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Abstract. We propose an algorithm which returns a single Hamilto-
nian cycle with performance guarantee on both objectives. The algo-
rithm is analysed in three cases. When both (resp. at least one) objec-
tive function(s) fulfill(s) the triangle inequality, the approximation ratio
is 5

12
−ε ≈ 0.41 (resp. 3

8
−ε). When the triangle inequality is not assumed

on any objective function, the algorithm is 1+2
√

2

14
−ε ≈ 0.27-approximate.

1 Introduction

The traveling salesman problem (TSP) is one of the most studied problems in
combinatorial optimization. Given an undirected complete graph with weights
on the edges, the problem consists of finding a Hamiltonian cycle (also called
tour) of maximum or minimum total weight, defined as the sum of its edges’
weight. In this paper we study the approximation of the biobjective maximiza-
tion version, Biobjective Max TSP. In this case every edge has two weights and
the total weight of a tour is a couple defined as the componentwise sum of its
edges’ weights. We are interested in the existence and the computation in poly-
nomial time of a single tour with simultaneous performance guarantees on the
two objectives. Our work falls into a recent stream of research on the approxima-
bility of multiobjective optimization problems [21, 20, 18, 10, 5, 11, 3, 1, 6] where
multiobjective TSP takes a prominent place [2, 4, 16, 7, 13, 14].

In many real optimization problems not only one objective function is consid-
ered but several ones (see [9] about multiobjective combinatorial optimization).
This is also the case for TSP where we might want to minimize the travel time,
the cost or to maximize the profit, the number of viewpoints along the way etc.
This gives rise to Multiobjective TSP. Unfortunately it is unlikely that optimal-
ity is met simultaneously by a single feasible solution on all objectives. However
there always exists a set of efficient (also called Pareto optimal) solutions for
which any improvement on an objective induces a deterioration of (at least)
another one.
⋆ This research has been supported by the project ANR-09-BLAN-0361 GUaranteed

Efficiency for PAReto optimal solutions Determination (GUEPARD)
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Generating the whole set of efficient solutions is a major challenge in multi-
objective combinatorial optimization. However, even for moderately-sized prob-
lems, it is usually computationally prohibitive to identify the efficient set for two
major reasons. First, the number of efficient solutions can be very large. Second,
the associated decision version is often NP-complete, even if the underlying single
objective problem is polynomial time solvable. To handle these two difficulties,
researchers have been interested in developing approximation algorithms with a
priori provable performance guarantees.

Given a positive real ρ ≤ 1, and considering that all objectives have to
be maximized, a ρ-approximation of the set of efficient solutions is a set of
solutions that includes, for each efficient solution, a solution that approximates
it within a factor ρ on all objectives. The ρ-approximation typically contains
several incomparable solutions and it is assumed that one solution is selected
with the help of a, yet unkown, a posteriori decision process.

One of the most important results concerning the approximation of multiob-
jective problems was given by Papadimitriou and Yannakakis [18]: under certain
general assumptions, multiobjective optimization problems always have at least
one (1 − ε)-approximation of size polynomial in the size of the instance and
1/ε, for any given accuracy ε > 0. This result makes the computation of ap-
proximate efficient sets of multiobjective problems accessible to polynomial time
algorithms.

Nevertheless the efficient set is not the unique object that one can approxi-
mate. A popular approach in multiobjective optimization consists in optimizing
only one objective while the others are turned into budget constraints [21, 20,
11, 6]. Budget constraints come from an a priori decision process which restricts
the set of desired solutions. It is noteworthy that the efficient set approach and
the budget approach are essentially the same [18].

In another popular approach, no decision process is sought. The goal is to
compute a single solution which approximates a vector composed of the optimal
values on every objective taken separately [22, 19, 3, 1]. Contrasting with the
previous approaches, this framework aims at approximating an ideal point which
is the image of a not necessarily feasible solution. Hence no ρ-approximation for
every ρ is guaranteed to exist. Note that the ideal point approach and the efficient
set approach restricted to sets of size 1 coincide. The former is a particular case of
the latter. Since generating several solutions allows better approximations than
what a single solution can achieve, approximation ratios under the respective
approaches are not directly comparable.

Previous results for the multiobjective TSP are known; most of them fol-
low the efficient set approach, approximating the Pareto set with two or more
solutions, but some of them use the ideal point approach. In this article we exclu-
sively follow the ideal point approach and provide deterministic approximation
algorithms whose performance guarantees improve on previous results.

Previous results. Multiobjective TSP is well studied from the approximation
point of view. Manthey and Ram [16] follow the efficient set approach for several
variants of multiobjective Min TSP. In particular they generalize the well known
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tree doubling algorithm to provide a (2 + ǫ)-approximation of the efficient set.
The other results of [16] deal with multiobjective Min TSP with the sharpened
triangle inequality and multiobjective Min TSP with distance 1 or 2. This latter
problem is investigated in [2, 4] under the efficient set approach.

