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Abstract. We study completeness in differential approximability clas-
ses. In differential approximation, the quality of an approximation algo-
rithm is the measure of both how far is the solution computed from a
worst one and how close is it to an optimal one. The main classes consid-
ered are DAPX, the differential counterpart of APX, including the NP

optimization problems approximable in polynomial time within constant
differential approximation ratio and the DGLO, the differential counter-
part of GLO, including problems for which their local optima guarantee
constant differential approximation ratio. We define natural approxima-
tion preserving reductions and prove completeness results for the class
of the NP optimization problems (class NPO), as well as for DAPX

and for a natural subclass of DGLO. We also define class 0-APX of
the NPO problems that are not differentially approximable within any
ratio strictly greater than 0 unless P = NP. This class is very natural for
differential approximation, although has no sense for the standard one.
Finally, we prove the existence of hard problems for a subclass of DP-

TAS, the differential counterpart of PTAS, the class of NPO problems
solvable by polynomial time differential approximation schemata.

1 Preliminaries

An NP optimization problem Π is defined as a four-tuple (I, sol,m, opt) such
that: I is the set of instances of Π and it can be recognized in polynomial
time; given x ∈ I, sol(x) denotes the set of feasible solutions of x; for every
y ∈ sol(x), |y| is polynomial in |x|; given any x and any y polynomial in |x|, one
can decide in polynomial time if y ∈ sol(x); given x ∈ I and y ∈ sol(x), m(x, y)
denotes the value of y for x; m is polynomially computable and is commonly
called feasible value, or objective value; finally, opt ∈ {max,min}. The set of
NP optimization problems forms the class NPO. An NPO problem Π is said
to be polynomially bounded, if, for any instance x of Π, the value of the optimum
solution of x is bounded by a polynomial in |x|. The set of polynomially bounded
problems of NPO forms the class NPO-PB. In what follows, given an instance x
of Π and a feasible solution y for x, we denote by opt(x) the value of an optimal
solution of x and by ω(x) the value of a worst solution of x; ω(x) is the value of the



optimum solution for x with respect to the NPO problem Π ′ = (I, sol,m, opt′)
where opt′ = max, if opt = min and opt′ = min, if opt = max.

Polynomial approximation deals with polynomial computation of “good”,
with respect to a predefined criterion, feasible solutions for hard NPO problems.
Two main such criteria have been used until now: the standard approximation
ratio and the differential approximation ratio. For an approximation algorithm A

computing a feasible solution y for x with value mA(x, y), its standard approx-
imation ratio is defined as γA

Π(x, y) = mA(x, y)/ opt(x) and its differential one
as δAΠ(x, y) = |ω(x) − mA(x, y)|/|ω(x) − opt(x)|. In what follows, whenever it is
understood, reference to problem Π will be dropped. Finally note that, for any
problem Π and for any algorithm A, 0 6 δAΠ 6 1. An approximation measure µ
is called cost-respecting ([1]) if given two solutions y1 and y2 for an instance x of
an optimization problem Π, the fact that y1 is worse than y2 implies that µ(y1)
is worse than µ(y2). Obviously, both standard and differential approximation
ratios are cost-respecting measures.

Regarding the type of approximation results, NPO problems can be classified
with respect to the approximation ratios known for them. The main approxima-
bility classes are: APX (DAPX), the class of NPO problems polynomially ap-
proximable within constant standard (differential) approximation ratio; PTAS

(DPTAS), the class of problems polynomially approximable by standard (dif-
ferential) polynomial time approximation schemata, i.e., within standard (differ-
ential) ratios arbitrarily close to 1; FPTAS (DFPTAS), the class of problems
approximable by standard (differential) fully polynomial time approximation
schemata, i.e., within ratios arbitrarily close to 1 in time polynomial in both the
size of their instances and in 1/ǫ.

Since the beginning of the 80’s, researchers have been highly interested in
providing a structure in standard approximation by defining suitable approxi-
mation preserving reductions in order to study completeness in approximability
classes. Pioneering works in this direction, used in this paper, are, among others,
the ones in [2, 1, 3]. In [1] several natural minimization problems have been shown
to be NPO-complete under an approximation preserving reduction called strict-
reduction, dealing with any cost-respecting approximation measure r. Through-
out the paper, for any reduction R, we will denote by Π ≤R Π ′ the fact that Π
R-reduces to Π ′. In [3], the subclass MAX-SNP of APX has been introduced
and complete problems have been provided for it, under L-reduction. In [2], a
polynomial time approximation schema preserving reduction, called P-reduction
there, has been introduced and the existence of APX-complete problems has
been shown. In what follows, we borrow the term PTAS from [4, 5] and we will
use it instead of P. Furthermore, another reduction called F has been defined
in [2] by means of which PTAS-complete problems have been provided.

