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Abstract. Given an undirected graph with weights on its vertices, the
k most vital nodes independent set problem consists of determining a
set of k vertices whose removal results in the greatest decrease in the
maximum weight of independent sets. We also consider the complemen-
tary problem, minimum node blocker independent set that consists of
removing a subset of vertices of minimum size such that the maximum
weight of independent sets in the remaining graph is at most a specified
value. We show that these problems are NP-hard on bipartite graphs but
polynomial-time solvable on unweighted bipartite graphs. Furthermore,
these problems are polynomial also on graphs of bounded treewidth and
cographs. A result on the non-existence of a ptas is presented, too.
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1 Introduction

In many applications involving the use of communication or transportation net-
works, we often need to identify vulnerable or critical infrastructures. By critical
infrastructure we mean a set of nodes/lines whose damage causes the largest
increase in the cost within the network. Modeling the network by a weighted
graph, identifying a vulnerable infrastructure amounts to finding a subset of
vertices/edges of a given size whose removal from the graph causes the largest
inconvenience to a particular property of the graph in question. In the literature
this problem is referred to as the k most vital nodes/edges problem. A com-
plementary problem consists of determining a set of vertices/edges of minimum
size whose removal involves that the cost within the network is at most a given
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value. In the literature this problem is referred to as the min node/edge blocker
problem.

The problems of k& most vital nodes/edges and min node/edge blocker have
been studied for various problems, including shortest path, spanning tree, max-
imum flow, assignment, and maximum matching. The k£ most vital edges prob-
lem with respect to shortest path was proved NP-hard [1]. Later, k& most vi-
tal edges/nodes shortest path (and min node/edge blocker shortest path) were
proved not 2-approximable (not 1.36-approximable, respectively) if P# NP [§].
For spanning tree, k most vital edges is NP-hard [5] and O(log k)-approximable
[5] and randomized 2-approximable [15]. In [17] it is proved that k& most vital
edges maximum flow is NP-hard. Also k£ most vital edges and min edge blocker
assignment are proved NP-hard and not 2-approximable (not 1.36-approximable,
respectively) if P#NP [2]. For maximum matching, min edge blocker is NP-hard
even for bipartite graphs [16], but polynomial for grids and trees [14].

In this paper, we are interested in determining a subset of k wertices of
the graph whose deletion causes the largest decrease in the maximum weight
of an independent set. This problem is referred to as k MOST VITAL NODES
INDEPENDENT SET. We also consider the complementary version of this problem,
where given a threshold, we have to determine a subset of vertices of minimum
cardinality that has to be removed such that in the resulting graph the maximum
weight of an independent set is at most this threshold. This problem is referred
to as MIN NODE BLOCKER INDEPENDENT SET.

In Section 3 we consider bipartite graphs. It turns out that a substantial
jump in complexity occurs between unweighted and weighted graphs for these
problems. More precisely we show that the unweighted versions are polynomial
while the weighted versions are NP-hard and the most vital nodes problem even
has no ptas, unless P=NP. In Section 4 we deal with graphs with weights on
their vertices, which have either a tree-like structure or a representation associ-
ated with trees. These include trees themselves, cycles, more generally graphs of
bounded treewidth, and cographs (graphs containing no induced P;). For these
classes we design polynomial-time algorithms for the problems mentioned above.

In fact, trees and cycles have treewidth 1 and 2, respectively, therefore our
general algorithm for bounded treewidth works for the former classes, too. Nev-
ertheless, the algorithms on trees and cycles are simpler and this is why we
include them here. It should be noted further that for k fixed, there are only
polynomially many subsets of k£ removable vertices, therefore £ MoOST VITAL
NoODES INDEPENDENT SET is solvable efficiently on every graph class where the
largest independent set is tractable. On the other hand if k£ — oo then a formula
expressing the present problems in second-order monadic logic would have un-
bounded length. Consequently, the general approach to linear-time algorithms
via MSOL is not applicable here. This fact is relevant for both treewidth and
cliquewidth.
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2 Preliminaries

