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Abstract. In this paper, we introduce the k-Robust Set problem:
given a graph G = (V,E), a threshold function t : V → N and an
integer k, find a subset of vertices V ′ ⊆ V of size at least k such that
every vertex v in G has less than t(v) neighbors in V ′. This problem oc-
curs in the context of the spread of undesirable agents through a network
(virus, ideas, fire, . . .). Informally speaking, the problem asks to find the
largest subset of vertices with the property that if anything bad hap-
pens in it then this will have no consequences on the remaining graph.
The threshold t(v) of a vertex v represents its reliability regarding its
neighborhood; that is, how many neighbors can be infected before v gets
himself infected.
We study in this paper the parameterized complexity of k-Robust Set
and the approximation of the associated maximization problem. When
the parameter is k, we show that this problem is W[2]-complete in gen-
eral and W[1]-complete if all thresholds are constant bounded. Moreover,
we prove that, if P 6= NP , the maximization version is not n1−ε- approx-
imable for any ε > 0 even when all thresholds are at most two. When
each threshold is equal to the degree of the vertex, we show that k-
Robust Set is fixed-parameter tractable for parameter k and the maxi-
mization version is APX-complete. We give a polynomial-time algorithm
for graphs of bounded treewidth and a PTAS for planar graphs. Finally,
we show that the parametric dual problem (n−k)-Robust Set is fixed-
parameter tractable for a large family of threshold functions.

1 Introduction

The subject of optimization problems that involve a diffusion process through
a network is a large and well-studied topic [15, 8, 1, 12, 3]. Such problems share
a common idea of selecting an initial subset of vertices to activate in a graph
such that, according to a propagation rule, all vertices are activated once the
propagation process stops. One such representative problem is the Target Set
Selection problem first introduced in [8]: given a graph G = (V,E) and a
threshold function t : V → N , the problem asks to find the minimum num-
ber of vertices to activate such that all vertices are activated at the end of the
propagation process. A vertex v is activated if and only if the number of its
activated neighbors is above the threshold t(v). This problem has been proved



NP-complete even when all thresholds are at most two [8]. Moreover, the prob-

lem was surprisingly shown to be hard to approximate within a ratio O(2log1−ε n)
for any ε > 0 even when all thresholds are at most two [8]. The same inapprox-

imability result holds with majority thresholds i.e, for each v ∈ V, t(v) = dd(v)
2 e

[8]. From a parameterized perspective, Target Set Selection is W[2]-hard
with respect to the solution size for majority thresholds and for thresholds at
most two [17]. Furthermore, the problem is proved to be in XP and W[1]-hard
with respect to the treewidth [3]. These negative results emphasis the strong
intractability nature of the problem.

With regards to the motivation for this study, it is an interesting question to
ask the complexity of the converse problem: find the largest subset of vertices
such that if a set of vertices gets infected in it then there will be no consequence
for all the other vertices. In this context, there is no propagation process involved
like in the previous problem; here we want to prevent such phenomenon. This
idea of “controlling” the diffusion of dangerous ideas or epidemics is also well-
studied [16, 13, 7]. More formally, we introduce the k-Robust Set problem:
given a graph G = (V,E), a threshold function t : V → N and an integer k,
find a subset of vertices V ′ ⊆ V of size at least k such that every vertex v in
G has less than t(v) neighbors in V ′. The set V ′ is said to be robust. Indeed,
if one infects any subset S ⊆ V ′ then there will be no propogation at all since
every vertex has a number of infected neighbors below its threshold. Finally, it
is worth pointing out that our problem can also be related to a recent paper
about the (σ, ρ)-Dominating Set problem [14].

In this paper, we study the parameterized complexity of k-Robust Set and
the approximation of the associated maximization problem Max Robust Set.
The paper is organized as follows. In Section 2 we give the definitions, termi-
nology and preliminaries. In Section 3 we establish parameterized intractability
results for k-Robust Set with various threshold functions. We show that the
parametric dual problem (n−k)-Robust Set is fixed-parameter tractable for a
large family of threshold functions. In Section 4 we give a polynomial-time algo-
rithm to solve k-Robust Set for graphs of bounded treewidth. In Section 5 we
establish that Max Robust Set is not n1−ε-approximable for any ε > 0 even
when all thresholds are at most two. If each threshold is equal to the degree of
the vertex, we show that Max Robust Set is APX-complete. Conclusion and
open problems are given in Section 6. Due to the space limit, some proofs are
omitted.