Surprisingly enough, differential approximation, although introduced in [6]
since 1977, has not been systematically used until the mid-90’s when a formal
framework for it and a more systematic use started to be drawn ([7]). In any
case, no structural approach to the study of differential approximability has been
developed until now. This is the main objective of this paper.



In Section 2, we show the existence of NPO-complete problems in the frame-
work of the differential approximation. We then introduce a subclass of NPO,
called 0-DAPX, for the problems of which no polynomial time algorithm can
guarantee that any solution computed will be even slightly far from a worst one,
unless P = NP; in other words, the differential ratio of any polynomial time al-
gorithm is equal to 0. We prove that under the strict-reduction NPO-complete =
0-DAPX-complete ⊆ 0-DAPX ⊆ NPO. In Section 3, we tackle the question of
the existence of complete problems for DAPX. We define a suitable reduction,
called DPTAS-reduction and show that under it many natural NPO problems
are DAPX-complete. In section 4, we devise an appropriate reduction and show
the existence of hard problems for a natural subclass of DPTAS.

Besides PTAS, the two most notable classes of APX in the literature
are MAX-SNP and GLO. The first one, introduced, as we have already men-
tioned in [3], is defined in logical terms and, furthermore, independently on
any approximability property of its members; henceforth, MAX-SNP is noto-
rious for differential approximation also without need of defining any differential
counterpart for it. The latter one, GLO, is, roughly speaking, the class of the
NPO-PB problems whose all locally optimal solutions (with respect to a suit-
able neighborhood) guarantee constant standard approximation ratio. It is intro-
duced in [8] where a local optima preserving (LOP) reduction, which is a special
case of L-reduction provided with some suitable local optimality properties, is
also defined. In Section 5, we devise a local optima preserving reduction strongly
inspired from the LOP-reduction of [8] and, under this new reduction we prove
the existence of natural complete problems for a natural subclass of DGLO (the
differential counterpart of GLO).

The definitions of the NPO problems mentioned and/or discussed in this
paper can be found in [9]. Also, results are given without detailed proofs which
can be found in [10].

2 Differential NPO-completeness

We study in this section NPO-completeness with respect to differential ap-
proximation. Based upon the generic strict-reduction of [1], we define a partic-
ular strict-reduction, called D-reduction, which we use in the sequel for proving
NPO-completeness.

Definition 1. A D-reduction is a strict-reduction dealing with differential ratio.
Two optimization problems Π and Π ′ are D-equivalent if Π D-reduces to Π ′

and Π ′ D-reduces to Π.

Theorem 1. max wsat and min wsat are D-equivalent.

As usually, ([11, 1]), we denote by Max NPO and Min NPO, the classes of
maximization and minimization NPO problems, respectively.

Theorem 2. max wsat is Max NPO-complete and min wsat is Min NPO-
complete under ≤D. Max NPO-hard and Min NPO-hard (under ≤D) coincide
and form the class of NPO-hard problems.



In a completely analogous way, one can prove the D-equivalence of min {0,1} in-
teger programming and max {0,1} integer programming. In other words
min {0,1} integer programming and max {0,1} integer programming
are NPO-complete, under ≤D.

We note here that, the result of [1] about the Min NPO-completeness of
min tsp (Theorem 3.3) can be erroneously seen as in “glaring contradiction” to
a result of [12, 13] where it is proved that min tsp on graphs with polynomially
bounded edge-distances is in DAPX. In fact, there is no contradiction at all.
Solution triv for min tsp adopted in [1], is considered as a tour containing
exclusively edges of maximum distance. But such a solution is not always feasible
for any instance of min tsp (the worst-value solution for this problem is an
optimal solution of max tsp); hence the strict reduction of Theorem 3.3 in [1]
is not a D-one.

We now introduce an approximation class, called 0-DAPX in what follows,
that seems very natural for differential approximation while has no sense in the
standard case.

Definition 2. 0-DAPX is the class of NPO problems Π for which approxi-
mation within any differential approximation ratio δ > 0 would entail P = NP.
A problem Π is said to be 0-DAPX-hard, if approximation of Π within any
strictly positive differential approximation ratio would imply approximation of
any other 0-DAPX problem within strictly positive approximation ratios.