Let G = (V,E) be an undirected graph, with V' = {v1,...,v,}, where each
vertex v; has a weight w;. For an edge v;v; € F, we could write v;,v; € e and
if v;,v; € V' then we consider that e C V'. When removing a set V' of vertices
from G, let us denote the remaining graph by G — V'. If H is a subgraph of G
then V(H) denotes the vertex set of H. Moreover, for a subset V' of vertices
from G, the subgraph induced by V' is denoted by G[V']. A maximum-weight
independent set of G is a subset of vertices of maximum total weight where any
two vertices are nonadjacent. A minimum-weight vertex cover of G is a subset
of vertices of minimum total weight where every edge of G has at least one
vertex in the set. We denote by a(G) the maximum weight of an independent
set and by 7(G) the minimum weight of a vertex cover. Moreover, a(k) represents
the minimum of (G — V') after removing any set of vertices V' of size k. A
matching is a set of mutually vertex-disjoint edges. The largest number of edges
in a matching is denoted by v(G).

In this paper we are interested in the complexity of the following problems.

k MosT VITAL NODES INDEPENDENT SET

Input: An undirected graph G = (V, E) where each vertex v; has a weight w;,
and an integer k.

Output: A subset V/ C V of size k such that the maximum weight o(G — V')
of an independent set in G — V' is minimum.

MIN NODE BLOCKER INDEPENDENT SET

Input: An undirected graph G = (V, E) where each vertex v; has a weight w;,
and an integer U.

Output: A subset V/ C V of minimum cardinality such that the maximum
weight (G — V') of an independent set in G — V' is at most U.

Remark 1. The exact versions of & MOST VITAL NODES INDEPENDENT SET
and MIN NODE BLOCKER INDEPENDENT SET are polynomial-time equivalent.
Indeed, if an algorithm Ay solves & MOST VITAL NODES INDEPENDENT SET
for all 1 < k < n, then we can run Ay for £k = 1,...,n and choose the smallest k
yielding optimum at most U. Conversely, if an algorithm By solves MIN NODE
BLOCKER INDEPENDENT SET with any bound U, we can apply binary search
to locate the smallest U that requires the removal of at most k vertices.

Theorem 1. If there exists an algorithm that solves the k most vital nodes ver-
sion of an optimization problem P on graphs with n vertices in O(t) time, then
the min node blocker version of P can be solved in O(tloglogn) time.

Proof. If the value of an optimum solution is at most U then the optimum size
is 0. Otherwise, we combine the algorithm for the £ most vital nodes version
with an accelerated version of approximate binary search. On the size k of a min
node blocker we maintain a lower bound ¢ and an upper bound wu, initialized to
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o =1 and up = n. Instead of using a standard binary search with v = “T“,

iteratively set v = v/fu, as suggested in [7]. More precisely, although computing
the exact value v//u can be time consuming, it is shown in [7] that an approxi-
mate value of v/fu can be computed without affecting the time complexity. The
number of tests for obtaining a lower bound ¢ and an upper bound u such that
u = {+1is O(loglog 72) (see [7] for more details), which means O(loglogn)
iterations in our case. Since one iteration takes O(t), finding the smallest & for
which the solution has value at most U takes total running time O(tloglogn).0

we

For the proof concerning the non-existence of a ptas (polynomial-time ap-
proximation scheme) we shall use an approximation-preserving reduction, called
L-reduction, which was introduced by Papadimitriou and Yannakakis in [12].
Let A and B be two optimization problems. Then A is said to be L-reducible to
B if there are two constants a,b > 0 such that

1. there exists a function, computable in polynomial time, which transforms
each instance z of A into an instance 2’ of B such that optp(z') < a-opta(z),

2. there exists a function, computable in polynomial time, which transforms
each solution y’ of 2’ into a solution y of x such that |val(z,y) — opta(x)| <
b |val(z',y") — optp(z')|.

For us the important property of this reduction is that if A is L-reducible to B
and A has no ptas then B has no ptas.