More rencently Bläser et al. [7] study the multiobjective Max TSP with k
objective functions. Using the efficient set approach they devise randomized ap-
proximation algorithms with ratios 1

k
− ǫ and 1

k+1 − ǫ for the symmetric and
asymmetric versions respectively. Subsequently these results were significantly
improved by Manthey [14] who provides randomized approximation algorithms,
using the efficient set approach, with ratios 2

3 −ǫ and 1
2 −ǫ for the symmetric and

asymmetric versions respectively. These algorithms use as a black box the ran-
domized PTAS for min-weight matching given by Papadimitriou and Yannakakis
[18]. Recently, Manthey [15] establishes deterministic approximation algorithms,
using the efficient set approach, with ratios 1

2k
−ǫ and 1

4k−2 −ǫ for the symmetric
and asymmetric versions respectively that can be improved for the biobjective
case to ratios 3

8 − ǫ and 1
4 − ǫ respectively.

Manthey also investigates the approximation of Biobjective Max TSP under
the ideal point approach [14, 15], i.e. approximate efficient sets of size one. If
the single objective Max TSP problem is ρ-approximable then Biobjective Max
TSP is ρ

3 -approximable with one solution [14]. Taking the best polynomial time
approximation algorithms known so far for the symmetric Max TSP, he derives
a 61

243 -approximate (resp. 7
24 -approximate) tour without (resp. with) the triangle

inequality. The ratios come from a 61
81 -approximation and a 7/8-approximation

given in [8] and [12] respectively. As mentioned very recently in [15], using a new
7
9 -approximation [17], the first ratio becomes 7

27 instead of 61
243 . Another positive

consequence of the general technique is that every biobjective instance admits a
single 1

3 -approximate tour. From the negative side, Manthey [14] gives a 5 node
non metric instance in which no single tour can be (1/3+ǫ)-approximate (ǫ > 0),
thus meeting the previous bound. To our best knowledge, no such upper bound is
known for metric instances so it is still possible that a single ρ-approximate tour
exists in biobjective Max TSP for some ρ > 1/3. Finally one can observe that
known inapproximability results on the single objective Max TSP imply that
the general technique is limited to provide biobjective (1/3 − ǫ)-approximation
in polynomial time (ǫ > 0).

New results. In this paper, we establish a general algorithm which computes a
maximum value matching on each objective taken separately and combines them
into a single Hamiltonian cycle having a performance guarantee on both objec-
tives. The algorithm is analyzed in three cases. When both objective functions
fulfill the triangle inequality, we obtain a 5

12 − ǫ ≈ 0.41-approximate algorithm
which improves the aforementioned 7

24 − ǫ ≈ 0.291-approximation. In this case,
we also propose a 4-node instance without any single (1

2 + ǫ)-approximate solu-
tion and a family of instances without any single (3

4 + ǫ)-approximate solution
when the number of nodes tends to infinity. If only one objective function ful-
fills the triangle inequality, we obtain a (3

8 − ǫ)-approximate algorithm. In the
case where no objective function satisfies the triangle inequality, a quick analy-
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sis gives a ratio 1/4 − ǫ but in a more accurate case analysis, we can show that

the algorithm is 1+2
√

2
14 − ǫ ≈ 0.27-approximate, improving the aforementioned

7
27 ≈ 0.259-approximation. An extension of Manthey’s instance to any number
of vertices precludes any ( 1

3 + ǫ)-approximate algorithm returning one solution.
The following table gives a summary of mentioned results on the biobjective

Max TSP (k = 2). Approximations achieved with several solutions follow the
Pareto set approach while those limited to one solution follow the ideal point
approach.

Biobjective Max TSP
randomized algo. deterministic algo. this paper (deterministic)

general 2/3 − ǫ [14] 7/27 ≈ 0.259 1+2
√

2
14 − ǫ ≈ 0.27

case several solutions one solution [14, 17] one solution
3/8 − ǫ

several solutions [15]
metric 2/3 − ǫ [14] 7/24 ≈ 0.291 5/12 − ǫ ≈ 0.41
case several solutions one solution [14, 12] one solution

Organization of the article. In Section 2 we give definitions on the problems
and concepts used throughout the article. In Section 3 we establish some non
existence results which give upper bounds on possible approximation ratios under
the ideal point approach. Section 4 presents a general algorithm for Biobjective
Max TSP and its analysis in three cases depending on the (non) metric nature
of the objective functions. In Section 5 we improve the analysis of the previous
algorithm in the non metric case. Future works are provided in a final section.
Due to space limitation some proofs are omitted.

2 Preliminaries

Let G = (V,E) be a complete undirected graph with a nonnegative weight
w(e) on every edge e ∈ E and n = |V | vertices. The weight of a set of edges
E′ ⊆ E is the sum of the weights of the edges in E′ and is denoted by w(E′). An
instance is metric if its weights satisfy the triangle inequality, namely w(x, z) ≤
w(x, y) + w(y, z) for all distinct vertices x, y, z ∈ V .

Max TSP is to find a Hamiltonian cycle or tour (i.e. a cycle that visits every
vertex of the graph exactly once) of maximum weight in a complete graph. In
the multiobjective Maximum Traveling Salesman Problem every edge is endowed
with k nonnegative values. For the biobjective case (k = 2), each edge e ∈ E has
a nonnegative weight w(e) and a nonnegative length ℓ(e). Similarly the length
of a set of edges E′, denoted by ℓ(E′), is the sum of the lengths of its elements.