Remark that inclusion in 0-DAPX is rather a negative than a positive approx-
imation result. This seems quite natural since 0-approximability represents the
worst intractability level for an NPO problem in the differential approach.

In [14] it is proved that if P 6= NP, then, for any decreasing δ : N →
(0, 1), min independent dominating set is not differential δ-approximable in
polynomial time. By analogous reductions, it is proved in [15] that for any k > 3,
polynomially bounded max wk-sat-B as well as the general minimization and
maximization versions of integer-linear programming are in 0-DAPX.

Theorem 3. Under ≤D, NPO-complete = 0-DAPX-complete ⊆ 0-DAPX.

A natural question rising from the above is: what is the relation between NPO-
complete and 0-DAPX? Taking into consideration the fact that 0-DAPX is
the hardest differential approximability class in NPO, one might guess that
NPO-complete ≡ 0-DAPX, but in order to prove it we need a stronger re-
ducibility. We show in [10] that defining a special a kind of Turing-reduction,
one can prove that NPO-complete = 0-DAPX-complete = 0-DAPX.

3 Differential APX-completeness

Let us now address the problem of completeness in the class DAPX. Note first
that a careful reading of the proof of the standard APX-completeness of max
wsat-B given in [2] establishes also the following proposition which will be used
in what follows.



Proposition 1. Let Π ∈ APX. There exist 3 polynomially computable func-
tions f , g and cρ :]0, 1[∩Q →]0, 1[∩Q such that ∀x ∈ IΠ , ∀z ∈ solΠ(x), ∀ρ ∈
]0, 1[: (1) f(x, z, ρ) = (φx,z,ρ,Wx,z,ρ, wx,z,ρ) with (φx,z,ρ, wx,z,ρ) ∈ Imax wsat;
(2) ∀y ∈ solmax wsat(f(x, z, ρ)), g(x, z, ρ, y) ∈ solΠ(x); (3) if γΠ(x, z) > ρ,
then f(x, z, ρ) is an instance of max wsat-B and, for any solution y of f(x, z, ρ),
if γmax wsat-B(f(x, z, ρ), y) > 1 − cρ(ǫ), then γΠ(x, g(x, z, ρ, y)) > 1 − ǫ.

We now define a notion of polynomial time differential approximation schemata
preserving reducibility, called DPTAS-reduction in what follows.

Definition 3. Let Π,Π ′ ∈ NPO. Then, Π ≤DPTAS Π ′ if there exist two func-
tions f , g and a function c :]0, 1[∩Q →]0, 1[∩Q, all computable in polynomial
time, such that: (i) ∀x ∈ IΠ , ∀ǫ ∈]0, 1[∩Q, f(x, ǫ) ∈ IΠ′ ; f is possibly multi-
valued; (ii) ∀x ∈ IΠ , ∀ǫ ∈]0, 1[∩Q, ∀y ∈ solΠ′(f(x, ǫ)), g(x, y, ǫ) ∈ solΠ(x);
(iii) ∀x ∈ IΠ , ∀ǫ ∈]0, 1[∩Q, ∀y ∈ solΠ′(f(x, ǫ)), δΠ′(f(x, ǫ), y) > 1 − c(ǫ) ⇒
δΠ(x, g(x, y, ǫ)) > 1 − ǫ; if f is multi-valued, i.e., f = (f1, . . . , fi), for some i
polynomial in |x|, then, the former implication becomes: ∀x ∈ IΠ , ∀ǫ ∈]0, 1[∩Q,
∀y ∈ solΠ′((f1, . . . , fi)(x, ǫ)), ∃j 6 i such that δΠ′(fj(x, ǫ), y) > 1 − c(ǫ) ⇒
δΠ(x, g(x, y, ǫ)) > 1 − ǫ.

It is easy to see that given two NPO problems Π and Π ′, if Π ≤DPTAS Π ′ and
Π ′ ∈ DAPX, then Π ∈ DAPX.

