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2 Université Paris-Dauphine, PSL University, CNRS, LAMSADE,

75016 Paris, France
cristina.bazgan@lamsade.dauphine.fr

3 Universität Trier,
Fachber. 4 – Abteilung Informatikwissenschaften, 54286 Trier, Germany

fernau@uni-trier.de

Abstract. We introduce a parameterized dynamic version of the Red-
Blue Dominating Set problem and its partial version. We prove the fixed-
parameter tractability of the dynamic versions with respect to the (so
called) edit-parameter while they remain W[2]-hard with respect to the
increment-parameter. We provide a complete study of the complexity of
the problem with respect to combinations of the various parameters.
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1 Introduction

In the Red-Blue Dominating Set problem (henceforth RBDS), we are given a
graph G = (R ∪ B,E) such that R ∩ B = ∅, together with an integer s ≥ 0,
and we are asked whether R contains a subset S of cardinality at most s such
that every element of B has at least one neighbor in S. In this case the elements
of R and B are called red and blue vertices respectively, and S is a red-blue
dominating set of G. We shall also refer to G as a red-blue graph. It is well-
known that RBDS is equivalent to Set Cover as well as to Hitting Set.1

In this paper we are interested in the parameterized complexity of dynamic
versions of RBDS and some of its variants. In such dynamic settings, originally
defined by Downey et al. in [12] in the context of the Dominating Set problem,
we assume the edges of the input graph G can appear or disappear with time, so
an initially feasible RBDS solution S (not necessarily optimal) may no longer
1 The problem should not be confused with Red-Blue Set Cover as studied in [7].
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dominate all of B and we want to construct another solution S′ so that the
Hamming distance between S and S′ is minimized. The problem is formally
defined as follows.

Dynamic Red-Blue Dominating Set (DRBDS)
Given: Two red-blue graphs G = (R∪B,E) and G′ = (R∪B,E′), a subset S of R
that is a red-blue dominating set of G, integers k and r such that dH(E,E′) ≤ k.
Question: Is there a subset S′ of R such that dH(S, S′) ≤ r and S′ is a red-blue
dominating set of G′?
By analogy to operations on characteristic vectors, the Hamming distance
between two sets (subsets of the same, mostly implicitly given ground set) refers
to the cardinality of the symmetric set difference, i.e., dH(S, S′) = |S Δ S′|.

Remark 1. Since r is a bound on the Hamming distance between S and S′, we are
not necessarily interested in deleting elements from S. Therefore we can always
assume S ⊆ S′ according to the formulation above. Then, dH(S, S′) = |S′|− |S|.
Hence, r is called the increment-parameter. Similarly, in view of the problem
at hand, it suffices to consider the special case when E′ ⊆ E, i.e., E′ resulted
from E by removing some edges. Then, dH(E,E′) = |E|−|E′|. More precisely, if
G = (R ∪ B,E), G′ = (R ∪ B,E′), S, k and r form an instance of DRBDS, then
also Ĝ = (R ∪ B,E ∪ (E′ \ E)), G′ = (R ∪ B,E′), S, k and r form an instance
of DRBDS as well, and S′ ⊆ R is (or is not) a red-blue dominating set of G′ in
both cases. We call k the edit-parameter.

Notice that DRBDS could be also viewed as a reoptimization variant of
Set Cover as defined in [3]. However, the more interesting approximation results
obtained in that paper rely on the given solution to be optimum, a condition that
is relaxed in this paper. So, we are following here the terminology introduced in
[1,12], which is not the same as later used in [2] under a similar name.

Motivation

In social networks, there is a growing interest in domination problems that can
model the search for influencers in the best way, in particular aiming at people
who can spread positive influence and participate in launching a global campaign
such as, for example, a non-smoking campaign. In such a context, the network
consists of two types of people: the set R of non-smokers (who are not to be
convinced but can help in convincing others) and the set B which consists of
those who are known to have the smoking habit. The natural social network of
friendship relations can be modeled as a graph.