3 Complexity on bipartite graphs

Maximum-weight independent set is polynomial-time solvable on bipartite graphs.
We show in this section that the & most vital nodes or min node blocker versions

become NP-hard on bipartite graphs, and most vital nodes has no ptas. Never-

theless, these problems remain polynomial-time solvable in the unweighted case.

We first prove this latter fact.

Theorem 2. & M0OST VITAL NODES INDEPENDENT SET and also its comple-
mentary problem MIN NODE BLOCKER INDEPENDENT SET are polynomial for
uwnweighted bipartite graphs. Moreover, if a largest matching and a smallest ver-
tex cover are given with the input, these problems are solvable in linear time.

Proof. Let G = (V, E) be a bipartite input graph on n vertices. From Ké&nig’s
theorem [10] we know that 7(G) = v(G) holds; let us denote here their common
value by t. The classical proof of the equality 7 = v is algorithmic and also
yields a maximum matching M = {ej,...,e;} and a minimum vertex cover
X ={v1,...,v:} in polynomial time. Moreover, we have a(G) = n — t (known
as a Gallai-type identity) and V' \ X is a largest independent set in G. Let us
introduce the further notation R = V \ V(M) and r = |R| = n — 2t; i.e., the
number and the set of vertices not contained in any of the matching edges in M.

We can show now that these problems are solvable in linear time, as follows.
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k MoST VITAL NODES INDEPENDENT SET

If £ < |R|, we remove any k vertices from R. Since the remaining graph (of
order n — k) still contains the matching M of size ¢, the independence number
cannot be larger than n — k — ¢. It is also clear that o cannot be decreased by
more than k if we remove just k vertices, hence the solution obtained is optimal.

If & > |R|, we remove the entire R and the vertices of [(k — r)/2| edges
from M, and one further vertex if & — r is odd. This decreases the size of M
by [(k —r)/2] and the independence number by |(k + r)/2], and hence the
new value is [(n — k)/2] (originally we had a(G) = (n + r)/2). This decrease
is optimal, because after the removal of k vertices at least half of the remaining
n — k belong to the same vertex class.

MIN NODE BLOCKER INDEPENDENT SET

If U > n —t, no vertices need to be removed. If t < U < n — t, we remove
n —t — U vertices of R. If U =t — ¢ where 1 < ¢ < t, we remove the entire R
and the 2/ vertices of £ arbitrarily chosen edges from M. All these choices are
optimal, as follows from the proof concerning most vital nodes. ]

We show in the following that these problems become NP-hard in the weighted
case. The following notion will be of essence.

Definition 1. Let G = (V, E) be an undirected graph. The bipartite incidence
graph of G is the bipartite graph H whose vertex set is V U E and there is an
edge in H between v € V and e € E if and only if e is incident to v in G.

Theorem 3. £ MosT VITAL NODES INDEPENDENT SET and MIN NODE BLOCKER
INDEPENDENT SET are strongly NP-hard even for bipartite graphs.

Proof. We first prove hardness for £k MosT VITAL NODES INDEPENDENT SET.
Let G = (V, E) be an instance of the decision problem associated to INDEPEN-
DENT SET with n vertices and m edges, and an integer ¢; and let H denote the
bipartite incidence graph of G. The construction of H from G requires linear
time only. Each vertex of F in H has weight 1 and each vertex of V' in H has
weight n2. Due to this rather unbalanced weighting, the unique maximum-weight
independent set in H is V; i.e., a(H) = n®.

We show in the following that if there is an independent set of size at least
¢ in G then H contains a set S of £ vertices such that a(H — S) = (n — £)n?,
and otherwise removing any subset S of ¢ vertices from H, we have o(H — S) >
(n—f)n?+1. Since vertices from V have weight n? and those from E have weight
1, in order to have a maximum-weight independent set as small as possible after
removing a set S of size £, S has to be included in V.

If G contains an independent set .S of size ¢, then removing S from the vertex
set of H, we obtain a graph whose maximum-weight independent set is V'\ S.
This set has weight (n — ¢)n?.

