
On the Approximation of Finding A(nother)
Hamiltonian Cycle in Cubic Hamiltonian Graphs

(Extended abstract) ⋆

Cristina Bazgan1 Miklos Santha2 Zsolt Tuza3
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Abstract. It is a simple fact that cubic Hamiltonian graphs have at
least two Hamiltonian cycles. Finding such a cycle is NP -hard in gen-
eral, and no polynomial time algorithm is known for the problem of find-
ing a second Hamiltonian cycle when one such cycle is given as part of
the input. We investigate the complexity of approximating this problem
where by a feasible solution we mean a(nother) cycle in the graph. First
we prove a negative result showing that the Longest Path problem is
not constant approximable in cubic Hamiltonian graphs unless P = NP .
No such negative result was previously known for this problem in Hamil-
tonian graphs. In strong opposition with this result we show that there
is a polynomial time approximation scheme for finding another cycle in
cubic Hamiltonian graphs if a Hamiltonian cycle is given in the input.

1 Introduction

Longest Path and Longest Cycle are well-known problems in graph theory
which were shown to be NP -complete in 1972 by Karp [7]. The approximability
of the associated optimization problems is very much open despite considerable
efforts in recent years.

Monien [10] gave an algorithm to find a path of length k in time O(k! ·n ·m)
where n and m are respectively the number of vertices and the number of edges of
the graph. Karger, Motwani and Ramkumar [8] gave a polynomial time algorithm
which finds a path of length Ω(log n) in any 1-tough graph. A similar result
was obtained also by Fürer and Raghavachari [4]. Since 1-tough graphs include
Hamiltonian graphs, these algorithms can be used in particular to find such
paths in graphs which contain a Hamiltonian cycle. Alon, Yuster and Zwick
[2] generalized this result by giving a polynomial time algorithm which for any
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c > 0, finds a path of length c log n, in a graph which contains such a path.
Finding paths of length ω(log n) in polynomial time is an open problem even for
Hamiltonian graphs.

On the negative side, Karger, Motwani and Ramkumar [8] have proved that
unless P=NP , Longest Path is not constant approximable in polynomial time.
Their proof consists of two parts. First, they have shown that Longest Path
doesn’t have a polynomial time approximation scheme, unless P=NP . They were
able to show this even when the input instances are restricted to Hamiltonian
graphs. Then they gave a self-improving scheme for the problem, showing that a
polynomial time approximating algorithm for some constant can be transformed
into a polynomial time approximating algorithm for any constant. These results
remain valid also when the maximum degree of the input graph is bounded
by a constant at least four. But their self-improving scheme didn’t conserve
Hamiltonicity, and they asked if it can be proven also for Hamiltonian graphs
that they are not constant approximable in polynomial time, unless P=NP .

In this paper we will prove an even stronger negative result. It turns out
that we will be able to give a self-improving scheme for Longest Path which
preserves Hamiltonicity when the input graphs are further restricted to be also
cubic. That Longest Path remains NP -complete even for cubic graphs was
shown by Garey, Johnson and Tarjan [6]. In addition we also prove that this
problem doesn’t have a polynomial time approximation scheme in cubic Hamil-
tonian graphs, unless P=NP . These two results imply that Longest Path is
not constant approximable for any constant in cubic Hamiltonian graphs, unless
P=NP . A similar result follows immediately for Longest Cycle.

The Longest Cycle problem has an interesting variant in cubic Hamilto-
nian graphs. It is not hard to show [11] that any such graph has at least two
Hamiltonian cycles. Therefore if some Hamiltonian cycle is given as part of the
input, one can ask to find another Hamiltonian cycle in the graph. We will call
this problem Second Hamiltonian Cycle. It is a well known instance of what
Meggido and Papadimitriou [9] call the class TFNP of total functions. This class
contains function problems associated with languages in NP where for every in-
stance of the problem a solution is guaranteed to exist. Other examples in the
class are Factoring and the Happynet problem.