Ideally one would seek a set of individuals S ⊆ R (to serve as influencers)
that are friends of all the elements of B. However, in real settings, the objective
would be to affect (or, in a more formal sense, to dominate) as many elements
of B as possible. This latter objective is modeled using the partial version of
RBDS, originally defined in [15] in the context of learning theory. Moreover,
it would be more realistic to assume someone is influenced by the non-smoking
campaign if there are at least a number, say q, of his or her friends who serve as



238 F. N. Abu-Khzam et al.

influencers. This gives rise to the q-RBDS problem which differs from RBDS
only in the domination condition requiring each element of B to have at least q
neighbors in S ⊆ R.2

We shall study the partial q-RBDS problem, among other variants, and focus
on its parameterized dynamic version to cope with settings where the network
is changing with time.

Another interesting scenario where dynamic RBDS could be useful is when
the red and blue vertices correspond to stores and customers, respectively, and
the links are based on credit card transactions: an edge uv means customer u
frequently purchases items from store v. In such a setting, it would be inter-
esting to have a smallest possible list of stores that are preferred by a large
number (or majority) of customers. Moreover, since data from credit card trans-
actions is dynamic, and the interests of customers change with time, some links in
the corresponding red-blue graph can appear or disappear, which might require
updating a previously computed (partial) RBDS solution. The so-called partial
DRBDS problem is obviously the right model in this case. In fact, the more
general partial (dynamic) q-RBDS problem could be of interest, as well. This is
another direction studied here.

Finally, let us mention another motivation for dynamic problems as consid-
ered in the paper: assume we have found (over time, with experience) a nice
solution to the problem that we are interested in. Here, nice does not necessar-
ily mean smallest or largest, but just satisfying a number of properties, out of
which some are formalized and are those we wish to keep up even if the situation
changes slightly. As the previous solution was nice, we do not want to change
it too much. This justifies the general assumption (important in the context of
Parameterized Complexity) that the two change parameters can be assumed to
be small.

Throughout this paper, we adopt common graph-theoretic terminology and
notations. Apart from the problems mentioned above, we will discuss quite a
number of auxiliary problems that might be of independent interest. The paper
is structured as follows. In the next section, we study the complexity of the
dynamic version of the Red-Blue Dominating Set problem. The partial version
is studied in Sect. 3, while the last section briefly addresses approximability but
focuses on open problems.

2 Complexity of Dynamic Red Blue Dominating Set

The fact that DRBDS is NP-hard is obvious. It follows immediately from the
NP-hardness of RBDS itself. To see this, let (G = (R∪B,E), s) be an instance
of RBDS; construct two graphs G1 and G2 as follows:3 G1 is obtained from G
by adding a special vertex w and joining it by |B| edges to each vertex of B.
2 In this model, possibly also the influence of smokers on their smoking friends should

be taken into account. This would lead to notions like alliances or monopolies as
discussed in [13]. We are not going into this direction in this paper.

3 We also refer to the general discussions of hardness for dynamic problems in [5].
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G2 is obtained by deleting the k = |B| edges incident on w. Now set S = {w}
and r = s to obtain the dynamic RBDS instance. Obviously, any solution S′ is
equivalent to a solution to the given RBDS instance and vice versa.

We now define the Need-Based Red-Blue Dominating Set problem and use it
to obtain some algorithmic results which might be of independent interest.4

Need-Based Red-Blue Dominating Set (NB-RBDS)

Given: A red-blue graph G = (R ∪ B,E) together with integers s, q ≥ 0 and a
function η : B −→ {0, 1, . . . , q}.
Question: Does R contain a subset D of cardinality at most s such that every
element b of B has at least η(b) neighbors in D?

Notice that in approximation algorithms, this type of problems has been
studied as a special case of covering integer programs, see [22] as an example
reference. Namely, considering η as a |B|-dimensional vector and thinking of x as
a |R|-dimensional binary solution vector, as well as A as the |B|×|R|-biadjacency
matrix of the bipartite graph G, then NB-RBDS asks to find a solution vector x
with at most s one-entries that satisfies Ax ≥ η. This translation immediately
provides an O(|R|O(|R|))-algorithm based on Lenstra’s results [18]. We present an
alternative approach now, which is better roughly in the case when (q + 1)|B| <
|R||R|.

Notice that vertices with η(v) = 0 are trivially satisfied, so they can be
removed from the instance. Hence, we can (tacitly) assume η : B −→ {1, . . . , q}.