Each feasible tour T is represented in the objective space by its correspond-
ing objective vector (w(T ), ℓ(T )). A tour T dominates a tour T ′ if and only if
w(T ) ≥ w(T ′) and ℓ(T ) ≥ ℓ(T ′) with at least one strict inequality. A tour T is
efficient if and only if no other tour T ′ dominates T , and (w(T ), ℓ(T )) is said
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to be non-dominated. An efficient set contains, for each non-dominated vector,
a corresponding efficient solution (no need to keep two tours having the same
objective vector).

Unfortunately computing the efficient set of multiobjective Max TSP can-
not be done in polynomial time, unless P = NP , so we are interested in its
polynomial time computable approximations. For any 0 < ρ ≤ 1, a tour T ρ-
approximates another tour T ∗ if and only if w(T ) ≥ ρw(T ∗) and ℓ(T ) ≥ ρℓ(T ∗).
A set of feasible tours A is a ρ-approximation of the efficient set P if for every
T ∗ ∈ P, there exists T ∈ A such that T ρ-approximates T ∗. If A is reduced to
a single tour, we say that we follow the ideal point approach.

Define optw (resp. optℓ) as maxT∈F w(T ) (resp. maxT∈F ℓ(T )) where F de-
notes the set of feasible tours. Under the ideal point approach, a tour T is a
ρ-approximation if and only if w(T ) ≥ ρ optw and ℓ(T ) ≥ ρ optℓ.

3 Non existence of a single ρ-approximate solution

It is unlikely that every instance admits a single solution which is nearly optimal
for w and ℓ at the same time. Thus instances without any ρ-approximate solution
imply that no deterministic ρ-approximate algorithm (even exponential) exists.

If the triangle inequality is satisfied on both objectives, the example given
in Figure 1 (left) shows that there does not always exist a ( 1

2 + ǫ)-approximate
solution, for all ǫ > 0. The three possible tours in this instance are indeed
(a, b, c, d, a), (a, c, d, b, a), and (a, c, b, d, a) whose values are (2, 2), (2, 4), and
(4, 2). However this instance only contains 4 nodes so it does not prevent an
algorithm to provide a (0.5 + ǫ)-approximate solution for 5 nodes and more.

(1,2)

(2,1)

(1,0)

(0,1)

(1,1)

a b

cd
u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Fig. 1. (Left) There is no (0.5 + ǫ)-approximate solution in this instance where every
objective function satisfies the triangle inequality. (Right) Instance with r = 5 where
non represented edges have value (1, 1).

However one can build an instance which does not contain any (3
4 + ǫ)-

approximate solution for n sufficiently large. The instance contains 2r nodes
{v1, · · · , vr}∪{u1, · · · , ur}. Edges (ui, vi) have value (2, 1) for i = 2, · · · r, see Fig-
ure 1 (right). Edges (ui, vi+1) have value (2, 1) for i = 1, · · · r−1. Edges (ui, ui+1)
and (vi, vi+1) have value (1, 2) for i = 1, · · · r−1. Edges (u1, v1) and (ur, v1) have
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value (1, 2) and (2, 1) respectively. Any other edge has value (1, 1). The coordi-
nates being 1 or 2, the triangle inequality is satisfied. The tour containing all
edges of value (2, 1) (resp. (1, 2)) has value (4r− 1, 2r) (resp. (2r, 4r− 1)) so the
optimal weight/length is 4r−1. Any given tour uses α edges with value (2, 1), β
edges with value (1, 2) whereas α + β ≤ 2r. Its value is then (2α + β, 2β + α) ≤
(2r+α, 2r+β). Observe that min{2r+α, 2r+β} = 2r+min{α, β} ≤ 3r. Hence
any tour is at most 3r

4r−1 -approximate.
If the objective functions do not necessarily fulfill the triangle inequality,

Manthey [14] proved that for a K5 there does not exist a ( 1
3 + ǫ)-approximate

algorithm, for all ǫ > 0. We can easily generalize his result to Kn with n ≥ 5
in order to obtain an asymptotic result. For every n ≥ 5, consider Kn where a
fixed K4 is decomposable into 2 Hamiltonian paths Pw and Pℓ. For every edge
e ∈ E(Kn), set w(e) = 1 and ℓ(e) = 0 if e ∈ Pw, w(e) = 0 and ℓ(e) = 1 if e ∈ Pℓ

and w(e) = 0 and ℓ(e) = 0 if e /∈ Pw ∪Pℓ. We can check that there are four non-
dominated tours Ti, i = 1, . . . , 4 with w(T1) = w(Pw) = 3, ℓ(T1) = ℓ(Pw) = 0,
w(T2) = w(Pℓ) = 0, ℓ(T2) = ℓ(Pℓ) = 3, w(T3) = 2, ℓ(T3) = 1 and w(T4) = 1,
ℓ(T4) = 2. In conclusion, a single solution never approximates the Pareto set of
the biobjective Max TSP with ratio better than 1/3 for Kn with n ≥ 5.

4 A generic algorithm for Biobjective Max TSP

In this section, we present an algorithm for the Biobjective Max TSP. This algo-
rithm is based on the combination of the edges of a maximum weight matching
for the objective w and a maximum weight matching for the objective ℓ. The
algorithm is as follows :

1. Build a maximum weight (resp. length) matching of G and denote it by Mw

(resp. Mℓ).
The set of edges Mw ∪ Mℓ is made of p connected components C1, . . . , Cp.
Each Ci is a cycle of even size, or a path of length at least one. Note that
there is at most one path of length at least two in Mw ∪ Mℓ (because the
graph is complete and we can assume that Mw are Mℓ are of maximum size).
Likewise, each path of length one is in Mw ∩ Mℓ.