Many functions in TFNP (like the examples quoted above) have a challeng-
ing intermediate status between FP and FNP , the function classes associated
with P and NP . Although these problems are not NP -hard unless NP=co-NP ,
no polynomial time algorithm is known for them. We consider here (for the first
time up to our knowledge) approximating a problem in TFNP . In particular,
we show that in striking opposition with the above negative result, Second
Hamiltonian Cycle admits a polynomial time approximating scheme, where
a feasible solution for this problem is a cycle different from the one given in the
input.

The paper is organized as follows: In section 2 we give the necessary defi-
nitions and reduce Longest Path to approximating the longest path between
two fixed vertices in cubic Hamiltonian graphs. In section 3 we prove that this



latter problem has no polynomial time approximation scheme, and in section 4
we prove that it is not constant approximable either. In section 5 we describe a
ptas for Second Hamiltonian Cycle.

2 Preliminaries

In this paper by optimization problem we always mean an NP -optimization
problem. Let us recall a few notions about their approximability. Given an in-
stance x of an optimization problem A and a feasible solution y of x, we denote
by m(x, y) the value of the solution y, and with optA(x) the value of an optimum
solution of x. The performance ratio of y is

R(x, y) = max

{

m(x, y)

optA(x)
,
optA(x)

m(x, y)

}

.

For a constant c > 1, an algorithm is a c-approximation if for any instance x
of the problem it returns a solution y such that R(x, y) ≤ c. We say that an
optimization problem is constant approximable if for some c > 1, there exists a
polynomial time c-approximation for it. The set of problems which are constant
approximable is denoted by APX. An optimization problem has a polynomial

time approximation scheme (in short a ptas) if for every constant ε > 0, there
exists a polynomial time (1 + ε)-approximation for it.

The notion of L-reduction was introduced by Papadimitriou and Yannakakis
in [13]. Let A and B be two optimization problems. A is L-reducible to B if there
are two constants α, β > 0 such that

1. there exists a polynomial time computable function which transforms an
instance x of A into an instance x′ of B such that optB(x′) ≤ α · optA(x),

2. there exists a polynomial time computable function which transforms any
solution y′ of x′ into a solution y of x such that |m(x, y) − optA(x)| ≤
β · |m(x′, y′) − optB(x′)|.

For us the important property of this reduction is that it preserves ptas, that is
if A is L-reducible to B and B has a ptas then A has also a ptas.

Let G = (V,E) an undirected graph. A path of length k in G is a sequence
of distinct vertices v0, v1, . . . , vk such that for 0 ≤ i ≤ k − 1, there is an edge
between vi and vi+1. For two vertices s and t, an s-t path is a path whose first
vertex is s and last vertex is t. A path of length at least three whose first and
last vertices coincide is called a cycle. A path covers a subgraph H if it contains
all the vertices of H. A path or a cycle is Hamiltonian if it covers G. The graph
is called Hamiltonian if it has a Hamiltonian cycle, and it is called cubic if the
degree of all its vertices is three. Finally it is called cubic with distinguished

vertices s and t if all its vertices have degree three except s and t which have
degree two, and there is an edge between s and t.

Our negative result is that there is no constant approximation for the longest
path (cycle) problem in cubic Hamiltonian graphs, problems we now define for-
mally.



CH Longest Path (Cycle)
Input: A cubic Hamiltonian graph G.
Solution: A path (cycle).
Value: The length of the path (cycle).

Since CH Longest Path is trivially L-reducible to CH Longest Cycle,
we will prove our non-approximability result for CH Longest Path. For tech-
nical reasons it is easier to show it for the following variant of the problem.

CH Longest s-t Path
Input: A cubic Hamiltonian graph G with distinguished vertices s and t .
Solution: An s-t path.
Value: The length of the path.

It is probably standard knowledge (and it was pointed out to us by M. Yan-
nakakis [16]) that these two problems have the same difficulty of approximation.
We state here the exact reduction we need.