Theorem 1. NB-RBDS is fixed-parameter tractable with respect to |B| and q
as parameters.

Proof. Let R = {r1, . . . , rn}, B = {b1, . . . , bm} and q = max1≤i≤m{η(bi)}. We
show how to construct a solution S in time O((q + 1)|B|) by using dynamic
programming.

Consider the set of all functions from B to the set {0, 1, . . . , q}. There are
at most (q + 1)|B| many of them. A more precise upper-bound on their num-
ber is

∏
b∈B(η(b) + 1), as each such function can be represented by a vector

(x1, . . . , xm), where xi ∈ {0, 1, . . . , η(bi)} and m = |B|.
In the dynamic programming algorithm that we describe next, our target

vector is x = (x1, . . . , xm), where xi is the number of elements of R that are still
needed to (finally) cover bi with η(bi) elements of R. Let Rj = {r1, r2, . . . , rj}
and let C[x, j] be the minimum number of elements of Rj needed to be added
to S in order to cover each bi with xi elements from Rj . Hence, we initialize
C[0, 0] = 0 and C[x, 0] = ∞ for all x �= 0. Then we have the following recursion
for j > 0:

C[x, j] = min{C[x, j − 1], 1 + C[max{x − χN(rj),0}, j − 1]},

4 The notion of capacitated domination is related. Unfortunately, this notion is not
used consistently in the literature. While in [14], both capacities and demands are
associated to vertices, so that capacities equal to degrees and demands equal to needs
would be exactly a need-based variant of domination, in [6,11], there is no demand
function. However, we are not going into this direction here, also because for our
purposes, the need-based variation is rather an auxiliary problem.
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where χN(rj) is the characteristic vector of N(rj) ⊆ B; the maximum operation
is understood component-wisely. So in the case where rj is in a smallest solution
from Rj we subtract 1 from each xi where bi ∈ N(rj). Obviously, the bottom
up dynamic programming approach would compute any target vector in time
O((q + 1)m|R|). This could be speed up by not considering target vectors with
components xi > η(bi). �

Observe that one could view our problem as a (very) special case of the
Hitting Set of Bundles problem considered in [10]. In fact, for each vertex b ∈ B,
we would introduce the set system S(b) of all η(b)-element subsets of N(b) and
the question would be to select a subset s(b) ∈ S(b) for each b ∈ B so that
the set

⋃
b∈B s(b) ⊆ R has cardinality at most s. Unfortunately, we arrive at a

very special case of Hitting Set of Bundles, so that the parameterized complexity
results known for that problem are not very helpful in our case. In particular,
the situation where Damaschke could prove W[1]-hardness, when the bundles
have size at most two, we would face the situation when q = 2 is a constant and
we parameterize by |B| and s, a situation covered (in a much stronger sense) by
the previous theorem, leading to an FPT result in our scenario.

Note that the solution size, s, was not treated as a parameter in the proof
above, so the dynamic programming algorithm finds a solution of minimum size
in R. We can (therefore) obtain the following result. Notice that we now fix q ≥ 1
as part of the problem definition.

Corollary 1. Dynamic q-RBDS is fixed-parameter tractable with respect to the
edit-parameter k.

Proof. Consider two red-blue graphs G = (R ∪ B,E) and G′ = (R ∪ B,E′), a
subset S of R that is a red-blue dominating set of G, integers k and r such that
dH(E,E′) ≤ k. By Remark 1, we can assume that E′ ⊆ E. Let B′ ⊆ B be the
set of elements of B that have less than q neighbors in S after the deletion of at
most k edges when moving from E to E′. Let B′ = {b1, b2, . . . , bk′}, k′ ≤ k (since
at most k edges are deleted). Let η(bi) = max{q − |NG′(bi) ∩ S|, 0}. In other
words, η(bi) is the number of elements of R that are still needed to dominate bi

with q (red) neighbors. Let q′ = max1≤i≤k′{η(bi)}. Obviously q′ ≤ k.
Now we are left with the instance (G = (R ∪ B′, E), r, η) of the NB-RBDS

problem, which is solvable in O((q′ + 1)|B′|). This proves our assertion, knowing
that both q′ and |B′| are bounded above by k. �

The following corollary follows immediately from the above; it corresponds
to the case q = 1.