If G contains no independent set of size ¢, then any S C V of size ¢ contains
at least an edge e € F in G, and this e in H is nonadjacent to the entire V'\ S.
Thus, when we remove any set S of ¢ vertices from H, a(H —S) > (n—£)n?+1.
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Due to Remark 1, MIN NODE BLOCKER INDEPENDENT SET is also strongly
NP-hard. O

We are going to prove an approximation hardness result, too. In the reduc-
tion, the following problem will be used.

MAX k VERTEX COVER

Input: A graph G = (V, E) with k& < |V].

Output: The maximum number of edges in G that can be covered by a subset
V' C V of cardinality k.

MAX k VERTEX COVER-B is the version of MAX & VERTEX COVER where
the maximum degree of the graph is at most B.

We shall apply the following version of some known results.

Lemma 1. For appropriately chosen B, MAX n/2 VERTEX COVER-B has no
ptas on graphs G = (V, E) with m = O(n) and o(G) = 7(G) = n/2, where
n = |V| and m = |E|, unless P=NP.

Proof. An approximation algorithm for VERTEX COVER on graphs with 7(G) >
|[V(G)|/2 is also an approximation algorithm with the same ratio for general
instances of VERTEX COVER [11]. Using the APX-hardness of VERTEX COVER-B
[12] and the gap reduction from VERTEX COVER-B to MAX k& VERTEX COVER-
B [13] for k£ > n/2, we conclude that MAX k VERTEX COVER-B has no ptas
on graphs with n vertices when & > 7(G) > n/2. We can reduce this last
problem to the same problem on instances with k > 7 = n/2 by inserting 27 —n
isolated vertices. Moreover, these last instances are reducible to instances where
k =27 =n/2 by inserting k — 7 isolated edges. O

We extract the key points of the reduction in the following lemma on inde-
pendent sets.

Lemma 2. Let G = (V, E) be a graph with n vertices and m edges, and let H
be the bipartite incidence graph of G. Then the following properties are valid.

(a) Suppose that G has mazimum degree at most B, and the weights in H are
wy, = B+1 for all v eV and we = 1 for all e € E. Then, for any
V' C V and any independent set S disjoint from V' in H, there exists an
independent set S’ of H such that w(S") > w(S) and S'NV =V \ V.
Thus, if S’ is mazimal, then

S'=WV\V)u{eeE|ecV'}

and, in particular, «(H — V') > (B+1) - (n— |[V']).

(b) Under the conditions of (a), for any V! C VUE with |V'| < |V| there exists
a V" CV such that |V"| = |V'| and the mazimum weight of an independent
set in H — V" is not larger than that in H —V'. As a consequence,

aH=V"Y>aH-V")=(B+1)-(n—|V'|)+{e€ E|ecCc V"}|



Complexity of most vital nodes for Independent Set 7

Moreover, the set V' can be found efficiently.

Proof. (a) If S contains all vertices of V' \ V', then we have nothing to prove.
Otherwise we modify S step by step, keeping it independent and not decreasing
its value, until it contains the entire V'\ V’. Hence, assume that v € V is a vertex
such that v ¢ V/ U S. If v has no neighbor in S N E, then S U {v} is a proper
extension. Suppose that this is not the case; i.e., there is an edge e € EN S such
that v € e. We now modify S to (S\ Ng(v))U{v}, where Ny (v) denotes the set
of vertices adjacent to v in H, that is the set of edges incident to v in G. In this
way we have removed at most B neighbors of v from S, each of weight 1, and
inserted v of weight B + 1, hence the total weight of the modified set is at least
w(S). Moreover, the set remains independent because all neighbors of v have
been removed. Thus, after |(V \ V') \ S| steps, the required set S’ is obtained.