Let Π ∈ DAPX and let T be a differential ρ-approximation algorithm for Π,
with ρ ∈]0, 1[. There exists a polynomial p such that ∀x ∈ IΠ , |ω(x)− opt(x)| 6

2p(|x|). An instance x ∈ IΠ can be written in terms of an integer linear program
as: x : opt v(y) subject to y ∈ Cx, where Cx is the constraint-set of x. For any i ∈
{0, . . . , p(|x|)} and for any l ∈ N, we define xi,l by: xi,l : max[vi,l(y) = ⌊v(y)/2i⌋−
l] subject to y ∈ Cx, if Π is a maximization problem, or xi,l : min[vi,l(y) =
l − ⌊v(y)/2i⌋] subject to y ∈ Cx, if Π is a minimization problem. Any xi,l can
be considered as an instance of an NPO problem denoted by Πi,l. Then, the
following proposition holds.

Proposition 2. Let ǫ < min{ρ, 1/2}, x ∈ IΠ and (i, l) ∈ {1, . . . , p(|x|)} × N be
such that 2i 6 ǫ| opt(x) − ω(x)| 6 2i+1 and set l = ⌊ω(x)/2i⌋. Then, for any
y ∈ solΠ(x) = solΠi,l

(xi,l): (1) δΠi,l
(xi,l, y) > (1 − ǫ) =⇒ δΠ(x, y) > 1 − 3ǫ;

(2) δΠ(x, y) > ρ =⇒ δΠi,l
(xi,l, y) > (ρ − ǫ)/(1 + ǫ).

The proof of the existence of a DAPX-complete problem is performed along
the following schema. We first prove that any DAPX problem Π is reducible
to max wsat-B by a reduction transforming a PTAS for max wsat-B into
a DPTAS for Π; we denote it by ≤D

S
. Next, we consider a particular APX-

complete problem Π ′, say max independent set-B; max wsat-B that is
in APX is PTAS-reducible to max independent set-B. max independent
set-B is both in APX and in DAPX and, moreover, standard and differential
approximation ratios coincide for it; this coincidence draws a trivial reduction
called ID-reduction; it trivially transforms a differential polynomial time approx-
imation schema into a standard polynomial time approximation schema. In other



words, we prove that

Π ≤D

S
max wsat-B ≤PTAS max independent set-B

≤ID max independent set-B

The composition of the three reductions, i.e., the one from Π to max wsat-B,
the one from max wsat-B to max independent set-B and the ID-reduction, is
a DPTAS reduction transforming a differential polynomial time approximation
schema for max independent set-B into a differential polynomial time ap-
proximation schema for Π, i.e., max independent set-B ∈ DAPX-complete.

Theorem 4. max independent set-B is DAPX-complete.

Proof. We sketch here the part ∀Π ∈ DAPX, Π ≤D

S
max wsat-B (we assume

integer valued problems; extension to the case of rational values is immediate).
Remark that given a formula φ, a variable-weight system w and a constant B,

one can decide in polynomial time if (φ,B,w) ∈ Imax wsat-B . Since Π is
in DAPX, let T be a polynomial algorithm that guarantees differential ratio
ρ ∈]0, 1[. Let ǫ < min{ρ, 1/2}.

For any ζ > 0, we denote by Oζ an oracle that, for any instance x of max
wsat-B, computes a feasible solution Oζ(x) ∈ solmax wsat-B guaranteeing
γmax wsat-B(x, Oζ) > 1 − ζ. We construct an algorithm A (this is the compo-
nent of ≤D

S
transforming solutions for max wsat-B into solutions for Π) using

this oracle such that: A guarantees differential approximation ratio 1 − ǫ for Π
and, in the case where Oζ is polynomial (in other words, Oζ can be seen as a
polynomial time approximation schema), A is also polynomial.

The ≤D

S
-reduction claimed is based upon the construction of a family F of

instances xi,l: F = {xi,l : (i, l) ∈ F}, where F is of polynomial size and contains
a pair (io, lo) such that: either i0 6= 0, 2i0 6 ǫ| opt(x) − ω(x)| 6 2i0+1 and
l0 = ⌊ω(x)/2i0⌋, or i0 = 0, ǫ| opt(x) − ω(x)| 6 2 and l0 = ω(x).