Corollary 2. Dynamic RBDS is fixed-parameter tractable with respect to the
edit-parameter k.

Remark 2. More precisely, the proof of Corollary 1 shows that we can estimate
the running time as O∗(2k), as η : B′ → {0, 1}. Notice that algorithms of the
form O∗(2o(k)) are not to be expected under the Set Cover Conjecture, see [9],
because it is possible to formulate Set Cover as Dynamic RBDS. In essence, this
is also done in the proof of the next theorem, in an even more general setting.



Dynamic Red-Blue Dominating Set 241

Now we turn our attention to the increment-parameter, r. It was shown in
[1,12] that Dynamic Dominating Set is W[2]-hard when parameterized by the
increment-parameter r only. We show the same for q-RBDS.

Theorem 2. For any q ≥ 1, Dynamic q-RBDS is W[2]-hard with respect to the
increment-parameter r.

Proof. By reduction from the W[2]-hard RBDS problem. Let (G = (R∪B,E), r)
be an instance of RBDS. We construct an instance (G1, G2, S, k, r) of Dynamic
q-RBDS as follows.
G1 is obtained from G by adding q red vertices forming the set S that, together
with B, induces a complete bipartite subgraph. Let S = {w1, w2 . . . , wq}. Then
G1 = (R′ ∪B,E1) where R′ = R∪S and E1 = E ∪{vwi : v ∈ B, 1 ≤ i ≤ q}. Let
G2 = (R′ ∪ B,E2) where E2 = E1 \ {vw1 : v ∈ B} and k = |B|. In other words,
every element of B is dominated in G1 by the q vertices of S. However, in G2

every element of B is dominated by the q − 1 vertices of S \ {w1}. A solution S′

of this Dynamic q-RBDS instance must contain at most r vertices from R that
dominate B. �

Remark 3. It is not very difficult to design a multi-tape Turing machine that
solves Dynamic q-RBDS by first guessing the (at most) r vertices to be added
to the existing red-blue dominating set and then verifying this guess by using one
tape per vertex (better said neighborhood) in the spirit of [8]. The only difference
to the classical approach is that some head positions have to be individually set
by the reduction machine that constructs this Turing machine, based on the
information how the given set S already dominates other vertices.

Corollary 3. Dynamic RBDS is W[2]-complete with increment-parameter r.

3 The Partial Dynamic RBDS Set Problem

In the Partial Red-Blue Dominating Set problem, or Partial RBDS for short, we
are given an additional parameter t, the budget parameter, and the objective is
to find (whether there is) a subset S of R with |S| ≤ s that dominates at least t
elements of B. The dynamic version is defined as follows.

Dynamic Partial Red-Blue Dominating Set (PRBDS )
Given: Two red-blue graphs G = (R ∪ B,E) and G′ = (R ∪ B,E′); an integer
t ≥ 0; a subset S of R satisfying |NG(S)| ≥ t; integers k, r ≥ 0 such that
dH(E,E′) ≤ k.
Question: Is there a subset S′ of R such that dH(S, S′) ≤ r and |NG′(S′)| ≥ t?

Similar comments as collected in Remark 1 apply here as well: we may hence
assume that E′ ⊆ E and that S′ ⊇ S.

By enforcing t = |B|, it is not hard to see that the previously obtained
hardness results for the increment-parameter transfer (see Theorem 2).
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Corollary 4. Dynamic PRBDS is W[2]-hard with increment-parameter r.

This observation lets us focus on the other two natural parameters of this
problem, the edit-parameter k and the target-parameter t.