2 Preliminaries

In this section, we give the notation used throughout this paper as well as the
statement of the problems. We will conclude this section by providing the basic
backgrounds on parameterized complexity and approximation.

Graph terminology. Let G = (V,E) be an undirected graph. The open neigh-
borhood of a node v ∈ V , denoted by N(v), is the set of all neighboors of v. The
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closed neighborhood of a node v, denoted N [v], is the set N(v)∪{v}. The degree
of a node v is denoted by dG(v) or simply d(v) if the graph is clear from context.
Let X ⊆ V , we denote by G[X] the subgraph of G induced by X.

Problem definitions. Let G = (V,E) be an undirected graph, a threshold
function t : V → N . A subset V ′ ⊆ V is called robust if ∀v ∈ V, dV ′(v) < t(v).
We call a vertex bounded if t(v) = O(1); otherwise, it is said unbounded. We
define in the following the problems we study in this paper.

k-Robust Set
Input: A graph G = (V,E), a threshold function t : V → N where
1 ≤ t(v) ≤ d(v) for every v ∈ V , and an integer k
Parameter: k
Question: Is there a robust set V ′ ⊆ V of size at least k?

We considered also the parametric dual problem (n−k)-Robust Set which
asks for the existence of a robust set of size at least n− k.

The optimization version of k-Robust Set is defined as follows.

Max Robust Set
Input: A graph G = (V,E) and a threshold function t : V → N where
1 ≤ t(v) ≤ d(v) for every v ∈ V
Output: A robust set V ′ ⊆ V such that |V ′| is maximized.

If the threshold function is defined by t(v) = d(v),∀v ∈ V then we add
the suffix With Unanimity to the problem name. The majority threshold is

t(v) = dd(v)
2 e,∀v ∈ V .

Parameterized complexity. Here we only give the basics notions on param-
eterized complexity, for more background the reader is referred to [11, 18]. A
decision problem parameterized by k is said to be fixed-parameter tractable if
there exists an algorithm that solves every instance (I, k) in fpt-time i.e., in
f(k).|I|O(1)-time for some function f depending solely on k.

The basic class of parameterized intractability is W[1] and there is a good
reason to believe that W[1]-hard problems are unlikely to be fixed-parameter
tractable. In fact, there is a all hierarchies of classes W[i] with the following
inclusions FPT ⊆ W[1] ⊆ W[2] . . . . A problem in W[i] is considered harder
than those in W[i−1] where i > 1. These classes are defined via the satisfiability
problem of boolean circuits. More specifically, a parameterized problem belongs
to W[i] if every instance (I, k) can be transformed in fpt-time to a boolean circuit
C of constant depth and weft at most i, such that (I, k) is a yes instance if and
only if there is a satisfying truth assignment for C of weight exactly k. The weft
of a circuit is the maximum number of large gates i.e., gates with a number of
inputs not bounded by any constant, on a path from an input to the output.
The depth is the maximum number of all gates on a path from an input to the
output.

In this paper, the kernel size is expressed in terms of the number of vertices.
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Approximation. Given an optimization problem A and an instance I of this
problem, we denote by |I| the size of I, by optA(I) the optimum value of I and
by val(I, S) the value of a feasible solution S of I. In this paper, we will make
use of the following approximation preserving reduction.

Definition 1 (L-reduction [19]). Let A and B be two optimization problems.
Then A is said to be L-reducible to B if there are two constants α, β > 0 and
two polynomial time computable functions f , g such that

1. f maps an instance I of A into an instance I ′ of B such that optB(I ′) ≤
α · optA(I),

2. g maps solutions each solution S′ of I ′ into a solution S of I such that
|val(I, S)− optA(I)| ≤ β · |val(I ′, S′)− optB(I ′)|.

For us the important property of this reduction is that if A is APX-hard then
B is also APX-hard.

3 Parameterized complexity

In this section, we consider the parameterized complexity of k-Robust Set. In
some reductions we make use of the following gadget: a forbidden edge denotes
an edge uv where both vertices have threshold one. Attaching a forbidden edge
to a vertex w means to create a forbidden edge uv and make w adjacent to u.
Notice that none of the three vertices u, v or w can be part of a robust set.

