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2 Cristina Bazgan, Sonia Toubaline, and Zsolt Tuzavalue. In the literature this problem is referred to as the min node/edge blokerproblem.The problems of k most vital nodes/edges and min node/edge bloker havebeen studied for various problems, inluding shortest path, spanning tree, max-imum �ow, assignment, and maximum mathing. The k most vital edges prob-lem with respet to shortest path was proved NP-hard [1℄. Later, k most vi-tal edges/nodes shortest path (and min node/edge bloker shortest path) wereproved not 2-approximable (not 1.36-approximable, respetively) if P6= NP [8℄.For spanning tree, k most vital edges is NP-hard [5℄ and O(log k)-approximable[5℄ and randomized 2-approximable [15℄. In [17℄ it is proved that k most vitaledges maximum �ow is NP-hard. Also k most vital edges and min edge blokerassignment are proved NP-hard and not 2-approximable (not 1.36-approximable,respetively) if P6=NP [2℄. For maximum mathing, min edge bloker is NP-hardeven for bipartite graphs [16℄, but polynomial for grids and trees [14℄.In this paper, we are interested in determining a subset of k verties ofthe graph whose deletion auses the largest derease in the maximum weightof an independent set. This problem is referred to as k Most Vital NodesIndependent Set. We also onsider the omplementary version of this problem,where given a threshold, we have to determine a subset of verties of minimumardinality that has to be removed suh that in the resulting graph the maximumweight of an independent set is at most this threshold. This problem is referredto as Min Node Bloker Independent Set.In Setion 3 we onsider bipartite graphs. It turns out that a substantialjump in omplexity ours between unweighted and weighted graphs for theseproblems. More preisely we show that the unweighted versions are polynomialwhile the weighted versions are NP-hard and the most vital nodes problem evenhas no ptas, unless P=NP. In Setion 4 we deal with graphs with weights ontheir verties, whih have either a tree-like struture or a representation assoi-ated with trees. These inlude trees themselves, yles, more generally graphs ofbounded treewidth, and ographs (graphs ontaining no indued P4). For theselasses we design polynomial-time algorithms for the problems mentioned above.In fat, trees and yles have treewidth 1 and 2, respetively, therefore ourgeneral algorithm for bounded treewidth works for the former lasses, too. Nev-ertheless, the algorithms on trees and yles are simpler and this is why weinlude them here. It should be noted further that for k �xed, there are onlypolynomially many subsets of k removable verties, therefore k Most VitalNodes Independent Set is solvable e�iently on every graph lass where thelargest independent set is tratable. On the other hand if k → ∞ then a formulaexpressing the present problems in seond-order monadi logi would have un-bounded length. Consequently, the general approah to linear-time algorithmsvia MSOL is not appliable here. This fat is relevant for both treewidth andliquewidth.