The Partial RBDS problem is known to be fixed-parameter tractable with
respect to t. This was (equivalently) formulated in [4] in terms of Partial (Set)
Cover. The currently fastest algorithm runs in randomized time O∗(2t), using
polynomial space, as shown by Koutis and Williams [17] for the related Par-
tial Dominating Set problem. To keep the paper self-contained, we are going to
describe how this type of algorithm would look like for Partial RBDS next. The
key is a reduction to a problem that is based on the following algebraic set-
ting. Let X denote a set of variables. A monomial of degree d is a product of d
variables from X, with multiplication assumed to be commutative. A mono-
mial is called multilinear if no variable appears twice or more in the product.
A polynomial P (X) (over the semiring of nonnegative integers N) is a linear
combination of monomials with coefficients from N. Such polynomials, along
with addition and commutative multiplication, form a commutative semiring,
denoted by N[X]. The maximum degree among all monomials of P (X) is called
the degree of P (X). An arithmetic circuit over N and X is a directed acyclic
graph. Each node of in-degree zero is an input gate, which is labeled either with
an element from N or with a variable from X. The graph contains a single output
node of out-degree zero. Each other node is either an addition or a multiplica-
tion gate. Arithmetic circuits are representations for polynomials from N[X]. A
polynomial P (X) ∈ N[X] contains a certain monomial if the monomial appears
with a nonzero coefficient in the linear combination that constitutes P (X).
Multilinear Monomial Detection (MlD)

Given: An arithmetic circuit C representing a polynomial P (X) over N, an inte-
ger d ≥ 0.
Question: Does P (X), construed as a sum of monomials, contain a multilinear
monomial of degree at most d?

Koutis and Williams [17] showed that MlD, parameterized by the degree
parameter d, is fixed-parameter tractable, by providing a randomized algorithm
running in time O∗(2d), using polynomial space. They used this result to prove
that Partial Dominating Set can be solved in randomized FPT time O∗(2t).

To showcase this technique, we are first explaining how to derive an analogous
result for Partial RBDS. Let G = (R ∪ B,E) and k, t ≥ 0 form an instance of
Partial RBDS. We are going to construct a circuit C for the following polynomial.

Pk(X) :=

⎛

⎝
∑

r∈R

∏

b∈NG(r)

(1 + z · xb)

⎞

⎠

k

,

where the set of variables X consists of one variable xb for each vertex b ∈ B, as
well as one additional variable z. Now, Pk(X) contains a monomial of the form
ztxb1 · · · xbt for B′ := {b1, . . . , bt} forming a t-element subset of B if and only if
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B′ is dominated by (at most) k elements from R. The intuition is the following:
By raising the sum-of-products to the kth power, any monomial is formed by
picking k of the product-terms. As the sum ranges over all red vertices, this
corresponds to selecting � ≤ k red vertices, forming R′ = {r1, . . . , r�}. Each
of these vertices from R′ will dominate the whole neighborhood. However, as
we need to only dominate t vertices, we may select t vertices (if possible) from
NG(R′), and moreover, each vertex bi from this chosen set B′ ⊆ NG(R′) selects
one vertex d(bi) ∈ R′ as its dominator. Consider the monomial

∏

rj∈R′

∏

b∈B′,rj=d(b)

z · xb

contained in Pk(X). It is obviously of the required form; in particular, it is
multilinear (with respect to X \ {z}) and contains zt but not zt+1.

Moreover, for any other monomial ztξ1 · · · ξt, formed in a different way, we
necessarily find 1 ≤ i < j ≤ t such that ξi = ξj , i.e., this monomial is not
multilinear. Observe that the size of C is polynomial in the size of G, because
the term of the sum-of-products need not be repeated in a circuit. Hence, one
could use the randomized MlD-algorithm to solve Partial RBDS in randomized
time O∗(2t) as claimed, where the parameter t becomes the degree parameter.

We show the same applies to the dynamic version, when parameterized by
the edit-parameter.

Theorem 3. Dynamic Partial RBDS is fixed-parameter tractable with respect to
the edit-parameter k.

Proof. Let (G,G′, S, k, r, t) be an instance of Dynamic Partial RBDS, as in the
definition above. Assume E′ ⊆ E and S′ ⊇ S. Observe that t − |NG′(S)| ≤ k,
since at most k elements of NG′(S) are affected by at most k edge deletions. So
it would be enough to dominate at most t − |NG′(S)| elements of B \ NG′(S).
We can hence use the presented FPT -algorithm for Partial RBDS, applied to
the red-blue subgraph induced by R ∪ (B \ NG′(S)), with t − |NG′(S)| (≤ k) as
a parameter. �

As we will see, the following seemingly easy generalization cannot be solved
by using this algebraic approach. This proves that a rather natural variation of
MlD cannot be solved in FPT -time. We are now turning our attention towards
Partial q-RBDS for arbitrary (fixed) q ≥ 1:
Given: A red-blue graph G = (R ∪ B,E), integers k, t, s ≥ 0.
Question: Is there a subset S ⊆ R, |S| ≤ s, and a subset N ⊆ B with |N | ≥ t
such that each element in N has at least q neighbors in S?