(b) If V' C V, then V" = V' is a proper choice. Hence suppose V'NE # (). Let us
introduce the notation n’ = |V'NV|, m’ = |E(G[V'NV]))\(V'NE)|. By (a) we see
that a(H —V’) = (B+1)-(n—n')+m’ holds. Choose e € V'NE and v € V\V’,
and modify V' to the set (V' \ {e}) U {v}. This keeps cardinality unchanged,
while the first term (B + 1) - (n — n’) decreases by precisely B + 1. Moreover,
since G has maximum degree at most B, the second term m’ can increase by
at most B when we insert v into the set, and can further increase by at most 1
when we omit e. Thus, sum does not increase. Repeatedly eliminating all e € £
from V’, the required V" is obtained. Then (a) implies that the independent set
of maximum weight in H — V" consists of all v ¢ V" and all e C V. O

Theorem 4. k£ MoST VITAL NODES INDEPENDENT SET has no ptas even for
bipartite graphs if P # NP.

Proof. We prove the non-existence of a ptas for & = n/2, constructing an L-
reduction from MAX n/2 VERTEX COVER-B to n/2 MosT VITAL NODES IN-
DEPENDENT SET, where instances of the former problem are restricted to graphs
G of maximum degree at most B and also satisfying a(G) = 7(G) = n/2.
In this case, let H denote the bipartite incidence graph of the input graph
G = (V, E), the latter having n vertices and m edges. The vertices of H have
weight w, = B+ 1for allv eV and we =1 for all e € E.

Consider first an optimum solution V' in G. As 7(G) = n/2 has been as-
sumed, opt; = m holds and V' covers all edges of G. Then removing V \ V’
from the vertex set of H, we obtain a graph in which the maximum weight of
an independent set is ((B +1)/2) - n, as implied by part (a) of Lemma 2. On the
other hand, parts (a) and (b) together yield that after the removal of any n/2
vertices from H, there always remains an independent set of at least that large
weight, thus
B+1

o

the upper bound being valid since opt; > n/2 surely holds by the assumption
7(G) =n/2.

opty = n < (B+1)-opty,
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Consider now any subset V' of n/2 vertices in H, and denote vale = a(H —
V"). Now we apply part (b) of Lemma 2 to obtain an appropriate set V" of n/2
vertices, which is a subset of V. We view V' \ V" as a solution in G and denote
its value by wval;. In this way we obtain

B+1

valz —opty 2 ao(H =V") —opty = (B+1) - (n = [V"|) + |[E(G[V"]))) = ——n

=|E(G[V"])| = opt1 — valy,

the last equation being valid because opt; = m and E(G[V"]) is precisely the
set of edges not covered by the vertices of V' \ V”. This completes the proof of
the theorem. a

4 Graph classes related to tree structures

In this section we consider graph classes representable over tree structures, and
prove that they admit algorithms solving the considered problems in polynomial
time. Efficient solvability for the graph classes in the first two subsections are
implied by the results of the third subsection, too, but the methods for the
former are simpler.

4.1 Trees

Theorem 5. k£ MoOST VITAL NODES INDEPENDENT SET s polynomial on trees.
On trees of order n the algorithm runs in O(nk?) time, for any k > 1.

Proof. Our general approach is to find not only a set of k£ most vital nodes but
simultaneously also the value of a corresponding largest independent set. For
this purpose we view the input as a rooted tree with an arbitrarily chosen root,
and organize computation according to a postorder traversal.

Consider any tree T' with vertices vy, ..., v,. Each vertex v; can have three
positions in a solution, that we shall denote by marks +, —, 0 as follows:

e ‘+’means that v; is selected into an independent set;
e ‘—’means that v; is selected for deletion;
e ‘0’ means that v; is none of the above two types.

In a solution exactly k£ marks ‘—’ have to occur.

The subtree rooted in v; is denoted by 7T;. For each ¢ = 1,...,n, each x €
{+,—,0},and each j = 0,1,...,k, a value z;(j, *) will be computed. This z;(j, *)
represents the minimum achievable weight of a largest independent set on T;
under the conditions that ezactly j vertices are removed from T; and v; has mark
*. For the recursive computation the children of v; with degree d will be denoted
by vi,,...,v,. We traverse T' in postorder and apply dynamic programming.