Complexity of most vital nodes for Independent Set 32 PreliminariesLet G = (V, E) be an undireted graph, with V = {v1, . . . , vn}, where eahvertex vi has a weight wi. For an edge vivj ∈ E, we ould write vi, vj ∈ e andif vi, vj ∈ V ′ then we onsider that e ⊂ V ′. When removing a set V ′ of vertiesfrom G, let us denote the remaining graph by G − V ′. If H is a subgraph of Gthen V (H) denotes the vertex set of H . Moreover, for a subset V ′ of vertiesfrom G, the subgraph indued by V ′ is denoted by G[V ′]. A maximum-weightindependent set of G is a subset of verties of maximum total weight where anytwo verties are nonadjaent. A minimum-weight vertex over of G is a subsetof verties of minimum total weight where every edge of G has at least onevertex in the set. We denote by α(G) the maximum weight of an independentset and by τ(G) the minimum weight of a vertex over. Moreover, α(k) representsthe minimum of α(G − V ′) after removing any set of verties V ′ of size k. Amathing is a set of mutually vertex-disjoint edges. The largest number of edgesin a mathing is denoted by ν(G).In this paper we are interested in the omplexity of the following problems.
k Most Vital Nodes Independent SetInput: An undireted graph G = (V, E) where eah vertex vi has a weight wi,and an integer k.Output: A subset V ′ ⊆ V of size k suh that the maximum weight α(G − V ′)of an independent set in G − V ′ is minimum.Min Node Bloker Independent SetInput: An undireted graph G = (V, E) where eah vertex vi has a weight wi,and an integer U .Output: A subset V ′ ⊆ V of minimum ardinality suh that the maximumweight α(G − V ′) of an independent set in G − V ′ is at most U .Remark 1. The exat versions of k Most Vital Nodes Independent Setand Min Node Bloker Independent Set are polynomial-time equivalent.Indeed, if an algorithm Ak solves k Most Vital Nodes Independent Setfor all 1 ≤ k ≤ n, then we an run Ak for k = 1, . . . , n and hoose the smallest kyielding optimum at most U . Conversely, if an algorithm BU solves Min NodeBloker Independent Set with any bound U , we an apply binary searhto loate the smallest U that requires the removal of at most k verties.Theorem 1. If there exists an algorithm that solves the k most vital nodes ver-sion of an optimization problem P on graphs with n verties in O(t) time, thenthe min node bloker version of P an be solved in O(t log log n) time.Proof. If the value of an optimum solution is at most U then the optimum sizeis 0. Otherwise, we ombine the algorithm for the k most vital nodes versionwith an aelerated version of approximate binary searh. On the size k of a minnode bloker we maintain a lower bound ℓ and an upper bound u, initialized to
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ℓ0 = 1 and u0 = n. Instead of using a standard binary searh with v = ℓ+u

2
, weiteratively set v =

√
ℓu, as suggested in [7℄. More preisely, although omputingthe exat value √

ℓu an be time onsuming, it is shown in [7℄ that an approxi-mate value of √ℓu an be omputed without a�eting the time omplexity. Thenumber of tests for obtaining a lower bound ℓ and an upper bound u suh that
u = ℓ + 1 is O(log log u0

ℓ0
) (see [7℄ for more details), whih means O(log log n)iterations in our ase. Sine one iteration takes O(t), �nding the smallest k forwhih the solution has value at most U takes total running time O(t log log n).2For the proof onerning the non-existene of a ptas (polynomial-time ap-proximation sheme) we shall use an approximation-preserving redution, alled

L-redution, whih was introdued by Papadimitriou and Yannakakis in [12℄.Let A and B be two optimization problems. Then A is said to be L-reduible to
B if there are two onstants a, b > 0 suh that1. there exists a funtion, omputable in polynomial time, whih transformseah instane x of A into an instane x′ of B suh that optB(x′) ≤ a·optA(x),2. there exists a funtion, omputable in polynomial time, whih transformseah solution y′ of x′ into a solution y of x suh that |val(x, y)− optA(x)| ≤

b · |val(x′, y′) − optB(x′)|.For us the important property of this redution is that if A is L-reduible to Band A has no ptas then B has no ptas.3 Complexity on bipartite graphsMaximum-weight independent set is polynomial-time solvable on bipartite graphs.We show in this setion that the k most vital nodes or min node bloker versionsbeome NP-hard on bipartite graphs, and most vital nodes has no ptas. Never-theless, these problems remain polynomial-time solvable in the unweighted ase.We �rst prove this latter fat.Theorem 2. k Most Vital Nodes Independent Set and also its omple-mentary problem Min Node Bloker Independent Set are polynomial forunweighted bipartite graphs. Moreover, if a largest mathing and a smallest ver-tex over are given with the input, these problems are solvable in linear time.Proof. Let G = (V, E) be a bipartite input graph on n verties. From K®nig'stheorem [10℄ we know that τ(G) = ν(G) holds; let us denote here their ommonvalue by t. The lassial proof of the equality τ = ν is algorithmi and alsoyields a maximum mathing M = {e1, . . . , et} and a minimum vertex over
X = {v1, . . . , vt} in polynomial time. Moreover, we have α(G) = n − t (knownas a Gallai-type identity) and V \ X is a largest independent set in G. Let usintrodue the further notation R = V \ V (M) and r = |R| = n − 2t; i.e., thenumber and the set of verties not ontained in any of the mathing edges in M .We an show now that these problems are solvable in linear time, as follows.