First, we show that k-Robust Set belongs to W[2] using the Turing way,
that is, we reduce k-Robust Set to the Short Multi-tape Nondetermin-
istic Turing Machine problem that is proved to belong to W[2] in [6] and
defined as follows: given a multi-tape nondeterministic Turing machine M , a
word x on the input alphabet of M , and an integer k, determine if there is a
computation of M on input x that reaches a final accepting state in at most k
steps. The parameter is k.

Theorem 1. k-Robust Set is in W[2].

Proof. We construct an fpt-reduction from k-Robust Set to Short Multi-
tape Nondeterministic Turing Machine as follows. Let (G, t, k) be an in-
stance of k-Robust Set with G = (V,E) and V = {v1, . . . , vn}. We construct
the following Turing machine M from (G, t, k). We create n+1 tapes denoted by
T0, Tv1 . . . , Tvn . The tapes alphabet is V ∪{×, 1, . . . , n} plus the blank symbol 0.
Initially, every tape is filled with 0. The transition function is defined hereafter.
The machine M starts by writing symbol × on tape T0 and move T0’s head
one step to the right. During the first phase, M non-deterministically chooses k
vertices and write them on tape T0, that is, if M picks up a vertex v ∈ V then
it writes symbol v on T0 and move T0’s head one step to the right. The previous
procedure is done in k + 1 steps. During the second phase, M verifies that the
selected set is a robust set as follows. First, the machine move T0’s head one step
to the left. Assume that T0’s head reads symbol v and, for every u ∈ N(v), Tu’s
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head reads symbol su. If su = t(u)−1 then M goes in rejecting state. Otherwise,
M writes symbol su + 1 on tape Tu and moves the T0’s head one step to the
left. We repeat the previous procedure until T0’s head reads symbol ×. Clearly,
this checking phase is performed in at most k+ 1 steps. Finally, the input word
x is empty and k′ = 2k + 2. It is not hard to see that (G, t, k) is a Yes-instance
if and only if M accepts in at most k′ steps. �

Now in order to prove the W[2]-hardness of k-Robust Set, we construct
a simple fpt-reduction from the problem Red/Blue Dominating Set proved
W[2]-hard in [11] and defined as follows: given a bipartite graph G = (R∪B,E)
and a positive integer k, determine if there exists a set R′ ⊆ R of cardinality k
such that every vertex in B has at least one neighbor in R′. The parameter is k.

Theorem 2. k-Robust Set is W[2]-complete even for bipartite graphs.

Proof. Membership follows from Theorem 1. Now, let us show the W[2]-hardness.
Given (G, k) an instance of Red/Blue Dominating Set, we construct an in-
stance (G′ = (V ′, E′), t, k) of k-Robust Set as follows. We consider the com-
plement Ḡ of the graph G, that is two vertices u ∈ R and v ∈ B are adjacent
in Ḡ if and only if they are not adjacent in G. Moreover, the sets R and B re-
main independent sets. Graph G′ is obtained from this last graph by attaching
max{k − dḠ(v), 1} forbidden edges to each vertex v ∈ B. Finally, set t(v) = k
for every vertex v ∈ B and t(v) = 1 for every vertex v ∈ R. Adding several for-
bidden edges to the vertices of B make sure that the threshold of these vertices
is less than or equal to their degree as required.

Assume that (G, k) has a solution R′ ⊆ R of size k. One can see that R′ is
also a solution for (G′, t, k) since every vertex in B is not adjacent to at least
one vertex in R′. Conversely, suppose that there is a robust set S ⊆ V ′ of size
k in G′. Since S is robust, S cannot contain any vertex from B because of the
forbidden edges, and thus S is entirely contained in R. Moreover, every vertex
v in B is adjacent in G′ to at most t(v)− 1 = k − 1 vertices in S. Hence, every
vertex in B is adjacent in G to at least one vertex in S. Therefore, S is a solution
of size k for (G, k). �

In the next two theorems, we show that k-Robust Set goes one level down
in the W-hierarchy when all thresholds are bounded by a constant.

Theorem 3. k-Robust Set is in W[1] if all thresholds are constant bounded.