If q is part of the input, we speak of Partial General RBDS. As a natural
generalization, we again consider a need-based variation. We will return to the
whole family of problems Dynamic Partial q-RBDS below. First recall that in
the previous section, we used the (more general) Need-Based RBDS problem to
address the dynamic variant of q-RBDS and we showed it to be fixed-parameter
tractable. Unfortunately, this is more delicate here, as we will show now.
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In the Need-Based Partial Red-Blue Dominating Set problem, we
are given an integer q and a function η : B −→ {0, 1, . . . q}, and we say that an
element v of B is dominated, or henceforth satisfied, by a subset D of R if it has
η(v) neighbors in D. A formal definition follows.

Need-Based Partial Red-Blue Dominating Set (NB-PRBDS)
Given: A red-blue graph G = (R ∪ B,E) together with integers s, t, q ≥ 0 and a
function η : B −→ {0, 1, . . . q}.
Question: Does R contain a subset D of cardinality at most s that satisfies at
least t elements of B?
Here, a subset D of R satisfies at least t elements of B if there is a set B′ ⊆ B
such that |B′| ≥ t and for all v ∈ B′, |N(v) ∩ D| ≥ η(v).

As in the previous section, we can tacitly assume that η(v) > 0 for all v ∈ B,
as otherwise we can easily satisfy v and hence remove v and decrement t.

It might be tempting to think that the ideas leading to FPT -algorithms in
Theorem 3 transfer to this case. We did try to work in this direction, but there
seems to be some difficulty because different individuals have different needs,
and this cannot be modeled while checking, at the same time, that at least t
blue vertices are dominated.

This difficulty can be backed with the following hardness result.

Theorem 4. NB-PRBDS is W[1]-hard with respect to t and q (and s) as param-
eters, even if the need function η is constant.

Proof. First, observe that if s = t = q and η being the constant function η = q,
NB-PRBDS asks about a biclique in the bipartite graph G = (R ∪ B,E) with
exactly s = q vertices in R (as q is a trivial lower bound on the size of any
solution) and (at least) t = q vertices in B. Rather recently, Lin proved that it
is W[1]-hard to find such a biclique Kt,t in a given bipartite graph, see [20] in
combination with [19, Lemma 3.1]. �

Corollary 5. Partial General RBDS is W[1]-hard, parameterized with t, q, or s.

Observe that usually, the partial variants of domination-like problems tend
to be in the class FPT . To the best of our knowledge, this is the first problem
variant where this question turns out to be hard. Yet, there is a catch in this
assertion, which can be seen by turning to the family of problems NB -q-PRBDS
whose definition coincides with that of NB -PRBDS, apart from the fact that q
is no longer part of the input here. We do not have a hardness result in this
case, nor do we know of algorithmic results, even not in the case when q = 2,
the case q = 1 having been dealt with (algorithmically) above. Rather, when we
look at Dynamic Partial General RBDS, where we have q as part of the input, we
can show the following result.

Corollary 6. Dynamic Partial General RBDS is W[1]-hard with respect to t or q
as parameters. W[1]-hardness even holds for the combined parameter (t, q, r, k).
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Proof. As above, consider t = q. If G′ = (R ∪ B,E′) (together with t = q) is an
instance of NB-PRBDS, then we obtain G by adding a Kq,q, with s = q. The
edit-parameter is q2, the increment-parameter would be q. �

We are now proposing a generalization of MlD that we prove to be hard when
parameterized with the degree parameter. This result could be of independent
interest. As it is not central to the topic of the paper, we omit its proof.
Multilinear Monomial Detection with Partition (MlDwP)

Given: An arithmetic circuit C representing a polynomial P (X) over N, a par-
tition of X, an integer d ≥ 0.
Question: Does P (X), construed as a sum of monomials, contain a multilinear
monomial of degree at most d that contains, for each class of the partition, either
all variables in that class or no variable from that class?