2. For each component Ci which is a cycle, remove the edge in Ci ∩Mw which
has a minimum weight.
We thus obtain a set of paths, which is called a partial tour.

3. Add edges in order to connect these paths and obtain an Hamiltonian cycle of
Kn (edges are added arbitrarily unless otherwise noted. This step is detailled
inside the proofs when needed).

Let us now show that the Hamiltonian cycle obtained with this algorithm
has a weight larger than or equal to αw(Mw) and a length larger than or equal
to αℓ(Mℓ), where 0 < α ≤ 1. We will determine the value of α in a general graph
(cf. Lemma 1), in a graph where one objective function (w.l.o.g. w) fulfills the
triangle inequality (cf. Lemma 2), and in a graph where both objective functions
fulfill the triangle inequality (cf. Lemma 3).
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Lemma 1. Step 1 and 2 of the algorithm build in polynomial time a partial tour

on Kn with weight at least 1
2w(Mw) and length at least 1

2ℓ(Mℓ).

Proof. For each component Ci which is a cycle, step 2 of the algorithm removes
the edge in Ci∩Mw with minimum weight. Since |Ci∩Mw| ≥ 2 the loss in weight
is at most w(Ci ∩Mw)/2. The resulting set of edges is a partial tour of weight at
least 1

2

∑p
i=1 w(Ci ∩ Mw) = 1

2w(Mw) and length
∑p

i=1 ℓ(Ci ∩ Mℓ) = ℓ(Mℓ). ⊓⊔

In the following Lemmas we consider two cases:

– Case 1: at the end of Step 1 of the algorithm, every component Ci is a cycle
– Case 2: at the end of Step 1 of the algorithm, at least one component Ci is

a cycle and at least one component Ci′ is not a cycle.

If no component is a cycle then we are already done since the set of edges is then
a partial tour of weight w(Mw) and length ℓ(Mℓ).

Lemma 2. Assuming that w satisfies the triangle inequality, we can build in

polynomial time a partial tour on Kn with weight at least 3
4w(Mw) and length

at least 3
4ℓ(Mℓ).

Proof. We distinguish two cases depending on the value of p that is the number
of connected components of Mw ∪Mℓ. If p = 1 then C1 is either a tour or a cycle
on n − 1 nodes (in this case n is odd) with weight at least w(Mw) and length
at least ℓ(Mℓ). If C1 is a cycle on n − 1 nodes, let x be the isolated node. Then
by replacing any edge (u, v) ∈ Mw by (u, x), (x, v), we get a tour C ′ of Kn satis-
fying w(C ′) ≥ w(C1) ≥ w(Mw) due to the triangle inequality and ℓ(C ′) ≥ ℓ(Mℓ).

Let us now consider the case where p ≥ 2. Assume that case 1 occurs, that
is each component Ci is a cycle and thus it contains at least four edges. Since
p ≥ 2 and |Mℓ∩Ci| ≥ 2 for each Ci we have |Mℓ| ≥ 4. It follows that if e ∈ Mℓ is
an edge of minimum length among the edges of Mℓ, then ℓ(e) ≤ ℓ(Mℓ)/4. Thus,
by deleting e, we are in case 2 since ∪p

i=1Ci \ {e} contain at least one cycle and
at least one path with w(∪p

i=1Ci \ {e}) ≥ w(Mw) and

ℓ(∪p
i=1Ci \ {e}) ≥ 3ℓ(Mℓ)/4 (1)

Now, assume that case 2 occurs. By renaming the connected components, we
can assume that there is an integer r ∈ {1, . . . , p} such that Ci for i ≥ r is not a
cycle whereas Ci for 1 ≤ i < r is a cycle. Let x and y be the two extremities of
Cr. Proceed repeatedly as follows, for i = r − 1 down to 1. Remove an edge of
minimum weight in Mw ∩ Ci and call it (vi

1, v
i
2). Add the edge with maximum

weight between (vi
1, x) and (vi

2, x). If w(vi
1, x) ≥ w(vi

2, x) then x := vi
2, otherwise

x := vi
1. By this way the procedure maintains a path with extremities x and

y, while reducing the number of cycles. At the end of the procedure we get a
partial tour that is the union between a path and ∪p

i=rCi. Using the triangle
inequality we know that max{w(vi

1, x), w(vi
2, x)} ≥ (w(vi

1, x) + w(vi
2, x))/2 ≥

w(vi
1, v

i
2)/2, meaning that each time an edge (vi

1, v
i
2) is removed (i ∈ {1, . . . , r −
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1}), another one with at least half its weight is added so, in total, the loss in

weight is bounded by 1
2

∑r−1
i=1 w(vi

1, v
i
2). Since |Mw ∩ Ci| ≥ 2 we deduce that

w(vi
1, v

i
2) ≤ w(Mw ∩Ci)/2. Summing up the previous inequality, we deduce that

∑r−1
i=1 w(vi

1, v
i
2) ≤ w(∪r−1

i=1 Ci ∩Mw)/2 ≤ w(Mw)/2. Thus the total loss in weight
is bounded by w(Mw)/4.