Proof. Let (G, t, k) be an instance of k-Robust Set where t(v) ≤ c, ∀v ∈ V
for some constant c > 0. We construct in O(nc)-time, where n is the number of
vertices of G, a boolean circuit C of depth 3 and weft 1 as follows. We identify
the inputs of the circuit with the vertices of G. Connect a ¬-gate to every input.
For all v ∈ V and all subsets S′ ⊆ N(v) of size t(v), add a ∨-gate connected to
¬-gate of inputs in S′. Finally, add a large ∧-gate connected to every ∨-gate. It
is not hard to see that G admits a robust set of size k if and only if there is a
weight-k assignment that satisfies C. �
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We establish the W[1]-hardness of k-Robust Set by an fpt-reduction from
the problem Red/Blue NonBlocker [10] defined as follows: given a bipartite
graph G = (R∪B,E) and a positive integer k, determine if there is a set R′ ⊆ R
of cardinality k such that every vertex in B has at least one neighbor that does
not belong to R′. The parameter is k. This problem remains W[1]-hard even
when every vertex in B has degree two and every vertex of R has degree at least
two [10].

Theorem 4. k-Robust Set is W[1]-complete even

1. For bipartite graphs and constant majority threshold.
2. For split graphs and constant threshold t(v) = 2,∀v ∈ V .

Proof. Membership follows from Theorem 3. We now prove the W[1]-hardness.
(1): Let (G, k) be an instance of Red/Blue NonBlocker where vertices

in B have degree two, we construct the graph G′ = (V ′, E′) from G as follows.
For each vertex v ∈ B, attach a forbidden edge to v. Set t(v) = ddG′(v)/2e for
all v ∈ V ′.

Assume that (G, k) has a solution R′ ⊆ R of size k. It is not hard to see
that R′ is also a solution for (G′, t, k). Conversely, suppose that there is a robust
set S ⊆ V ′ of size k in G′. Because of the forbidden edges, the set S is entirely
contained in R. Since R is a robust set, every vertex in B is adjacent to at least
one vertex in R \ S. Therefore, S is a solution of size k for (G, k).

(2): Let (G, k) be an instance of Red/Blue NonBlocker where vertices
in B have degree two and every vertex of R has degree at least 2, we construct
the graph G′ = (V ′, E′) from G as follows. Add edges to make B a clique. Set
t(v) = 2 for all v ∈ V and k′ = k. Without loss of generality we may assume
that k ≥ 2.

Assume that (G, k) has a solution R′ ⊆ R of size k. One can easily verify
that R′ is a robust set of size k′ for (G′, k′). Conversely, suppose that there is
a robust set S ⊆ V ′ of size k′ in G′. Notice that S ∩ B = ∅ since otherwise we
would not have been able to take more than one vertex in G. Indeed, if there are
two vertices u, v ∈ S with v ∈ B then there is always a vertex w ∈ B − {u, v}
adjacent to both v and u. Thus, S is entirely contained in R. From now, it is
not hard to see that R is also a solution for (G, k). �

It is interesting to note that the ratio between the number of unbounded
vertices and the number of bounded vertices of the graph in the proof of Theo-
rem 2 can be made arbitrarily small (add many forbidden edges). This implies
a sharp dichotomy between the W[2]- and W[1]-completeness of k-Robust Set
regarding the thresholds.

Unanimity threshold. We consider now the k-Robust Set With Unanim-
ity problem. First, we start with the following easy observation. In the case of
unanimous threshold, any robust set is the complement of a total dominating
set. Recall that a total dominating set S is a set of vertices such that every
vertex has at least one neighbor in S. Moreover, we have the following theorem.
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Theorem 5. [9] If G is a connected graph of order at least 3 then there is a
total dominating set of size at most 2n/3.

This implies that Max Robust Set With Unanimity always has a solution
of size at least n/3 when n ≥ 3. The consequence of this result is that we directly
get a linear kernel of size 3k. Indeed, let (G, t, k) be an instance of k-Robust
Set With Unanimity, if k ≤ n/3 then the answer is Yes. If k > n/3 then
the instance (G, t, k) is a kernel of size at most 3k. However, the parameter k is
“large” in this last case. This suggests to look for other parameterizations.

Parametric dual. Now, we show that (n − k)-Robust Set is FPT with
respect to parameter k for a large family of threshold functions.

Reduction rule 1 Let (G, t, k) be an instance of (n−k)-Robust Set. If there
is a vertex v such that d(v) ≥ k + t(v) − 1 then remove v and decrease by one
the threshold of every vertex in N(v) to get a new equivalent instance (G′, t′, k).

Lemma 1. Reduction rule 1 is sound.