Recursion. If v; is marked ‘+’, then all its children must have ‘=’ or ‘0’, since
otherwise two vertices selected for the independent set would be adjacent. More-
over, z;(j,*) requires that the total number of vertices marked ‘=’ should be
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exactly j in T;. On the other hand, we have one and only one way to make the
final result as small as possible: decide which of the vertices should be marked
with ‘—’. Once this has been decided, the distribution of ‘+’ and ‘0’ positions
aims at maximizing the total weight of ‘+’. This leads to the following general
recursions:

Zl(]v +) =wi + min E min Zw .]Zv _)7 Zig (jlv 0)) )
Ji,--Ja>0
Jit..Fja=j =1

zi(J,—) = min § min (24, (je, —), max (2, (je, +), 2i,(je, 0)))
J15ee5Ja >0
it tja=j—1 £=1

zi(7,0) = min Z min (2, (je, =), max (zi, (je, +), 2i, (j¢, 0))) ,

For a leaf v; we clearly have z;(0,4+) = w; and z;(1, —) = 2;(0,0) = 0. Further,
to indicate that all other combinations of j € {0,1,...,k} and * € {+,—,0}
are infeasible, we set a dummy symbol z;(j, *) = NIL for them. In the recursive
step, terms with value NIL on the right-hand side are neglected, except when all
terms are the same, and in this case we define z;(j, *) = NIL, too.

Finding an optimal solution. Assuming that T' has root v;,, after the removal
of k properly chosen vertices the smallest possible value of « is

min (z;, (k, —), max (z;, (k, +), 2i, (k,0))) .

In fact, inserting a new vertex vy with weight wy = 0 as new root and parent
for v;, does not change the optimum, and then we would have zo(k,+) < opt =
z0(k,0) < zo(k, —). A set of k most vital nodes can also be determined in O(n)
additional steps if we make a little more administration. At the recursive step
for each z;(j, *) we register for each edge v;v;, the corresponding value of j, in
the optimal distribution (ji,...,jq4) for j and also the mark * € {+,—,0} of
i¢ which gave the optimum for v;. Once these data are available for all v; and
all pairs (j, *), we can traverse T in preorder and select the vertices having ‘—’
mark for the most vital set.

Efficient implementation. The key point is to find in polynomial time a best
distribution (j1,...,jq4) for the ‘max’ and ‘min’ functions acting on the sums.
This can be done, despite that the number of possibilities can even be exponential
if d is proportional to n.

If d = 2 then we have at most j + 1 combinations of feasible pairs ji, jo.
Hence, optimal choice can be made in O(k) steps for any one particular j, and
in O(k?) steps for all 0 < j < k. If d is larger, we can split the children of v; into
two sets of (nearly) equal size, {ve | 1 <€ < |d/2]|} and {ve | |d/2]+1 < ¢ < d},
make all computation in them separately, and then combine the results for v;.
(Splitting corresponds to inserting a ‘supernode’ above each of the two sets,
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which has weight zero and becomes a virtual child of v;.) This requires d — 1
rounds for v;. Since T is a tree, those d — 1 sum up to n — 2, thus the overall
running time is O((k? + 1)n), and never exceeds O(n?). (Here ‘41’ is needed for
k = 0.) Note that there are no ‘hidden large constants’ in the ‘O’ notation. 0O

Theorem 6. MIN NODE BLOCKER INDEPENDENT SET is polynomial on trees.
On trees with n vertices the algorithm runs in O(n®loglogn) time.

Proof. The above algorithm in one iteration for any 1 < v < n runs in O(v2n) =
O(n?) time. Hence, using Theorem 1, finding the smallest k for which the solution
has value at most U takes total running time O(n®loglogn). O

Remark 2. The algorithm proposed in Theorem 5 solves the & MoST VITAL
NODES INDEPENDENT SET problem on paths in O(kn) time. In fact, in the
general time bound O(nk?) for trees, the factor k? occurs due to the presence
of vertices with more than one child. This observation implies further that the
algorithm proposed in Theorem 6 solves MIN NODE BLOCKER INDEPENDENT
SET on paths in O(n? loglogn) time.