In conclusion the partial tour has weight at least 3w(Mw)/4 and length at
least 3ℓ(Mℓ)/4 by inequality (1). ⊓⊔

Lemma 3. Assuming that w and ℓ satisfy the triangle inequality, we can build

in polynomial time a partial tour on Kn with weight at least 5
6w(Mw) and length

at least ( 5
6 −ε(n))ℓ(Mℓ). Here ε(n) = 2/(n−1) and then tends to 0 when n tends

to ∞.

Proof. As it is done in Lemma 2, we transform case 1 into case 2. Thus, suppose
that we are in case 1 that is each component Ci is a cycle and w.l.o.g. that the
edge of Mℓ with minimum length is e. Remove this edge e to create a path with
endpoints denoted by x and y. When n is even (resp. odd) this deletion induces
a loss of at most 2ℓ(Mℓ)/n = ε(n)ℓ(Mℓ) (resp. 2ℓ(Mℓ)/(n − 1) = ε(n)ℓ(Mℓ)).
Note that ε(n) tends to 0 when n tends to ∞.

Suppose now that we are in the case 2. As it is done in Lemma 2 we can
assume that there is an integer r ∈ {1, . . . , p} such that Ci for i ≥ r is not a
cycle whereas Ci for 1 ≤ i < r is a cycle. We are going to patch the cycles to
Cr, one by one. We explain how to patch C1, and the procedure is repeated for
the cycles C2, · · · , Cr−1. Let x and y be the two extremities of Cr.

If |C1 ∩Mw| ≥ 3 then delete an edge of minimum weight and call it (v1
1 , v1

2).
We get that w(v1

1 , v1
2) ≤ 1

3w(C1 ∩ Mw). Add the edge with maximum weight
between (v1

1 , x) and (v1
2 , x). By the triangle inequality, max{w(v1

1 , x), w(v1
2 , x)} ≥

w(v1
1 , v1

2)/2. If w(v1
1 , x) ≥ w(v1

2 , x) then x := v1
2 , otherwise x := v1

1 . Disregarding
the weight of the edges in C1 ∩ Mℓ, the modification causes a loss in weight of
at most w(v1

1 , v1
2) − w(v1

1 , v1
2)/2 = w(v1

1 , v1
2)/2 ≤ 1

6w(C1 ∩ Mw). Since no edge
from Mℓ was removed, and disregarding the length of the edges in C1 ∩Mw, the
modification does not cause any loss in length. Hence the patching guarantees
that the new path P satisfies w(P ) ≥ w(Cr) + 5w(C1 ∩ Mw)/6 and ℓ(P ) ≥
ℓ(Cr) + ℓ(C1 ∩ Mℓ).

Now suppose that C1 is a cycle on 4 nodes and contains four edges (a, b), (b, c),
(c, d), (d, a) such that C1 ∩ Mw = {(a, b), (c, d)} and C1 ∩ Mℓ = {(b, c), (a, d)}.
Using the triangle inequality we get that

w(a, c) + w(b, d) + w(C1 ∩ Mℓ) ≥ w(C1 ∩ Mw) (2)

ℓ(a, c) + ℓ(b, d) + ℓ(C1 ∩ Mw) ≥ ℓ(C1 ∩ Mℓ) (3)

– Suppose that ℓ(C1 ∩Mw) ≥ ℓ(C1 ∩Mℓ)/8. W.l.o.g., assume ℓ(a, d) ≥ ℓ(b, c).
Remove (b, c) and add the edge with maximum length between (b, x) and
(x, c). Since max{ℓ(b, x), ℓ(x, c)} ≥ ℓ(b, c)/2 by the triangle inequality, we get
that the new path P satisfies ℓ(P ) ≥ ℓ(Cr)+ℓ(C1∩Mw)+ℓ(a, d)+ℓ(b, c)/2 ≥
ℓ(Cr) + ℓ(C1 ∩ Mℓ)/8 + ℓ(C1 ∩ Mℓ)/2 + ℓ(a, d)/2 ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ)/8 +
ℓ(C1 ∩ Mℓ)/2 + ℓ(C1 ∩ Mℓ)/4 = ℓ(Cr) + 7ℓ(C1 ∩ Mℓ)/8.
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– Suppose that w(C1 ∩ Mℓ) ≥ w(C1 ∩ Mw)/8. W.l.o.g., assume w(a, b) ≥
w(c, d). Remove (c, d) and add the edge with maximum length between (c, x)
and (x, d). Since max{w(c, x), w(x, d)} ≥ w(c, d)/2 by the triangle inequality,
we get as in the previous case that w(P ) ≥ w(Cr) + w(C1 ∩Mℓ) + w(a, b) +
w(c, d)/2 ≥ w(Cr) + 7w(C1 ∩ Mw)/8.

– Now suppose that ℓ(C1 ∩ Mw) < ℓ(C1 ∩ Mℓ)/8 and w(C1 ∩ Mℓ) < w(C1 ∩
Mw)/8. Using Inequalities (2) and (3) we get that w(a, c)+w(b, d) > 7w(C1∩
Mw)/8 and ℓ(a, c) + ℓ(b, d) > 7ℓ(C1 ∩ Mℓ)/8. In this case the new path P
obtained by adding any two edges to (a, c), (b, d) and Cr satisfies w(P ) ≥
w(Cr) + 7w(C1 ∩ Mw)/8 and ℓ(P ) ≥ ℓ(Cr) + 7ℓ(C1 ∩ Mℓ)/8.