Proof. Let S ⊆ V be a robust set of size at least n − k. If there is a vertex v
with d(v) ≥ k+ t(v)− 1 then v must be in S since otherwise v has at most k− 1
neighbors in V \ S and then at least t(v) neighbors in S. �

Theorem 6. (n−k)-Robust Set admits a kernel of size O(k2) if for all v ∈ V
t(v) = dαvd(v)βv + γve for any constants αv, βv ∈ [0, 1], αvβv 6= 1, and γv ∈ Q.

Proof. Let (G, t, k) be an instance of (n− k)-Robust Set. Exhaustively apply
reduction rule 1 to get (G′, t′, k). Assume that there exists a solution S ⊆ V of
size at least n− k. Because of reduction rule 1, we have that

d(v) < k + t(v)− 1 = k + dαvd(v)βv + γve − 1 ≤ k + αvd(v)βv + γv
We claim that d(v) ≤ θv(k) for all v ∈ V ′ where θv(k) = k+γv

1−αv + (1/βv)
1

1−βv if

αv 6= 1, k+γv
1−βv + (1/βv)

1
1−βv otherwise. Consider the following cases.

Case 1. If βv = 0 then obviously d(v) ≤ θv(k)
Case 2. If βv = 1 then d(v) < k+γv

1−αv < θv(k) (since αv < 1)
Case 3. Suppose now that βv ∈ (0, 1). First, it is not hard to show that the

following holds: nβv ≤ βvn if and only if n ≥ (1/βv)
1

1−βv for any n ≥ 1 and

βv ∈ (0, 1). Hence, If d(v) ≥ (1/βv)
1

1−βv then we have d(v) ≤ k + αvβvd(v) + γv
and thus d(v) ≤ k+γv

1−αvβv ≤ θv(k). Otherwise d(v) < (1/βv)
1

1−βv ≤ θv(k).

Since every vertex from S has at least one neighbor in V ′ − S then |S| has at
most |V ′ − S|dmax ≤ kθmax(k) vertices where θmax(k) = maxv∈V ′θv(k) and
dmax is the maximum degree of vertices in V ′ − S.

The kernelization procedure is then defined as follows. From an instance
(G, t, k) of (n − k)-Robust Set, exhaustively apply reduction rule 1 to get an
instance (G′, t′, k). If |V ′| > kθmax(k) + k then return a trivial No-instance.
Otherwise, return the instance (G′, t′, k). �

Notice that if αv = βv = 1 and γv = 0, ∀v ∈ V then the (n − k)-Robust
Set problem is exactly the Total Dominating Set problem which is known
to be W[2]-hard [14].
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4 Algorithm for tree-like graphs

In this section we establish an O(T 2ωn) algorithm for Max Robust Set and a
O((k+ 1)2ωn) for k-Robust Set where T is the maximum threshold and ω the
treewidth of the input graph.

Using a nice tree decomposition together with a dynamic programming al-
gorithm we can prove the following.

Theorem 7. Max Robust Set is solvable in time O(T 2ωn) where T is the
maximum threshold and ω is the treewidth of the input graph.

Now we show that k-Robust Set is solvable in O((k+1)2ωn) time. For that
purpose, we introduce the following reduction rule.

Reduction rule 2 Let (G, t, k) be an instance of k-Robust Set. If there is a
vertex v such that t(v) > k + 1 then set the threshold t(v) to k + 1 to get a new
equivalent instance (G, t′, k).

Lemma 2. Reduction rule 2 is sound.

Proof. Let (G = (V,E), k, t) be an instance of k-Robust Set. Exhaustively
apply Reduction Rule 2 on (G, t, k) to get a new instance (G, t, k′). It is not
hard to see that if S ⊆ V is a robust set of size at least k for (G, t, k), then any
subset of size k of S is a robust set for (G, t, k′). The converse is clear. �

We are now ready to prove the following.

Theorem 8. k-Robust Set is solvable in time O((k + 1)2ωn) where ω is the
treewidth of the input graph.

Proof. Let (G, t, k) be an instance of k-Robust Set. Exhaustively apply Re-
duction Rule 2 on (G, t, k) to get a new instance (G, t, k′). Apply the algorithm
from Theorem 7 on (G, t′) to get the optimal solution of value opt. If opt ≥ k
return Yes; otherwise return No. Since every threshold is at most k + 1, the
running time is O((k + 1)2ωn). �

Notice that if all thresholds are constant bounded then k-Robust Set is in
FPT with respect to parameter treewidth.