4.2 Cycles

Theorem 7. k& MOST VITAL NODES INDEPENDENT SET s polynomial on cy-
cles. On cycles of order n the algorithm runs in O(kn?) time, for any k > 1.

Proof. Let S* = {v1,...,v.} C V be a maximum-weight independent set of a
given cycle C' = (V, E). An optimal solution V' C V of k¥ MOST VITAL NODES
INDEPENDENT SET must contain at least one node of S*, since otherwise a(C' —
V') is not smaller than «(C). Thus, for each v; € S*, j =1,...,r, we determine
the £ — 1 further nodes to remove in the resulting path as follows. We delete v;
from C and determine a maximum-weight independent set in the resulting path
C —v; by applying the algorithm given in Theorem 5 in order to find an optimal
solution R C V'\ {v;} of k—1 MosT VITAL NODES INDEPENDENT SET on the
path C'—v;. Then, an optimal solution for K M0OST VITAL NODES INDEPENDENT
SET on C'is R} U {ve} such that o(C — vy — R}) = mini <<, a(C —v; — R}). If
the root is chosen to be an endpoint of the path, the complexity of the algorithm
given in Theorem 5 for path C' —v; is O(kn). Since |S*| < n, in this way &k MosT
ViTAL NODES INDEPENDENT SET is solved in O(kn?). ad

Theorem 8. MIN NODE BLOCKER INDEPENDENT SET is polynomial on cycles.
On cycles of order n the algorithm runs in O(n®loglogn) time.

Proof. The theorem follows from Theorem 7 and Theorem 1. ]

4.3 Graphs of bounded treewidth

A tree decomposition of a graph G = (V, E) without isolated vertices is a pair
(T, X) where
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— T = (X,F) is a tree graph with a set X = {z1,...,2,} of nodes and a set
F of lines;

— X ={X1,...,X;n} is a set system over V (i.e., over the vertex set of G),
where each X is associated with node x4 of T

— each edge v;v; € F of G is contained in at least one X for some 1 < ¢ < m;

for any v; € V, if v; € Xy and v; € Xy, then v; € X, for all ¢ such that z,

lies on the zy—x4 path in T

The width of (T, X) is  max | X,|—1, and the treewidth of G, denoted by tw(G),
q<m

is the smallest integer ¢ for which G admits a tree decomposition of width ¢. For
undefined details on tree decomposition we refer to [9].

Theorem 9. £ M0OST VITAL NODES INDEPENDENT SET is polynomial on bounded
treewidth graphs. On graphs of order n, the algorithm runs in O(nk?) time for
any k> 1.

Due to space limitation, the proof of this result is omitted and will appear
in the extended version of the paper.

Theorem 10. MIN NODE BLOCKER INDEPENDENT SET is polynomial on bounded
treewidth graphs. On graphs of order n the algorithm runs in O(n®loglogn)
time.

Proof. The result follows from Theorem 9 and Theorem 1. a

4.4 Cographs

To each cograph G with n vertices, we can associate a rooted tree 7', called the
cotree of G. Leaves of T" correspond to vertices of the graph G and internal nodes
of T are labeled with either ‘U’ (union-node) or ‘x’ (join-node). A subtree rooted
at node ‘U’ corresponds to the union of the subgraphs defined by the children
of that node, and a subtree rooted at node ‘x’ corresponds to the join of the
subgraphs defined by the children of that node; that is, we add an edge between
every two vertices corresponding to leaves in different subtrees. Cographs can be
recognized in linear time and the cotree representation can be obtained efficiently
[4,6]. Moreover, this cotree can easily be transformed in linear time to a binary
cotree with O(n) nodes.

Theorem 11. £ MosT VITAL NODES INDEPENDENT SET is polynomial on
cographs. On cographs of order n, the algorithm runs in O(nk?) time, for any
kE>1.

Proof. Consider a cograph G with n vertices vy, ...,v,. Given a binary cotree
representation T of G, we show in the following how to solve the K MOST VITAL
NODES INDEPENDENT SET using dynamic programming.