For instance xi0,l0 the worst value is 0; henceforth standard and differential
ratios coincide. In other words, δΠi0,l0

(xi0,l0 , z) = γΠi0,l0
(xi0,l0 , z), for all feasi-

ble z. Moreover, for i0 = 0, δΠ(x, z) = δΠ0,ω(x)
(x0,ω(x), z) = γΠ0,ω(x)

(x0,ω(x), z).
We first suppose that F can be constructed in polynomial time. For each (i, l) ∈
F , we consider the three functions gi,l, fi,l and ci,l (Proposition 1) for the in-
stance xi,l. We set ǫ′ = min{(ci,l)ρ(ǫ), (ci,l)(ρ−ǫ)/(1+ǫ)(ǫ/3) : (i, l) ∈ F} and de-
fine, for (i, l) ∈ F , η = ρ if i = 0; otherwise, η = (ρ−ǫ)/(1+ǫ). Let z = T(x); then,
for any (i, l) ∈ F , we set zi,l = gi,l(xi,l, z, η, Oǫ′(fi,l(xi,l, z, η))), if fi,l(xi,l, z, η)
is an instance of max wsat-B; otherwise we set zi,l = z. Remark that zi,l is a
feasible solution for xi,l and, consequently, for x. In all, A constructs zi,l for each

(i, l) ∈ F and selects the best among them as solution for x.
Next, we prove that A achieves differential approximation ratio 1 − ǫ. Using

Propositions 1 and 2, we can show that δΠ(x, zi0,l0) > 1− ǫ. Since (i0, l0) ∈ F , A
has already computed the solution zi0,l0 . By taking into account that the solution
finally returned by A is the best among the computed ones, we immediately
conclude that it is at least as good as zi0,l0 . Therefore, it guarantees ratio 1− ǫ.
Finally, we prove that F can be constructed in polynomial time. Steps sketched
just above show that ∀Π ∈ DAPX, Π ≤D

S
max wsat-B.



Theorem 5. min vertex cover-B, max set packing-B, min set cover-
B, are DAPX-complete under DPTAS-reductions. Furthermore, max indepen-
dent set, min vertex cover, max set packing, min set cover, max
clique and max ℓ-colorable induced subgraph, are DAPX-hard under
DPTAS-reductions.

4 Differential PTAS-hardness

In this section, we will take into consideration the class DPTAS and we will
address the problem of completeness in such class.

Consider the following reduction preserving fully polynomial time differential
approximation schemata, denoted by DFPTAS-reduction in what follows.

Definition 4. Assume two NPO problems Π and Π ′. Then, Π ≤DFPTAS Π ′, if
there exist three functions f , g and c such that: (i) f and g are as for PTAS-
reduction (Section 1; (ii) c : (]0, 1[∩Q) × IΠ →]0, 1[∩Q; its time complexity
and its value are polynomial in both |x| and 1/ǫ; (iii) ∀x ∈ IΠ , ∀ǫ ∈]0, 1[∩Q,
∀y ∈ solΠ′(f(x, ǫ)), δΠ′(f(x, ǫ), y) > 1 − c(ǫ, x) ⇒ δΠ(x, g(x, y, ǫ)) > 1 − ǫ.

Obviously, given two NPO problems Π and Π ′, if Π ≤DFPTAS Π ′ and Π ′ ∈
DPTAS, then Π ∈ DPTAS.

In the following we study completeness not for the whole class DPTAS

but for a subclass DPTASp mainly consisting of the maximization problems
of PTAS the worst-value of which is computable in polynomial time (this class
includes, in particular, maximization problems with worst value 0). Recall that,
the first problem proved PTAS-complete (under FPTAS reduction) is max lin-
ear wsat-B ([2]).

Consider two problems Π ∈ DPTASp and Π ′, instances of which x ∈ IΠ

and x′ ∈ IΠ′ , respectively, are expressed, in terms of an integer linear pro-
grams as: x : opt v(y) subject to y ∈ Cx, x′ : opt v(y′) − ω(x) subject to: y′ ∈
Cx′ and Cx ≡ Cx′ .

Obviously, δΠ(x, y) = δΠ′(x′, y′) = γΠ′(x′, y′) and, moreover, Π and Π ′

belong to DPTASp; also, Π ′ ∈ PTAS and Π ′ ≤FPTAS max linear wsat-B.
So, for any Π ∈ DPTASp, Π ≡D Π ′ ≤FPTAS max linear wsat-B; reduction
≡D ◦ ≤FPTAS is a DFPTAS-reduction.

Consider now the closure DPTASp

AF
of DPTASp under affine transfor-

mations of objective functions of its problems. min vertex cover in planar

graphs is in DPTASp

AF
\ DPTASp.

Let any Π ′′ ∈ DPTASp

AF
and Π its “affine mate” in DPTASp. Then,

Π ′′ ≤AF Π ≡D Π ′ ≤FPTAS max linear wsat-B and since, obviously, the reduc-
tion ≤AF ◦ ≡D ◦ ≤FPTAS is a DFPTAS-one, the following proposition holds.

