boundedtreewidth graphs. On graphs of order n the algorithm runs in O(n3 log log n)time.Proof. The result follows from Theorem 9 and Theorem 1. 24.4 CographsTo ea
h 
ograph G with n verti
es, we 
an asso
iate a rooted tree T , 
alled the
otree of G. Leaves of T 
orrespond to verti
es of the graph G and internal nodesof T are labeled with either `∪' (union-node) or `×' (join-node). A subtree rootedat node `∪' 
orresponds to the union of the subgraphs de�ned by the 
hildrenof that node, and a subtree rooted at node `×' 
orresponds to the join of thesubgraphs de�ned by the 
hildren of that node; that is, we add an edge betweenevery two verti
es 
orresponding to leaves in di�erent subtrees. Cographs 
an bere
ognized in linear time and the 
otree representation 
an be obtained e�
iently[4, 6℄. Moreover, this 
otree 
an easily be transformed in linear time to a binary
otree with O(n) nodes.Theorem 11. k Most Vital Nodes Independent Set is polynomial on
ographs. On 
ographs of order n, the algorithm runs in O(nk2) time, for any

k ≥ 1.Proof. Consider a 
ograph G with n verti
es v1, . . . , vn. Given a binary 
otreerepresentation T of G, we show in the following how to solve the k Most VitalNodes Independent Set using dynami
 programming.Let x1, . . . , xt be the nodes of T where xr is its root and t is in O(n). For
i = 1, . . . , t, denote by Ti the subtree rooted at xi, Gi the subgraph indu
ed bythe verti
es 
orresponding to the leaves of Ti, and Vi these verti
es.
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ursion. We asso
iate a (k + 1)-ve
tor to ea
h node xi of T , i = 1, . . . , t.In the following, a (k + 1)-ve
tor is simply 
all a ve
tor. For ea
h i and ea
h
j = 0, 1, . . . , k, we 
ompute zi(j) that is the minimum weight of a maximumindependent set on Gi where exa
tly j verti
es are removed from Gi. Theseve
tors are 
omputed �bottom-up� in the 
otree. So, we start by 
omputingve
tors of leaves and after that the ve
tor of an internal node if the ve
tors ofits two 
hildren are already 
omputed.Given a node xi of the 
otree, the 
orresponding ve
tor is obtained as follows:� If xi is a union-node with two 
hildren xℓ and xr, we have no edges be-tween Gℓ and Gr. Then the maximum independent set in Gi is the unionof those in Gℓ and Gr. Thus, sin
e we want to �nd a maximum-weightindependent set as small as possible, the best 
hoi
e is given by zi(j) =

minj1+j2=j (zℓ(j1) + zr(j2)).� If xi is a join-node with two 
hildren xℓ and xr, every vertex in Vℓ is adja
entto every vertex in Vr. Then ea
h independent set in Gi is entirely 
ontainedeither in Gℓ or in Gr. So, zi(j) = minj1+j2=j (max(zℓ(j1), zr(j2))).� If xi is a leaf then zi(0) = wi, zi(1) = 0, and zi(j) = NIL for j = 2, . . . , kwhi
h means that the latter 
on�gurations are infeasible. In the re
ursivestep, terms with value NIL on the right-hand side are negle
ted, ex
ept whenall terms are the same, and in this 
ase we de�ne zi(j) = NIL, too.Finding an optimal solution. An optimal solution is obtained at the root xr of Tand its weight is equal to zr(k). Moreover, an optimal set of k removed verti
es
an be 
omputed step by step in the re
ursion. Indeed, let S−
i (j) be the subsetof j removed verti
es in Gi. For a leaf xi we have S−

i (0) = ∅, S−
i (1) = {vi} and

S−
i (j) = ∅ for j = 2, . . . , k. For a union-node or a join-node xi with two 
hildren

xℓ and xr, re
ursion yields S−
i (j) = S−

ℓ (j∗1 ) ∪ S−
r (j∗2 ) where j∗1 and j∗2 are theindi
es that realize the minimum for zi(j).Time analysis. For k Most Vital Nodes Independent Set , ve
tors are
omputed in O(k) for ea
h leaf and in O(k2) for ea
h union-node and ea
h join-node. Sin
e t = O(n), the algorithm runs in O(nk2). 2Theorem 12. Min Node Blo
ker Independent Set is polynomial on 
ographs.On 
ographs of order n, the algorithm runs in O(n3 log log n) time.Proof. The theorem follows from Theorem 11 and Theorem 1. 25 Con
lusionIn this paper we studied the 
omplexity of the k most vital nodes and minnode blo
ker versions of the maximum-weight independent set problem. Whilemaximum-weight independent set is polynomial on bipartite graphs, the k mostvital nodes and min node blo
ker versions be
ome NP-hard. Nevertheless the un-weighted versions remain polynomial on bipartite graphs. In a graph, a maximum-weight independent set is the 
omplementary set of a minimum-weight vertex
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over. In sharp 
ontrast to this, however, 
on
erning the k most vital nodes ormin node blo
ker versions an optimum solution for maximum-weight indepen-dent set may be substantially di�erent from an optimum solution for minimum-weight vertex 
over. Our results on the latter will be in
luded in an extendedpaper. We show in this paper that the k most vital nodes version has no ptas.An interesting open question would be to establish other positive and negativeresults 
on
erning the approximability of these versions. In parti
ular it remainsopen to de
ide weather min node blo
ker on bipartite graphs has a ptas.Another interesting perspe
tive is to study the 
omplexity of the k mostvital nodes and min node blo
ker versions of the maximum-weight independentset problem for graphs of bounded 
liquewidth and graphs of bounded NLC-width, that generalize 
ographs. Moreover, the study of the 
omplexity and theapproximation of these versions for further 
lasses of graphs for whi
h maximum-weight independent set and minimum-weight vertex 
over are polynomial is alsoof interest.Referen
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