Lemma 1. If CH Longest Path is constant approximable then CH Longest
s-t Path is also constant approximable.

What is particular in these instances of the longest path problem is that the
value of the optimum solution is known in advance. Although they remain hard
to approximate, this property makes it very unlikely that Max 3Sat could be
L-reduced to them, as we will show it in the next section. Therefore to prove
that they still don’t have a ptas, we will reduce to them the special case of Max
3Sat where the value of an optimum solution is also known. Let us define it
formally.

Satisfiable Max 3Sat
Input: A formula F with variables x1, . . . , xn and with clauses C1, . . . , Cm,
where F is satisfiable.
Solution: A truth assignment for the variables.
Value: The number of clauses satisfied.

Satisfiable Max 3Sat(4, 4̄) is the restriction of Satisfiable Max 3Sat in
which each variable and its negation appear at most four times in F .
Let us finally state the variant of Longest Cycle for which we will be able to
give a ptas.

Second Hamiltonian Cycle
Input: A cubic Hamiltonian graph G and a Hamiltonian cycle C.
Solution: A cycle different from C.
Value: The length of the cycle.

3 CH Longest s-t Path has no ptas

The basis of our non-approximability result is the following refinement by Arora
et al [1] of Cook’s theorem on the NP -hardness of 3Sat.



Theorem 2. Let L be a language in NP . There exists a polynomial time al-

gorithm and a constant 0 < ε < 1 such that, given an input x, the algorithm

constructs an instance Fx of 3Sat which satisfies the following properties:

1. If x ∈ L then Fx is satisfiable.

2. If x /∈ L then no assignment satisfies more than fraction (1−ε) of the clauses.

The standard way for showing that an optimization problem has no ptas is
to show the stronger result that it is hard for APX under L-reduction. But
we can not proceed here this way since if NP 6=co-NP then this stronger result
doesn’t hold for problems where the value of an optimum solution is known. This
is somewhat analogous to the result of Megiddo and Papadimitriou [9] showing
that an FNP -complete function can not be total unless NP=co-NP .

Theorem 3. If NP 6=co-NP then an optimization problem where the value of

an optimum solution is known can not be APX-hard under L-reduction.

Using Theorem 2 we can prove that Satisfiable Max 3Sat has no ptas.

Lemma 4. Satisfiable Max 3Sat has no ptas, unless P=NP .

Using now the L-reduction of [13] from Max 3Sat to Max 3Sat(4, 4̄), and
observing that satisfiable instances are mapped into satisfiable instances, we get
the following corollary.

Corollary 5. Satisfiable Max 3Sat(4, 4̄) has no ptas, unless P=NP .

We now prove the main result of this section.

Theorem 6. CH Longest s-t Path has no ptas, unless P=NP .

Proof. We construct an L-reduction from Satisfiable Max 3Sat(4, 4̄) to CH
Longest s-t Path. The outline of our construction follows the polynomial time
reduction given by Papadimitriou and Steiglitz [12] from 3Sat to the Hamilto-
nian cycle problem. In [14] Papadimitriou and Yannakakis gave an L-reduction
from Max 3Sat(4, 4̄) to the traveling salesman problem with edges of weight
one and two by exploiting the strong connection between this later problem and
the Hamiltonian cycle problem. Although we will give an L-reduction which is
more constraining than a polynomial time reduction, we basically can avoid the
complications in the construction of Papadimitriou and Yannakakis. The reason
for that is that (here) we are concerned only with satisfiable instances of Max
3Sat(4, 4̄). On the other hand, we have additional difficulties since the graph we
construct must be cubic and Hamiltonian. In particular, similarly to both [12]
and [14] we will use in our construction so-called variable and clause devices.
The variable device will be taken from [12] (which is simpler than the one used
in [14]), but for the clause device we will use additional features.