Complexity of most vital nodes for Independent Set 5
k Most Vital Nodes Independent SetIf k ≤ |R|, we remove any k verties from R. Sine the remaining graph (oforder n − k) still ontains the mathing M of size t, the independene numberannot be larger than n − k − t. It is also lear that α annot be dereased bymore than k if we remove just k verties, hene the solution obtained is optimal.If k > |R|, we remove the entire R and the verties of ⌊(k − r)/2⌋ edgesfrom M , and one further vertex if k − r is odd. This dereases the size of Mby ⌈(k − r)/2⌉ and the independene number by ⌊(k + r)/2⌋, and hene thenew value is ⌈(n − k)/2⌉ (originally we had α(G) = (n + r)/2). This dereaseis optimal, beause after the removal of k verties at least half of the remaining
n − k belong to the same vertex lass.Min Node Bloker Independent SetIf U ≥ n − t, no verties need to be removed. If t ≤ U < n − t, we remove
n − t − U verties of R. If U = t − ℓ where 1 ≤ ℓ ≤ t, we remove the entire Rand the 2ℓ verties of ℓ arbitrarily hosen edges from M . All these hoies areoptimal, as follows from the proof onerning most vital nodes. 2We show in the following that these problems beome NP-hard in the weightedase. The following notion will be of essene.De�nition 1. Let G = (V, E) be an undireted graph. The bipartite inidenegraph of G is the bipartite graph H whose vertex set is V ∪ E and there is anedge in H between v ∈ V and e ∈ E if and only if e is inident to v in G.Theorem 3. k Most Vital Nodes Independent Set andMin Node BlokerIndependent Set are strongly NP-hard even for bipartite graphs.Proof. We �rst prove hardness for k Most Vital Nodes Independent Set.Let G = (V, E) be an instane of the deision problem assoiated to Indepen-dent Set with n verties and m edges, and an integer ℓ; and let H denote thebipartite inidene graph of G. The onstrution of H from G requires lineartime only. Eah vertex of E in H has weight 1 and eah vertex of V in H hasweight n2. Due to this rather unbalaned weighting, the unique maximum-weightindependent set in H is V ; i.e., α(H) = n3.We show in the following that if there is an independent set of size at least
ℓ in G then H ontains a set S of ℓ verties suh that α(H − S) = (n − ℓ)n2,and otherwise removing any subset S of ℓ verties from H , we have α(H −S) ≥
(n−ℓ)n2+1. Sine verties from V have weight n2 and those from E have weight1, in order to have a maximum-weight independent set as small as possible afterremoving a set S of size ℓ, S has to be inluded in V .If G ontains an independent set S of size ℓ, then removing S from the vertexset of H , we obtain a graph whose maximum-weight independent set is V \ S.This set has weight (n − ℓ)n2.If G ontains no independent set of size ℓ, then any S ⊂ V of size ℓ ontainsat least an edge e ∈ E in G, and this e in H is nonadjaent to the entire V \ S.Thus, when we remove any set S of ℓ verties from H , α(H −S) ≥ (n− ℓ)n2 +1.