In conclusion, when C1 contains four nodes, we can always patch it to Cr

so that the loss in weight (resp. length) is at most w(C1 ∩ Mw)/8 (resp. ℓ(C1 ∩
Mℓ)/8).

We have seen that this loss is of (at most) 1/6 on both objective functions
when C1 contains at least six nodes. We deduce that after the patching of all
cycles Ci for i < r, the current solution is a path P and its weight (resp. length) is

at least w(Cr) + 5
6w

(
⋃r−1

i=1 Ci ∩Mw

)

(resp. ℓ(Cr) + 5
6ℓ

(
⋃r−1

i=1 Ci ∩Mℓ

)

). Adding
∪p

i=r+1Ci to P , we get a partial tour P ′. Using w(Cr) ≥ w(Cr ∩ Mw) and
ℓ(Cr) ≥ ℓ(Cr ∩ Mℓ) − ε(n)ℓ(Mℓ) we get that the solution P ′ has weight (resp.
length) at least 5

6w(Mw) (resp. (5
6 − ε(n))ℓ(Mℓ)). ⊓⊔

Theorem 1. We can build in polynomial time a single tour on Kn which con-

stitutes a (ρ − ξ(n))-approximate Pareto set for the biobjective Max TSP where

ρ = 5/12 when w and ℓ satisfy the triangle inequality, ρ = 3/8 when only w
satisfies the triangle inequality and ρ = 1/4 when neither w nor ℓ satisfies the

triangle inequality. Here ξ(n) = Θ(1/n) and then tends to 0 when n tends to ∞.

Proof. Consider first the case when x and ℓ satisfy the triangle inequality. Lemma
3 states that we can build a partial tour with weight (resp. length) at least
5w(Mw)/6 (resp. ( 5

6 −ε(n))ℓ(Mℓ)) where ε(n) = 2
n−1 . If the partial tour is not a

tour then connect its components to create a tour. Using the fact that every edge
weight (resp. length) is nonnegative, the weight (resp. length) cannot decrease.
Denote by optw (resp. optℓ) the optimal weight (resp. length) of a tour. It is
well known that w(Mw) ≥ ( 1

2 − ε′(n))optw and ℓ(Mℓ) ≥ ( 1
2 − ε′(n))optℓ where

ε′(n) = 0 when n is even, otherwise ε′(n) = 1
2n

. Let ξ(n) = ε(n)
2 + 5ε′(n)

6 −
ε′(n)ε(n). We get that the tour constructed has weight at least 5

6w(Mw) ≥
5
6 ( 1

2 − ε′(n))optw > ( 5
12 − ξ(n))optw. The length is at least ( 5

6 − ε(n))ℓ(Mℓ) ≥
( 5
6 − ε(n))( 1

2 − ε′(n))optℓ = ( 5
12 − ξ(n))optℓ. Use Lemmas 2 and 3 and similar

arguments for the other cases. ⊓⊔

5 An improved analysis

In this section, we refine the analysis of our approximation algorithm when the
triangle inequality is not assumed on any objective function. We show that the

tour returned by our algorithm is an asymptotic 1+2
√

2
14 ≈ 0.273 approximation
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of the ideal point. Recall that some instances of the problem do not admit any
( 1
3 + ǫ)-approximate solution, for all ǫ > 0 [14].

The intuition behind the improved analysis is the following. The ratio 1/4 of
Theorem 1 follows from two observations: the tour returned by the approxima-
tion algorithm is a 1/2-approximation of the maximum weight/length matching,
and this latter is an asymptotic 1/2-approximation of the maximum weight/length
tour. Taken separately both observations are tight but we exploit the fact that
they cannot occur simultaneously.

Theorem 2. We can build in polynomial time a ( 1+2
√

2
14 − ξ(n))-approximate

Pareto set containing a single tour on Kn for Biobjective Max TSP. Here ξ(n) =
Θ(1/n) and then, tends to 0 when n tends to ∞.

Proof. (Sketch) Define δ as 4
√

2−5
14 ≈ 0.0469. Actually, δ is the positive root of

equation −1 + 20x + 28x2 = 0. We can show that every instance Kn of the
problem satisfies one of the following statements:

(i) a partial tour P ′ on Kn with weight at least ( 1
2 + δ)w(Mw) and, at the same

time, length at least ( 1
2 +δ)ℓ(Mℓ) exists and can be computed in polynomial

time.
(ii) every Hamiltonian cycle has weight at most ( 3

2 +7δ)w(Mw) and, at the same
time, its length is at most ( 3

2 + 7δ)ℓ(Mℓ).

Recall that w(Mw) ≥ ( 1
2 − ε′(n))optw, ℓ(Mℓ) ≥ ( 1

2 − ε′(n))optℓ where ε′(n) = 0
when n is even, otherwise ε′(n) = 1/2n. If Kn satisfies (i), then by hypothesis
the partial tour P ′ has weight (resp. length) at least (1/4 + δ/2 − ξ(n))optw
(resp. (1/4 + δ/2 − ξ(n))optℓ) with ξ(n) = ε′(n)(1/2 + δ). If Kn satisfies (ii),
then starting from Mw∪Mℓ as it is done in previous section and using Lemma 1,
a partial solution P with weight (resp. length) at least w(Mw)/2 (resp. ℓ(Mℓ)/2)
can be built in polynomial time. Now, since by hypothesis optw ≤ ( 3

2+7δ)w(Mw),
and optℓ ≤ ( 3

2 + 7δ)ℓ(Mℓ), the partial solution P has a weight (resp. length) at

least 1
2

optw

( 3

2
+7δ)

(resp. 1
2

optℓ

( 3

2
+7δ)

).