A basic ingredient for both is the modification of the ex-or device from [12]
which is shown in Fig.1, where only the edges e1, e2, e3, e4 are joined with the
rest of the graph. The only difference with respect to the original ex-or device is
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Fig. 1. The Ex-or device and its shorthand representation
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Fig. 2.

that here all vertices have degree three. The ex-or device has the property that
any covering path for the device which starts and ends outside it uses either
the edge set {e1, e3}, or the edge set {e2, e4} as connection with the rest of the
graph like in Fig. 2(a) and 2(b). Also, it is impossible to have two disjoint paths
starting and ending outside the device such that they both contain some vertices
of the device and together they cover it. Ex-or devices can be connected in series
like in Fig.3(a).
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Fig. 3.

Let F be an instance of Satisfiable Max 3Sat(4, 4̄) with n variables and m
clauses. For each variable we will construct a variable device and for each clause
a clause device. For 1 ≤ i ≤ n, let pi be the number of positives occurrences of
xi in F and let ri be the number of its negatives occurrences. For every i, the
ith variable device is the following: for two specific vertices ui and vi, there are
two paths between ui and vi. To one of these paths are attached pi ex-or devices
connected like in Fig.3(a), and we say that they are standing for xi. To the other
path are attached ri ex-or devices in series which are standing for x̄i. If pi = 0 or



ri = 0 then the corresponding path consists of just an edge. Figure 3(b) shows
the variable device corresponding to a variable with pi = 1 and ri = 2.

The jth clause device corresponding to the clause Cj is shown in Fig.4 where
the three ex-or devices stand for the three literals appearing in that clause. If
Cj contains the literal xi then the jth clause device and the ith variable device
will share an ex-or device which will stand in the latter for xi. If Cj contains
x̄i then the same devices share again an ex-or device now standing for x̄i in the
variable device. The specific property satisfied by the clause devices is stated in
the next lemma.

a b
jj

Ex Ex Ex

Fig. 4. The clause device Cj

Lemma 7. For any subset S 6= ∅ of the three ex-or devices in the jth clause

device, there is a path from aj to bj which contains exactly those vertices of the

clause device which are not in S. On the other hand, there is no path from aj to

bj which contains all the vertices of the clause device.

The graph G contains all the variable and clause devices, and two additional
vertices s and t. Beside the edges of the devices, there is an edge between s and
u1, between vi and ui+1 for 1 ≤ i ≤ n − 1, between vn and a1, between bj and
aj+1 for 1 ≤ j ≤ m − 1, between bm and t, and finally between s and t. If there
is a satisfying assignment A for F then the path which picks up in each variable
device the ex-or devices standing for the literal satisfied by A, and which crosses
the clause devices according to Lemma 7 is Hamiltonian. G is also cubic except
for vertices s and t which have degree two. We show now that the reduction is
indeed an L-reduction.

Let N be the number of vertices in G, then the size of the longest s-t path is
N −1. The number of clauses m in F is also the value of an optimum assignment
for an instance of Satisfiable Max 3Sat(4, 4̄). Clearly m = Θ(n) since every
literal appears only a constant number of times in the formula. Since the variable
and the clause devices have a constant number of vertices, N = Θ(m+n) = Θ(n),
which shows that the first condition of the L-reduction is satisfied.

For the second condition let us consider an arbitrary s-t path P in G. We
will call all the vertices not in this path missing.



We construct now from P a partial assignment AP for the formula F which
will give a value to all variables whose corresponding variable device is correctly
traversed by P for xi or x̄i. We say that P correctly traverses the ith variable
device for xi if it covers all the ex-or devices standing for xi, these ex-or devices
are entered from the variable device, and none of the ex-or devices standing for
x̄i is entered from the variable device. In that case AP assigns the value true

for xi. The definition for correctly traversing the ith variable device for x̄i is
analogous, in which case AP assigns the value false for xi.

Lemma 8. If the path P has k missing vertices then the partial assignment AP

satisfies at least m − 8k clauses.