6 Cristina Bazgan, Sonia Toubaline, and Zsolt TuzaDue to Remark 1, Min Node Bloker Independent Set is also stronglyNP-hard. 2We are going to prove an approximation hardness result, too. In the redu-tion, the following problem will be used.Max k Vertex CoverInput: A graph G = (V, E) with k ≤ |V |.Output: The maximum number of edges in G that an be overed by a subset
V ′ ⊆ V of ardinality k.Max k Vertex Cover-B is the version of Max k Vertex Cover wherethe maximum degree of the graph is at most B.We shall apply the following version of some known results.Lemma 1. For appropriately hosen B, Max n/2 Vertex Cover-B has noptas on graphs G = (V, E) with m = Θ(n) and α(G) = τ(G) = n/2, where
n = |V | and m = |E|, unless P=NP.Proof. An approximation algorithm for Vertex Cover on graphs with τ(G) ≥
|V (G)|/2 is also an approximation algorithm with the same ratio for generalinstanes ofVertex Cover [11℄. Using the APX-hardness ofVertex Cover-B[12℄ and the gap redution from Vertex Cover-B toMax k Vertex Cover-B [13℄ for k ≥ n/2, we onlude that Max k Vertex Cover-B has no ptason graphs with n verties when k ≥ τ(G) ≥ n/2. We an redue this lastproblem to the same problem on instanes with k ≥ τ = n/2 by inserting 2τ −nisolated verties. Moreover, these last instanes are reduible to instanes where
k = 2τ = n/2 by inserting k − τ isolated edges. 2We extrat the key points of the redution in the following lemma on inde-pendent sets.Lemma 2. Let G = (V, E) be a graph with n verties and m edges, and let Hbe the bipartite inidene graph of G. Then the following properties are valid.
(a) Suppose that G has maximum degree at most B, and the weights in H are

wv = B + 1 for all v ∈ V and we = 1 for all e ∈ E. Then, for any
V ′ ⊂ V and any independent set S disjoint from V ′ in H, there exists anindependent set S′ of H suh that w(S′) ≥ w(S) and S′ ∩ V = V \ V ′.Thus, if S′ is maximal, then

S′ = (V \ V ′) ∪ {e ∈ E | e ⊂ V ′}and, in partiular, α(H − V ′) ≥ (B + 1) · (n − |V ′|).
(b) Under the onditions of (a), for any V ′ ⊂ V ∪E with |V ′| < |V | there existsa V ′′ ⊂ V suh that |V ′′| = |V ′| and the maximum weight of an independentset in H − V ′′ is not larger than that in H − V ′. As a onsequene,

α(H − V ′) ≥ α(H − V ′′) = (B + 1) · (n − |V ′|) + |{e ∈ E | e ⊂ V ′′}|.



Complexity of most vital nodes for Independent Set 7Moreover, the set V ′′ an be found e�iently.Proof. (a) If S ontains all verties of V \ V ′, then we have nothing to prove.Otherwise we modify S step by step, keeping it independent and not dereasingits value, until it ontains the entire V \V ′. Hene, assume that v ∈ V is a vertexsuh that v /∈ V ′ ∪ S. If v has no neighbor in S ∩ E, then S ∪ {v} is a properextension. Suppose that this is not the ase; i.e., there is an edge e ∈ E ∩S suhthat v ∈ e. We now modify S to (S \NH(v))∪{v}, where NH(v) denotes the setof verties adjaent to v in H , that is the set of edges inident to v in G. In thisway we have removed at most B neighbors of v from S, eah of weight 1, andinserted v of weight B + 1, hene the total weight of the modi�ed set is at least
w(S). Moreover, the set remains independent beause all neighbors of v havebeen removed. Thus, after |(V \ V ′) \ S| steps, the required set S′ is obtained.
(b) If V ′ ⊂ V , then V ′′ = V ′ is a proper hoie. Hene suppose V ′∩E 6= ∅. Let usintrodue the notation n′ = |V ′∩V |, m′ = |E(G[V ′∩V ])\(V ′∩E)|. By (a) we seethat α(H−V ′) = (B +1) ·(n−n′)+m′ holds. Choose e ∈ V ′∩E and v ∈ V \V ′,and modify V ′ to the set (V ′ \ {e}) ∪ {v}. This keeps ardinality unhanged,while the �rst term (B + 1) · (n − n′) dereases by preisely B + 1. Moreover,sine G has maximum degree at most B, the seond term m′ an inrease byat most B when we insert v into the set, and an further inrease by at most 1when we omit e. Thus, sum does not inrease. Repeatedly eliminating all e ∈ Efrom V ′, the required V ′′ is obtained. Then (a) implies that the independent setof maximum weight in H − V ′′ onsists of all v /∈ V ′′ and all e ⊂ V ′′. 2Theorem 4. k Most Vital Nodes Independent Set has no ptas even forbipartite graphs if P 6= NP .Proof. We prove the non-existene of a ptas for k = n/2, onstruting an L-redution from Max n/2 Vertex Cover-B to n/2 Most Vital Nodes In-dependent Set, where instanes of the former problem are restrited to graphs
G of maximum degree at most B and also satisfying α(G) = τ(G) = n/2.In this ase, let H denote the bipartite inidene graph of the input graph
G = (V, E), the latter having n verties and m edges. The verties of H haveweight wv = B + 1 for all v ∈ V and we = 1 for all e ∈ E.Consider �rst an optimum solution V ′ in G. As τ(G) = n/2 has been as-sumed, opt1 = m holds and V ′ overs all edges of G. Then removing V \ V ′from the vertex set of H , we obtain a graph in whih the maximum weight ofan independent set is ((B +1)/2) ·n, as implied by part (a) of Lemma 2. On theother hand, parts (a) and (b) together yield that after the removal of any n/2verties from H , there always remains an independent set of at least that largeweight, thus