Proposition 3. max linear wsat-B is DPTASp

AF
-hard, under ≤DFPTAS.



5 MAX-SNP and differential GLO

In the theory of approximability of optimization problems based upon the stan-
dard approximation ratio interesting results have been obtained by studying the
behavior of local search heuristics and the degree of approximation that such
heuristics can achieve. In particular, in [8, 16], the class GLO is defined as the
class of NPO-PB problems whose local optima have a guaranteed quality with
respect to the global optima.

Of course, the differential counterpart of GLO, called DGLO in what fol-
lows, can be defined analogously. In [17] it is shown that max cut, min dom-
inating set-B, max independent set-B, min vertex cover-B, max set
packing-B, min coloring, min set cover-B min set w(K)cover-B, min
feedback edge set, min feedback vertex set-B and min multiproces-
sor scheduling, are included in DGLO. Furthermore in [18] it is proved that
both min and max tsp on graphs with polynomially bounded edge-distances
are also included in DGLO.

Let us now consider the relationship of DGLO with respect to the differen-

tial approximability class DAPX. Let DGLO
DPTAS

be the closure of DGLO

under ≤DPTAS. Analogously GLO
PTAS

is defined in [16] where it is also proved

that GLO
PTAS

= APX. It is easy to show that the same holds for differential
approximation.

Proposition 4. DAPX = DGLO
DPTAS

.

Among other interesting properties of the class GLO, in [8] it is proved that
max 3-sat is complete in GLO ∩ MAX-SNP with respect to LOP-reduction.
A related result in [19] shows that MAX-SNP ⊆ Non-Oblivious GLO, a
variant of the class GLO defined by means of local search algorithms that are
allowed to use more general kinds of objective functions, rather than the natural
objective function of the given problem, for improving the quality of the solution.

In what follows, we show the existence of complete problems for a large,
natural subclass of DGLO. As one can see from the definition of LOP-reduction
in Section 1, the local optimality preserving properties do not depend on the
approximation measure adopted. Hence, in an analogous way, we define here a
reduction called DLOP which is a DPTAS-one with the same local optimality
preserving properties as the ones of a LOP-reduction (Section 1).

Definition 5. A DLOP-reduction is a DPTAS-reduction with the same sur-
jectivity, partial monotonicity, locality and dominance properties as an LOP-
reduction.

Obviously, given two NPO problems Π and Π ′, if Π ≤DLOP Π ′ and Π ′ ∈
DGLO, then Π ∈ DGLO.

Let DGLO0 be the class of MAX-SNP maximization problems that belong
to DGLO and for which the worst value 0 is feasible for any instance (max in-
dependent set-B, for example, is such a problem). Note that for the problems
of DGLO0, the standard and differential approximation ratios coincide. Now



let us consider the closure of DGLO0 under affine transformations. This leads
to the following definition.

Definition 6. Let Π be a polynomially bounded NPO problem. Then, Π ∈
DGLO

′ if (i) it belongs to DGLO0, or (ii) it can be transformed into a problem
in DGLO0 by means of an affine transformation; in other words, DGLO

′ =

DGLO0

AF
.

Theorem 6. ∀Π ∈ DGLO
′, Π ≤DLOP max independent set-B.

Proof. Assume Π ∈ DGLO
′. We then have the following two cases: (i) Π ∈

DGLO0 or (ii) Π can be transformed into a problem in DGLO0 by means of
an affine transformation.

Dealing with case (i), note that for DGLO0, an LOP-reduction is also a
DLOP-one and that the L-reduction of any π ∈ GLO (hence in DGLO0) is an
LOP-reduction ([8]). We can show that both L-reductions in [3] from max 3-sat
to max 3-sat-B and from max 3-sat-B to max independent set-B are also
LOP-ones. So, the result follows.

Dealing with case (ii), since an affine transformation is a DLOP-reduction,
Π ≤DLOP Π ′ and by case (i), Π ′ ≤DLOP max independent set-B.

Proposition 5. max cut, min vertex cover-B, max set packing-B, min
set cover-B are DGLO ′-complete, under DLOP-reductions.

Note that min multiprocessor scheduling, or even min and max tsp on
graphs with polynomially bounded edge-distances belong to DGLO ([17, 18])
but neither to GLO, nor to DGLO

′. On the other hand, min vertex cover-
B belongs to DGLO

′ but not to MAX-SNP.
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