Proof. Let us suppose that a clause Cj is unsatisfied by AP . Then either its
three literals are made false by AP or at least one of its literals didn’t receive
a truth value. In the former case, by the definition of AP , the variable device
of each literal was correctly traversed for the negation of that literal. Therefore
the only vertices where P can enter and leave the jth clause device are aj and
bj , and there must be a missing vertex in that device by Lemma 7. In the latter
case there must be a missing vertex in the variable device corresponding to
the variable without truth value. Since every variable and its negation appear
together at most 8 times in F , the statement follows. 2

To finish the proof of Theorem 6 we now show that the second condition
in the definition of an L-reduction is also satisfied. Since F is satisfiable, its
optimum is m, and since G has a Hamiltonian cycle, its optimum is N − 1. Let
us given an s-t path P of length N − 1− ℓ. Then there are ℓ missing vertices in
the graph. Let A be an assignment which extends AP . By Lemma 8 A satisfies
at least m − 8ℓ clauses of F . Therefore the second condition is satisfied with
β = 8. 2

4 CH s-t Longest Path is not in APX

Given an instance G = (V,E) of CH Longest s-t Path with distinguished
vertices s and t, we now define the vertex square graph G2 of G which will be an
instance of the same problem. The basic idea is to replace in G every vertex v by
a copy Gv of G and by a connector device Cv. The copy of the connector device
for v is shown in Fig.5. This device will connect Gv with the rest of G2 through
the vertices av, bv, cv which we call exterior vertices. The important property of
the connector device is stated in the following lemma.

Lemma 9. For every set {x, y} ⊆ {av, bv, cv} there exist two paths Px starting

from x and Py starting from y such that they are disjoint, together they contain

all the vertices of the device, and the other two endpoints of the paths are sv and

tv in some order.

G2 will contain a copy Gv of G and a copy Cv of the connector device for
every vertex v except s and t. It will also have two distinguished vertices S and T .



For every v, we identify the distinguished vertices of Gv with the vertices sv and
tv of Cv, and we delete the edge {sv, tv}. We denote the resulting graph by Hv,
and call it the component corresponding to v. The components are connected
by the following so called exterior edges. For every edge {v, w} ∈ E, we put
an edge between an exterior vertex of Cv and an exterior vertex of Cw. Let s′

(respectively t′) be the neighbor of s (t) in G different from t (s). We add an
edge between S and an exterior vertex of Cs′ and an edge between T and an
exterior vertex of Ct′ . Finally we add an edge between S and T .

Since there is a Hamiltonian s-t path in G, Lemma 9 implies that there is a
Hamiltonian S-T path in G2.
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Fig. 5. The connector device Cv

Lemma 10. Any S-T path of length L in G2 can be transformed in polynomial

time into an s-t path in G of length
√

L − 10.

This self-improving scheme with Theorem 6 gives using standard arguments

Theorem 11. CH Longest s-t Path is not constant approximable, unless

P=NP .

Our main negative results follow immediately from Lemma 1 and Theorem 11.

Theorem 12. CH Longest Path and CH Longest Cycle are not in APX,

unless P=NP .

We can show a stronger non-approximability result under a stronger hypothesis.

Theorem 13. For any ε > 0, CH Longest Path and CH Longest Cycle

are not 2O(log1−εn)-approximable, unless NP⊆DTIME(2O(log1/εn)).

5 Second Hamiltonian Cycle has a ptas

In this section we prove that Second Hamiltonian Cycle has a ptas in cubic
Hamiltonian graphs, which is to our best knowledge the first-ever approximation



scheme for a problem in the complexity class TFNP. Actually we are going to
prove this result in a much stronger form.

Theorem 14. Let G = (V,E) be a cubic graph of order n with Hamiltonian

cycle C = v1v2 · · · vn. There is an algorithm that finds a cycle C ′ 6= C of length

at least n − 4
√

n in O(n3/2 log n) steps.