Theorem 5. MlDwP, parameterized by the degree parameter, is W[1]-hard.

Remark 4. One could try to alternatively parameterize Partial RBDS by k and
k′ := |B| − t. In fact, the problem is easily seen to be W [2]-hard, when param-
eterized by k′, because the problem can then be re-formulated as follows (dis-
regarding isolated vertices): Given some red-blue graph G = (R ∪ B,E) and
integers k, k′ ≥ 0, find subsets R′ ⊆ R and B′ ⊆ B, with |R′| ≤ k and |B′| ≤ k′,
such that N(R′) = B \ B′ and N(B′) = R \ R′. Hence, if k = 0, the question
boils down to RBDS itself, with the roles of red and blue being exchanged.

Clearly, this tweak does not change the dynamic version of the problem at
all, it is equivalent to Dynamic Partial RBDS as studied above.

Remark 5. One could also think of changing the notion of a solution in the
dynamic partial setting. This would mean the following problem.

Dynamic Partial Red-Blue Dominating Set with Blue Focus (RBDSBF )
Given: Two red-blue graphs G = (R ∪ B,E) and G′ = (R ∪ B,E′); an integer
t ≥ 0; a subset T of B satisfying |T | ≥ t, dominated by S ⊆ R; integers k, r ≥ 0
such that dH(E,E′) ≤ k.
Question: Is there a subset T ′ of B, dominated by some S′ with |S′| ≤ |S|, such
that dH(T, T ′) ≤ r and |T ′| ≥ t?

NP-hardness of this variant is easily seen by starting from some RBDS
instance G′ = (R ∪ B,E′) and a bound s on the size of the red-blue domi-
nating set. Construct G from G′ by selecting a subset S ⊆ R with |S| = s and
adding |B| edges (to form E) so that S is a red-blue dominating set of G. With
t = k = |B| and r = 0, we have defined all ingredients of the equivalent Dynamic
RBDSBF instance. This also proves that the problem is para-NP-hard for the
increment-parameter r.

4 Concluding Remarks

In this paper, we undertook a multivariate analysis of Red-Blue Dominating Set.
Clearly, one could also consider further parameters, for instance the loss param-
eter, which is the difference between |N(S)| and |N(S′)|. As most of our results
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are negative ones, there is surely a need for further parameterizations. Also, it
would be very helpful to know if NB-q-PRBDS belongs to FPT for any fixed
q > 1, as this would also help classify the dynamic variants of PRBS for fixed
q > 1. This is the most interesting open problem in that area in our opinion.

We completely neglected approximability issues so far. The more classical
DRBDS problem (as Set Cover reoptimization) was previously considered in
[3,21]. Let us at least mention one positive result, concerning the natural max-
imization variant of Red-Blue Dominating Set, which we call Budgeted Red-
Blue k-Dominating Set, following the tradition of the literature of these prob-
lems. Here, we search for a subset of k red vertices that dominate a maximum
number of blue vertices. Khuller et al. [16] considered the approximability of the
Budgeted Connected k-Dominating Set. In this problem there is a budget
k on the number of vertices we can select, and the goal is to dominate as many
vertices as possible with a connected set.

Theorem 6. Budgeted Red-Blue k-Dominating Set is polynomial-time
1
13 (1 − ε) approximable, for any ε > 0.

Proof. Given any instance G = (R ∪ B,E) (and k) of Budgeted Red-Blue
k-Dominating Set, we construct an instance of Budgeted Connected k-
Dominating Set by turning R into a clique. This results in a split graph G′

on which we can use the algorithm of Khuller et al. to compute an approximate
solution. In any solution containing a vertex b from B, b can be easily replaced by
any neighbor of b, so that we can assume that the solution S is a subset of R. This
is also true for an optimum solution. Hence, maximum solutions to the instance
(G, k) correspond to maximum solutions of (G′, k) and vice versa. Thus, the
approximation factor of 1

13 (1 − ε), shown in [16] for Budgeted Connected
k-Dominating Set on split graphs, also applies to our problem. �
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