Finally remark that on the one hand, a tour can be obtained by connecting
the components of a partial tour without decreasing the weight/length since
every edge weight/length is nonnegative and on the other hand, 1

2
1

( 3

2
+7δ)

=

1/4+δ/2 = 1+2
√

2
14 because δ is the positive root of equation −1+20x+28x2 = 0.

We assume n ≥ 5, since otherwise the partial solution P given in Lemma 1
has weight (resp. length) at least optw/2 (resp. optℓ)/2).

We consider three distinct cases which can be distinguished in polynomial
time.

Case 1. Let us suppose that there exists a cycle, say C1 w.l.o.g., such that
the edge with minimum weight in C1 ∩ Mw has weight at least ( 1

2 − δ)w(Mw)
and, at the same time, the edge with minimum length in C1 ∩ Mℓ has length
at least ( 1

2 − δ)ℓ(Mℓ). Since 1/2 − δ > 1/3, C1 must be a cycle on four nodes,
i.e. C1 ∩ Mw = {(a, b), (c, d)} and C1 ∩ Mℓ = {(b, c), (a, d)} (see Figure 2 for an
illustration).
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a b

cd

Edges of Mℓ

Edges of Mw

A third matching

Fig. 2. The cycle C1. Bold edges belong to Mℓ and dashed edges belong to Mw; the
remaining edges form a third matching Mr = {(a, c), (b, d)}.

We conduct a subcase analysis depending on the weight or the length of
the edges having at least one endpoint in V (C1): case (1.1.w) max{w(e) : e ∈
C1 ∩ Mℓ} > 2δw(Mw), case (1.1.ℓ) max{ℓ(e) : e ∈ C1 ∩ Mw} > 2δℓ(Mℓ), case
(1.2.w) max{w(a, c), w(b, d)} > ( 1

2+δ)w(Mw), case (1.2.ℓ) max{ℓ(a, c), ℓ(b, d)} >
( 1
2 + δ)ℓ(Mℓ), case (1.3.w) max{w(i, j) : i ∈ V (C1), j /∈ V (C1)} > 2δw(Mw),

case (1.3.ℓ) max{ℓ(i, j) : i ∈ V (C1), j /∈ V (C1)} > 2δℓ(Mℓ) and case (1.4)
max{w(e) : e ∈ C1 ∩ Mℓ} ≤ 2δw(Mw), max{ℓ(e) : e ∈ C1 ∩ Mw} ≤ 2δℓ(Mℓ),
max{w(a, c), w(b, d)} ≤ ( 1

2 + δ)w(Mw), max{ℓ(a, c), ℓ(b, d)} ≤ ( 1
2 + δ)ℓ(Mℓ),

max{w(i, j) : i ∈ V (C1), j /∈ V (C1)} ≤ 2δw(Mw) and max{ℓ(i, j) : i ∈ V (C1), j /∈
V (C1)} ≤ 2δℓ(Mℓ).

One can prove that in case (1.4) the instance Kn satisfies (ii) whereas in
other cases the instance Kn satisfies (i). Due to space limitation, we only give
the details of the first four cases.

(1.1.w) If w(a, d) > 2δw(Mw) or w(b, c) > 2δw(Mw) then remove (c, d). We get that
w(a, b) + w(b, c) + w(a, d) > ( 1

2 + δ)w(Mw) and ℓ(a, b) + ℓ(b, c) + ℓ(a, d) ≥
(1 − 2δ)ℓ(Mℓ) ≥ (1/2 + δ)ℓ(Mℓ).

(1.1.ℓ) If ℓ(a, b) > 2δℓ(Mℓ) or ℓ(c, d) > 2δℓ(Mℓ) then remove (b, c). We get that
ℓ(a, d) + ℓ(a, b) + ℓ(c, d) > ( 1

2 + δ)ℓ(Mℓ) and w(a, d) + w(a, b) + w(c, d) ≥
(1 − 2δ)w(Mw) ≥ (1/2 + δ)w(Mw).

(1.2.w) If max{w(a, c), w(b, d)} > ( 1
2 +δ)w(Mw) then remove {(a, b), (c, d)} and add

the edge with maximum weight between (a, c) and (b, d), say (a, c) without
loss of generality. We get that w(a, c) + w(b, c) + w(a, d) > ( 1

2 + δ)w(Mw)
and ℓ(a, d) + ℓ(a, c) + ℓ(b, c) ≥ (1 − 2δ)ℓ(Mℓ) ≥ (1/2 + δ)ℓ(Mℓ).