We will need the following terminology and notation.
Definitions. We assume throughout that the vertices v1, v2, . . . , vn follow each
other in this order along the given Hamiltonian cycle C of G. The length of a
chord e = vivj ∈ E(G) \E(C) (i < j) is defined as ||e|| := min {j − i, n + i− j}.
We denote by Pe the shorter subpath of C with endpoints vi and vj if ||e|| < n/2,
and set Pe := vivi+1 · · · vj if ||e|| = n/2. Two chords e, e′ are said to be
–crossing if Pe ∩ Pe′ 6= ∅, Pe 6⊂ Pe′ , and Pe′ 6⊂ Pe ;
–incomparable if Pe ∩ Pe′ = ∅ ;
–parallel if they do not cross, i.e., either they are incomparable, or Pe ⊂ Pe′ , or
Pe′ ⊂ Pe.

If Pe ⊂ Pe′ , we also say that e is smaller than e′. The chord e is minimal if
there is no chord smaller than e.

Proof. Let k := ⌊√n⌋+1. First, we check in n/2 steps whether C has a chord of
length at most k. If such a chord e exists, then (E(C) ∪ {e}) \ E(Pe) is a cycle
of required length. Suppose that all chords are longer than k. We now consider
k consecutive chords, say the ones starting from v1, . . . , vk. Denoting by zi the
other endpoint of the chord ei incident to vi, we can find two subscripts i1, i2
such that zi1 and zi2 are at distance less than (n − k)/(k − 1) < k apart on the
path P ′ := vk+1vk+2 . . . vn. Note that the order of the k vertices zi on P ′ can be
determined in at most O(k log k) = O(n1/2 log n) steps by any standard sorting
algorithm, and then the closest pair can be selected in k steps. If ei1 and ei2 are
crossing chords, and say i1 < i2, then vi2vi2+1 · · · zi1−1zi1vi1vi1−1 · · · zi2+1zi2 is
a cycle of length at least n − 2k + 2 > n − 2

√
n.

Otherwise, if ei1 and ei2 are parallel, we keep them as a starting configuration.
To simplify notation, denote e0 := ei1 , e′0 := ei2 , and assume that e0 = vavb,

e′0 = va′vb′ . It may be the case that e0 and e′0 are incomparable (i.e., neither of
them is smaller than the other), but we may assume without loss of generality
(by renumbering the vertices if necessary) that Pe0

= vava+1 · · · vb−1vb and that
Pe′

0
6⊂ Pe0

. We then consider the next k chords e′1, . . . , e
′

k, starting from the
vertices va+1, . . . , va+k, and select from them two chords f0 and f ′

0 the other
endpoints of which are at distance less than k apart. If f0 and f ′

0 are crossing,
then a cycle of length at least n − 2

√
n is easily found as above, therefore we

may assume that f0 and f ′

0 do not cross.
If both f0 and f ′

0 are smaller than e0, and say f0 is smaller than f ′

0, then
we rename e0 := f0, e′0 := f ′

0, and do the previous step again. Note that this
situation cannot occur more than O(n) times.

Suppose next that f0 or f ′

0 crosses e0 but it does not cross e′0. In this situation
again, e0 and the crossing chord create a cycle of length at least n − 2

√
n.



Similarly, if f0 is smaller than e0 but f ′

0 crosses both e0 and e′0, then f ′

0 with
any one of e0, e

′

0 is a suitable choice to construct a cycle of required length.
Finally, suppose that f0 and f ′

0 are parallel and they cross both e0 and e′0.
Remove the two pairs of short arcs (of lengths < k) joining the parallel chords
(i.e., remove the subpaths of C that join Pe0

with Pe′

0
and also those between

Pf0
and Pf ′

0
) to create four paths of total length at least n− 4k. We then obtain

a cycle longer than n − 4
√

n by adjoining the four edges e0, e
′

0, f0, f
′

0. 2

Remark. By very similar techniques, we can show that if P 6=NP then the
traveling salesman problem with weights one and two, restricted to instances
where the graph formed by the edges of weight one is cubic and Hamiltonian,
has no ptas. On the other hand, when a Hamiltonian cycle is given in the input,
the problem has a ptas.
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