opt2 =
B + 1

2
· n ≤ (B + 1) · opt1,the upper bound being valid sine opt1 ≥ n/2 surely holds by the assumption

τ(G) = n/2.



8 Cristina Bazgan, Sonia Toubaline, and Zsolt TuzaConsider now any subset V ′ of n/2 verties in H , and denote val2 = α(H −
V ′). Now we apply part (b) of Lemma 2 to obtain an appropriate set V ′′ of n/2verties, whih is a subset of V . We view V \ V ′′ as a solution in G and denoteits value by val1. In this way we obtain
val2−opt2 ≥ α(H−V ′′)−opt2 = ((B + 1) · (n − |V ′′|) + |E(G[V ′′])|)− B + 1

2
·n

= |E(G[V ′′])| = opt1 − val1,the last equation being valid beause opt1 = m and E(G[V ′′]) is preisely theset of edges not overed by the verties of V \ V ′′. This ompletes the proof ofthe theorem. 24 Graph lasses related to tree struturesIn this setion we onsider graph lasses representable over tree strutures, andprove that they admit algorithms solving the onsidered problems in polynomialtime. E�ient solvability for the graph lasses in the �rst two subsetions areimplied by the results of the third subsetion, too, but the methods for theformer are simpler.4.1 TreesTheorem 5. k Most Vital Nodes Independent Set is polynomial on trees.On trees of order n the algorithm runs in O(nk2) time, for any k ≥ 1.Proof. Our general approah is to �nd not only a set of k most vital nodes butsimultaneously also the value of a orresponding largest independent set. Forthis purpose we view the input as a rooted tree with an arbitrarily hosen root,and organize omputation aording to a postorder traversal.Consider any tree T with verties v1, . . . , vn. Eah vertex vi an have threepositions in a solution, that we shall denote by marks +,−, 0 as follows:
• `+' means that vi is seleted into an independent set;
• `−' means that vi is seleted for deletion;
• `0' means that vi is none of the above two types.In a solution exatly k marks `−' have to our.The subtree rooted in vi is denoted by Ti. For eah i = 1, . . . , n, eah ∗ ∈

{+,−, 0}, and eah j = 0, 1, . . . , k, a value zi(j, ∗) will be omputed. This zi(j, ∗)represents the minimum ahievable weight of a largest independent set on Tiunder the onditions that exatly j verties are removed from Ti and vi has mark
∗. For the reursive omputation the hildren of vi with degree d will be denotedby vi1 , . . . , vid