Let x1,...,z; be the nodes of T where x, is its root and ¢ is in O(n). For
1=1,...,t, denote by T; the subtree rooted at z;, G; the subgraph induced by
the vertices corresponding to the leaves of T;, and V; these vertices.
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Recursion. We associate a (k + 1)-vector to each node x; of T, i = 1,...,¢.
In the following, a (k + 1)-vector is simply call a vector. For each i and each
Jj =0,1,...,k, we compute z;(j) that is the minimum weight of a maximum

independent set on G; where exactly j vertices are removed from G;. These
vectors are computed “bottom-up” in the cotree. So, we start by computing
vectors of leaves and after that the vector of an internal node if the vectors of
its two children are already computed.

Given a node z; of the cotree, the corresponding vector is obtained as follows:

— If z; is a union-node with two children z, and x,, we have no edges be-
tween Gy and G,.. Then the maximum independent set in G; is the union
of those in Gy and G,. Thus, since we want to find a maximum-weight
independent set as small as possible, the best choice is given by z;(j) =
ming, 1j,—; (2¢(j1) + 2 (j2))-

— If x; is a join-node with two children x; and z,., every vertex in V} is adjacent
to every vertex in V.. Then each independent set in G; is entirely contained
either in Gy or in G,. So, #;(j) = min;, 1 ;,=; (max(ze(j1), zr(j2)))-

— If z; is a leaf then z;(0) = w;, z;(1) = 0, and z;(j) = NIL for j = 2,...,k
which means that the latter configurations are infeasible. In the recursive
step, terms with value NIL on the right-hand side are neglected, except when
all terms are the same, and in this case we define z;(j) = NIL, too.

Finding an optimal solution. An optimal solution is obtained at the root x, of T’
and its weight is equal to z,(k). Moreover, an optimal set of k removed vertices
can be computed step by step in the recursion. Indeed, let S; (j) be the subset
of j removed vertices in G;. For a leaf x; we have S; (0) =0, S; (1) = {v;} and
S;(j) =0for j =2,...,k. For a union-node or a join-node x; with two children
x¢ and x,, recursion yields S; (j) = S, (j7) U S, (j5) where ji and j; are the
indices that realize the minimum for z;(5).

Time analysis. For k MoOST VITAL NODES INDEPENDENT SET, vectors are
computed in O(k) for each leaf and in O(k?) for each union-node and each join-
node. Since t = O(n), the algorithm runs in O(nk?). O

Theorem 12. MIN NODE BLOCKER INDEPENDENT SET is polynomial on cographs.
On cographs of order n, the algorithm runs in O(n3loglogn) time.

Proof. The theorem follows from Theorem 11 and Theorem 1. O

5 Conclusion

In this paper we studied the complexity of the k most vital nodes and min
node blocker versions of the maximum-weight independent set problem. While
maximum-weight independent set is polynomial on bipartite graphs, the k£ most
vital nodes and min node blocker versions become NP-hard. Nevertheless the un-
weighted versions remain polynomial on bipartite graphs. In a graph, a maximum-
weight independent set is the complementary set of a minimum-weight vertex
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cover. In sharp contrast to this, however, concerning the £ most vital nodes or
min node blocker versions an optimum solution for maximum-weight indepen-
dent set may be substantially different from an optimum solution for minimum-
weight vertex cover. Our results on the latter will be included in an extended
paper. We show in this paper that the £ most vital nodes version has no ptas.
An interesting open question would be to establish other positive and negative
results concerning the approximability of these versions. In particular it remains
open to decide weather min node blocker on bipartite graphs has a ptas.

Another interesting perspective is to study the complexity of the k most
vital nodes and min node blocker versions of the maximum-weight independent
set problem for graphs of bounded cliquewidth and graphs of bounded NLC-
width, that generalize cographs. Moreover, the study of the complexity and the
approximation of these versions for further classes of graphs for which maximum-
weight independent set and minimum-weight vertex cover are polynomial is also
of interest.
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