5 Approximability

In this section, we show that Max Robust Set is inapproximable even for small
constant thresholds. In order to prove this result, we consider the Max Clique
problem: given a graph G = (V,E), find a clique C ⊆ V of maximum size.

Theorem 9. If NP 6= ZPP , Max Robust Set is not approximable within nε

for any ε > 0 even for thresholds at most two.
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We now prove the APX-completeness of Max Robust Set With Unanim-
ity.

Lemma 3. Max Robust Set With Unanimity is 3-approximable in polyno-
mial time.

Proof. The algorithm consists of the following two steps:

1. Compute a spanning tree T of G.
2. Compute an optimal solution S of T .

Using Theorem 7, the algorithm runs in polynomial-time. Clearly, any feasible
solution for T is also a solution for G. Moreover, using Theorem 5, we have
|S| ≥ n/3 ≥ opt(G)/3. �

Theorem 10. Max Robust Set With Unanimity is APX-complete.

Proof. Membership follows from Lemma 3. In order to prove the APX-hardness
we provide an L-reduction (see Definition 1) from Max E2Sat-3 proved APX-
hard in [4] and defined as follows: given a CNF formula φ with n variables and
m clauses, in which every clause contains exactly two literals and every vari-
able appears in exactly three clauses, determine an assignment to the variables
satisfying a maximum number of clauses. Notice that m = 3n/2.

Given a formula φ of Max E2Sat-3, we construct an instance I = (G =
(V,E), t, k) of Max Robust Set With Unanimity as follows (see Figure 1).
For every variable xi, we construct the complete bipartite graph K3,3(xi) =
(V −(xi), V

+(xi)) in which every edge uv is replaced by an edge-vertex euv and
two edges ueuv and euvv. We denote by E(xi) this set of edge-vertices. The
vertices in V +(xi) (resp. V −(xi)) represents the positive (resp. negative) literals
of xi. We denote by A the set of all vertices added so far. For every clause cj in
φ add two adjacent clause-vertices c̄j and c̄′j . For every variable xi, if xi appears
positively (resp. negatively) in a clause cj then add an edge between c̄′j and a
vertex of V −(xi) (resp. V +(xi)). Thus, vertex c̄j represents the complement of
the clause cj in φ. Finally, add two adjacent vertices c and c′. For every vertex
v ∈ V −(xi) ∪ V +(xi), if v is not adjacent to a clause-vertex then add the edge
vc′.

The optimal value in I is bounded by the number of vertices of G and thus,
opt(I) ≤ 15n + 2m + 2 ≤ 16opt(φ) + 2 ≤ 18opt(φ) since opt(φ) ≥ 3/4m and
opt(φ) ≥ 1.

Moreover, let x∗ ⊆ V be an optimal assignment for φ and let

S = ∪x∗i=1V
+(xi)∪∪x∗i=0V

−(xi)∪∪ni=1E(xi)∪{c̄j : cj is satisfied by x∗}∪{c}.

We can easily verify that S is a robust set and |S∩(V −(xi)∪V +(xi)∪E(xi)| =
12 and thus |S ∩A| = 8m and then opt(I) ≥ |S| = 8m+ opt(φ) + 1.

Let S be a robust set for I. We show in the following how to construct an
assignment aS for φ from the solution S such that val(φ, aS) = |S| − 8m − 1.
For each variable xi, S cannot contain vertices from both V −(xi) and V +(xi)
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since otherwise an edge-vertex has both neighbors inside S. Notice also that S
cannot contain any vertex c̄′j , since c̄′j is adjacent to the degree one vertex c̄j .
Similarly c′ /∈ S.

If S contains for every i = 1, . . . , n the set E(xi) and one of the sets V −(xi)
or V +(xi) then |S ∩ A| = 8m and we can defined the following assignment aS :
xi = 1⇔ |S ∩V +(xi)| 6= 0. In this case, a clause-vertex is in S if and only if the
corresponding clause is satisfied by aS . Thus, the number of clauses satisfied by
aS is exactly val(φ, aS) = |S| − 8m− 1.

Assume now that |S ∩A| < 8m. We show that there exists an other solution
S′ with |S′| ≥ |S| such that |S′ ∩ A| = 8m. If a vertex v ∈ E(xi) \ S for some
i ∈ {1, . . . , n}, we can add v in S since v cannot have both neighbors in S.
Similarly, if c is not in S, then we add c in S.