. We traverse T in postorder and apply dynami programming.Reursion. If vi is marked `+', then all its hildren must have `−' or `0', sineotherwise two verties seleted for the independent set would be adjaent. More-over, zi(j, ∗) requires that the total number of verties marked `−' should be



Complexity of most vital nodes for Independent Set 9exatly j in Ti. On the other hand, we have one and only one way to make the�nal result as small as possible: deide whih of the verties should be markedwith `−'. One this has been deided, the distribution of `+' and `0' positionsaims at maximizing the total weight of `+'. This leads to the following generalreursions:
zi(j, +) = wi + min

j1,...,jd≥0

j1+...+jd=j

d∑

ℓ=1

min (ziℓ
(jℓ,−), ziℓ

(jℓ, 0)) ,

zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d∑

ℓ=1

min (ziℓ
(jℓ,−), max (ziℓ

(jℓ, +), ziℓ
(jℓ, 0))) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d∑

ℓ=1

min (ziℓ
(jℓ,−), max (ziℓ

(jℓ, +), ziℓ
(jℓ, 0))) ,For a leaf vi we learly have zi(0, +) = wi and zi(1,−) = zi(0, 0) = 0. Further,to indiate that all other ombinations of j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0}are infeasible, we set a dummy symbol zi(j, ∗) = NIL for them. In the reursivestep, terms with value NIL on the right-hand side are negleted, exept when allterms are the same, and in this ase we de�ne zi(j, ∗) = NIL, too.Finding an optimal solution. Assuming that T has root vi0 , after the removalof k properly hosen verties the smallest possible value of α is

min (zi0(k,−), max (zi0(k, +), zi0(k, 0))) .In fat, inserting a new vertex v0 with weight w0 = 0 as new root and parentfor vi0 does not hange the optimum, and then we would have z0(k, +) ≤ opt =
z0(k, 0) ≤ z0(k,−). A set of k most vital nodes an also be determined in O(n)additional steps if we make a little more administration. At the reursive stepfor eah zi(j, ∗) we register for eah edge viviℓ

the orresponding value of jℓ inthe optimal distribution (j1, . . . , jd) for j and also the mark ∗ ∈ {+,−, 0} of
iℓ whih gave the optimum for vi. One these data are available for all vi andall pairs (j, ∗), we an traverse T in preorder and selet the verties having `−'mark for the most vital set.E�ient implementation. The key point is to �nd in polynomial time a bestdistribution (j1, . . . , jd) for the `max' and `min' funtions ating on the sums.This an be done, despite that the number of possibilities an even be exponentialif d is proportional to n.If d = 2 then we have at most j + 1 ombinations of feasible pairs j1, j2.Hene, optimal hoie an be made in O(k) steps for any one partiular j, andin O(k2) steps for all 0 ≤ j ≤ k. If d is larger, we an split the hildren of vi intotwo sets of (nearly) equal size, {vℓ | 1 ≤ ℓ ≤ ⌊d/2⌋} and {vℓ | ⌊d/2⌋+1 ≤ ℓ ≤ d},make all omputation in them separately, and then ombine the results for vi.(Splitting orresponds to inserting a `supernode' above eah of the two sets,



10 Cristina Bazgan, Sonia Toubaline, and Zsolt Tuzawhih has weight zero and beomes a virtual hild of vi.) This requires d − 1rounds for vi. Sine T is a tree, those d − 1 sum up to n − 2, thus the overallrunning time is O((k2 + 1)n), and never exeeds O(n3). (Here `+1' is needed for
k = 0.) Note that there are no `hidden large onstants' in the `O' notation. 2Theorem 6. Min Node Bloker Independent Set is polynomial on trees.On trees with n verties the algorithm runs in O(n3 log log n) time.Proof. The above algorithm in one iteration for any 1 ≤ v ≤ n runs in O(v2n) =
O(n3) time. Hene, using Theorem 1, �nding the smallest k for whih the solutionhas value at most U takes total running time O(n3 log log n). 2Remark 2. The algorithm proposed in Theorem 5 solves the k Most VitalNodes Independent Set problem on paths in O(kn) time. In fat, in thegeneral time bound O(nk2) for trees, the fator k2 ours due to the preseneof verties with more than one hild. This observation implies further that thealgorithm proposed in Theorem 6 solves Min Node Bloker IndependentSet on paths in O(n2 log log n) time.4.2 CylesTheorem 7. k Most Vital Nodes Independent Set is polynomial on y-les. On yles of order n the algorithm runs in O(kn2) time, for any k ≥ 1.Proof. Let S∗ = {v1, . . . , vr} ⊂ V be a maximum-weight independent set of agiven yle C = (V, E). An optimal solution V ′ ⊂ V of k Most Vital NodesIndependent Set must ontain at least one node of S∗, sine otherwise α(C −
V ′) is not smaller than α(C). Thus, for eah vj ∈ S∗, j = 1, . . . , r, we determinethe k − 1 further nodes to remove in the resulting path as follows. We delete vjfrom C and determine a maximum-weight independent set in the resulting path
C−vj by applying the algorithm given in Theorem 5 in order to �nd an optimalsolution R∗

j ⊂ V \ {vj} of k− 1 Most Vital Nodes Independent Set on thepath C−vj . Then, an optimal solution for k Most Vital Nodes IndependentSet on C is R∗
ℓ ∪ {vℓ} suh that α(C − vℓ −R∗

ℓ ) = min1≤j≤r α(C − vj − R∗
j ). Ifthe root is hosen to be an endpoint of the path, the omplexity of the algorithmgiven in Theorem 5 for path C−vj is O(kn). Sine |S∗| ≤ n, in this way k MostVital Nodes Independent Set is solved in O(kn2). 2Theorem 8. Min Node Bloker Independent Set is polynomial on yles.On yles of order n the algorithm runs in O(n3 log log n) time.Proof. The theorem follows from Theorem 7 and Theorem 1. 24.3 Graphs of bounded treewidthA tree deomposition of a graph G = (V, E) without isolated verties is a pair

(T,X ) where



Complexity of most vital nodes for Independent Set 11� T = (X, F ) is a tree graph with a set X = {x1, . . . , xm} of nodes and a set
F of lines ;� X = {X1, . . . , Xm} is a set system over V (i.e., over the vertex set of G),where eah Xq is assoiated with node xq of T ;� eah edge vivj ∈ E of G is ontained in at least one Xq for some 1 ≤ q ≤ m;� for any vi ∈ V , if vi ∈ Xq′ and vi ∈ Xq′′ , then vi ∈ Xq for all q suh that xqlies on the xq′�xq′′ path in T .The width of (T,X ) is max

1≤q≤m
|Xq|−1, and the treewidth of G, denoted by tw(G),is the smallest integer t for whih G admits a tree deomposition of width t. Forunde�ned details on tree deomposition we refer to [9℄.Theorem 9. k Most Vital Nodes Independent Set is polynomial on boundedtreewidth graphs. On graphs of order n, the algorithm runs in O(nk2) time forany k ≥ 1.Due to spae limitation, the proof of this result is omitted and will appearin the extended version of the paper.Theorem 10. Min Node Bloker Independent Set is polynomial on boundedtreewidth graphs. On graphs of order n the algorithm runs in O(n3 log log n)time.Proof. The result follows from Theorem 9 and Theorem 1. 24.4 CographsTo eah ograph G with n verties, we an assoiate a rooted tree T , alled theotree of G. Leaves of T orrespond to verties of the graph G and internal nodesof T are labeled with either `∪' (union-node) or `×' (join-node). A subtree rootedat node `∪' orresponds to the union of the subgraphs de�ned by the hildrenof that node, and a subtree rooted at node `×' orresponds to the join of thesubgraphs de�ned by the hildren of that node; that is, we add an edge betweenevery two verties orresponding to leaves in di�erent subtrees. Cographs an bereognized in linear time and the otree representation an be obtained e�iently[4, 6℄. Moreover, this otree an easily be transformed in linear time to a binaryotree with O(n) nodes.Theorem 11. k Most Vital Nodes Independent Set is polynomial onographs. On ographs of order n, the algorithm runs in O(nk2) time, for any