Since |S ∩ A| < 8m, there is at least one vertex either in V +(xi) \ S or in
V −(xi) \ S for some i ∈ {1, . . . , n}. Without loss of generality, we only consider
vertices in V +(xi) \ S. A vertex v ∈ V +(xi) \ S is either adjacent to c′ or
to a clause-vertex c̄′j . In the first case we add v in S. In the second case, we
denote N(c̄′j) = {v, v′, c̄j}. If v′ ∈ S and c̄j ∈ S then remove c̄j from S and
add v instead, otherwise, add v in S. Thus, we obtain a new solution S′ such
that |S′| ≥ |S| and |S′ ∩ A| = 8m and in this case as below, we can obtain an
assignment aS′ such that |S′| − val(φ, aS′) = 8m + 1. In particular, if S′ is an
optimal solution, then opt(φ) ≥ val(φ, aS′) = opt(I)− 8m− 1 and thus, we have
opt(I)− opt(φ) = 8m+ 1 and then opt(φ)− val(φ, aS′) = opt(I)− |S′|. �

. . .

. . .

c̄′1

c̄1

c̄′m

c̄m

c̄′

c̄

x1 xn

Fig. 1. The construction of G.

In the following we propose a PTAS on the class of planar graphs, using the
polynomial time algorithm for graphs of bounded treewidth.

Theorem 11. Max Robust Set on planar graphs admits a PTAS.

Proof. Given a planar embedding of an input graph, we consider the set of the
vertices which are on the exterior face, they will be called level 1 vertices. By
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induction we define level k as the vertices which are on the exterior face when
we have removed the vertices of levels smaller than k [2]. A planar embedding
is k-level if it has no nodes of level greater than k. If a planar graph is k-level,
it has a k-outerplanar embedding.

If we want to achieve an approximation within 1 + ε, let us consider k =
2(1 +

⌈
1
ε

⌉
). Let Xt be the set of vertices of level t and let Hi, 0 ≤ i ≤ k − 1,

be the graph obtained from G by considering the subgraphs formed by the set
of vertices

⋃
t+1≤j≤t+kXj , for t ≡ i (mod (k − 2)). The subgraph containing

exactly
⋃
t+1≤j≤t+kXj is k-outerplanar, and so is Hi, too.

Since Hi is k-outerplanar, it has treewidth at most 3k − 1 [5]. We construct
graph H ′i from Hi by attaching a forbidden edge to each vertex on the boundary
(that means vertices in Xt+1, Xt+2, Xt+k−1Xt+k with t ≡ i(mod (k−2))). Thus,
in each subgraph of H ′i the vertices in Xt+1, Xt+2, Xt+k−1Xt+k cannot take part
from any robust set.

On applying Theorem 7, we can efficiently determine an optimal robust set
in each subgraph of H ′i. Denote by Si the union of these robust sets. Clearly Si
is a robust set on Hi.

Among S0, . . . , Sk−1 we choose the best solution that we denote S and we are
going to prove that S is an (1 + ε)-approximation of the optimal value on G. We
can easily show that there is at least one r, 0 ≤ r ≤ k−1 such that at most 2

k of
vertices in an optimal solution Sopt of G are on levels Xt+1, Xt+2, Xt+k−1Xt+k

with t ≡ r (mod (k− 2))). This means that the solution Sr obtained by deleting
the vertices from levels Xt+1, Xt+2, Xt+k−1Xt+k from Sopt will have at least
|Sopt|(1− 2

k ) = k−2
k opt vertices. According to our algorithm, |S| ≥ |Sr| ≥ opt

1+ε .
The overall running time of the algorithm is k times what we need for graphs

of treewidth at most k, that is O(kT 6k−2n) = nO(1/ε) where T = maxv∈V t(v).
�

6 Conclusion

In this paper, we introduced the k-Robust Set problem. We established positive
and negative results concerning its parameterized tractability and approxima-
bility. However, several questions remain open. For instance, we do not know
if the problem is fixed-parameter tractable for parameter treewidth. Another
interesting open question is whether k-Robust Set With Unanimity is fixed-
parameter tractable for parameter k when we ask to determine the existence of
a robust set of size at least dn3 e+ k. Finally, there is room enough for improving
the approximability of Max Robust Set With Unanimity.
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