k ≥ 1.Proof. Consider a ograph G with n verties v1, . . . , vn. Given a binary otreerepresentation T of G, we show in the following how to solve the k Most VitalNodes Independent Set using dynami programming.Let x1, . . . , xt be the nodes of T where xr is its root and t is in O(n). For
i = 1, . . . , t, denote by Ti the subtree rooted at xi, Gi the subgraph indued bythe verties orresponding to the leaves of Ti, and Vi these verties.



12 Cristina Bazgan, Sonia Toubaline, and Zsolt TuzaReursion. We assoiate a (k + 1)-vetor to eah node xi of T , i = 1, . . . , t.In the following, a (k + 1)-vetor is simply all a vetor. For eah i and eah
j = 0, 1, . . . , k, we ompute zi(j) that is the minimum weight of a maximumindependent set on Gi where exatly j verties are removed from Gi. Thesevetors are omputed �bottom-up� in the otree. So, we start by omputingvetors of leaves and after that the vetor of an internal node if the vetors ofits two hildren are already omputed.Given a node xi of the otree, the orresponding vetor is obtained as follows:� If xi is a union-node with two hildren xℓ and xr, we have no edges be-tween Gℓ and Gr. Then the maximum independent set in Gi is the unionof those in Gℓ and Gr. Thus, sine we want to �nd a maximum-weightindependent set as small as possible, the best hoie is given by zi(j) =

minj1+j2=j (zℓ(j1) + zr(j2)).� If xi is a join-node with two hildren xℓ and xr, every vertex in Vℓ is adjaentto every vertex in Vr. Then eah independent set in Gi is entirely ontainedeither in Gℓ or in Gr. So, zi(j) = minj1+j2=j (max(zℓ(j1), zr(j2))).� If xi is a leaf then zi(0) = wi, zi(1) = 0, and zi(j) = NIL for j = 2, . . . , kwhih means that the latter on�gurations are infeasible. In the reursivestep, terms with value NIL on the right-hand side are negleted, exept whenall terms are the same, and in this ase we de�ne zi(j) = NIL, too.Finding an optimal solution. An optimal solution is obtained at the root xr of Tand its weight is equal to zr(k). Moreover, an optimal set of k removed vertiesan be omputed step by step in the reursion. Indeed, let S−
i (j) be the subsetof j removed verties in Gi. For a leaf xi we have S−

i (0) = ∅, S−
i (1) = {vi} and

S−
i (j) = ∅ for j = 2, . . . , k. For a union-node or a join-node xi with two hildren

xℓ and xr, reursion yields S−
i (j) = S−

ℓ (j∗1 ) ∪ S−
r (j∗2 ) where j∗1 and j∗2 are theindies that realize the minimum for zi(j).Time analysis. For k Most Vital Nodes Independent Set , vetors areomputed in O(k) for eah leaf and in O(k2) for eah union-node and eah join-node. Sine t = O(n), the algorithm runs in O(nk2). 2Theorem 12. Min Node Bloker Independent Set is polynomial on ographs.On ographs of order n, the algorithm runs in O(n3 log log n) time.Proof. The theorem follows from Theorem 11 and Theorem 1. 25 ConlusionIn this paper we studied the omplexity of the k most vital nodes and minnode bloker versions of the maximum-weight independent set problem. Whilemaximum-weight independent set is polynomial on bipartite graphs, the k mostvital nodes and min node bloker versions beome NP-hard. Nevertheless the un-weighted versions remain polynomial on bipartite graphs. In a graph, a maximum-weight independent set is the omplementary set of a minimum-weight vertex
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