(1.2.ℓ) If max{ℓ(a, c), ℓ(b, d)} > ( 1
2 + δ)ℓ(Mℓ) then remove {(a, d), (b, c)} and add

the edge with maximum length between (a, c) and (b, d), say (a, c) without
loss of generality. We get that w(a, c)+w(a, b)+w(c, d) > (1− 2δ)w(Mw) >
(1/2 + δ)w(Mw) and ℓ(a, c) + ℓ(a, b) + ℓ(c, d) ≥ ( 1

2 + δ)ℓ(Mℓ).

Case 2. Suppose that there exists a cycle, say C1 w.l.o.g., such that the edge with
minimum weight in C1 ∩Mw has weight at most ( 1

2 − δ)w(Mw) and, at the same
time, the edge with minimum length in C1∩Mℓ has length at least ( 1

2 −δ)ℓ(Mℓ).
We will prove that the instance Kn satisfies (i). Again, since 1/2 − δ > 1/3, C1
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must be a cycle on four nodes. Again we suppose that C1 ∩Mw = {(a, b), (c, d)}
and C1 ∩ Mℓ = {(b, c), (a, d)}.

Remove the edge in C1 ∩ Mw with minimum weight and for any other cycle
Ci remove one edge in Ci∩Mℓ arbitrarily. We get a partial tour. Since w(Mw)−
min{w(a, b), w(c, d)} ≥ ( 1

2 + δ)w(Mw) and ℓ(C1 ∩ Mℓ) = ℓ(a, d) + ℓ(b, c) ≥
2( 1

2 − δ)ℓ(Mℓ) ≥ ( 1
2 + δ)ℓ(Mℓ), the partial tour has weight (resp. length) at least

( 1
2 + δ)w(Mw) (resp. (1

2 + δ)ℓ(Mℓ)).
The case where there exists a cycle C1 such that the edge with minimum

weight in C1 ∩Mw has weight at least ( 1
2 − δ)w(Mw) and, at the same time, the

edge with minimum length in C1 ∩ Mℓ has length at most ( 1
2 − δ)ℓ(Mℓ) is dealt

with similar arguments by flipping w and ℓ.

Case 3. Denote by ew
i (resp. eℓ

i) the edge in Ci ∩ Mw (resp. Ci ∩ Mℓ) with
minimum weight (resp. length). We deal with the remaining case where w(ew

i ) ≤
( 1
2 − δ)w(Mw) and ℓ(eℓ

i) ≤ ( 1
2 − δ)ℓ(Mℓ) for all i ∈ {1, . . . , p}. We will prove that

the instance Kn satisfies (i). Since every cycle contains at least two edges of Mw

and also two edges of Mℓ we deduce that

p
∑

i=1

w(ew
i ) ≤ w(Mw)/2 and

p
∑

i=1

ℓ(eℓ
i) ≤ ℓ(Mℓ)/2 (4)

– Suppose there is an index i∗ such that w(ew
i∗) ≥ δw(Mw). Then for every

cycle Ci except Ci∗ remove ew
i . Remove eℓ

i∗ . Using the first part of inequality
(4) we get a partial tour with weight at least w(Mw)−

∑p
i=1 w(ew

i )+w(ew
i∗) ≥

(1/2 + δ)w(Mw) and length at least ℓ(Mℓ) − ℓ(eℓ
i∗) ≥ (1/2 + δ)ℓ(Mℓ).

– Suppose there is an index i∗ such that ℓ(eℓ
i∗) ≥ δℓ(Mℓ). With similar argu-

ments we can build a partial tour with weight at least (1/2 + δ)w(Mw) and
length at least (1/2 + δ)ℓ(Mℓ).

– Suppose that w(ew
i ) < δw(Mw) and ℓ(eℓ

i) < δℓ(Mℓ) for all i. If
∑p

i=1 w(ew
i ) ≤

( 1
2 − δ)w(Mw), then by removing ew

i for i = 1, . . . , p we get a partial tour P
with weight at least (1/2 + δ)w(Mw) and length at least ℓ(Mℓ). Otherwise,
there exists an index i∗ < p such that

i∗
∑

i=1

w(ew
i ) ≤ (

1

2
− δ)w(Mw) and

i∗+1
∑

i=1

w(ew
i ) > (

1

2
− δ)w(Mw) (5)

Using inequalities (4), (5) and w(ew
i∗+1) < δw(Mw) we get that

i∗+1
∑

i=1

w(ew
i ) +

p
∑

i=i∗+2

w(ew
i ) ≤ w(Mw)/2

p
∑

i=i∗+2

w(ew
i ) < δw(Mw)

p
∑

i=i∗+1

w(ew
i ) < 2δw(Mw) ≤ (

1

2
− δ)w(Mw) (6)
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Now remark that

min{
i∗

∑

i=1

ℓ(eℓ
i),

p
∑

i=i∗+1

ℓ(eℓ
i)} ≤

1

2

p
∑

i=1

ℓ(eℓ
i) ≤

1

4
ℓ(Mℓ) (7)

where the right part of inequality (4) is used. If
∑i∗

i=1 ℓ(eℓ
i) ≤

∑p
i=i∗+1 ℓ(eℓ

i) then

remove eℓ
i for i = 1, . . . , i∗ and remove ew

i for i = i∗ + 1, . . . , p. We get a partial
tour with weight at least (1/2 + δ)w(Mw) by inequality (6) and length at least

3ℓ(Mℓ)/4 ≥ (1/2+δ)ℓ(Mℓ) by inequality (7). If
∑i∗

i=1 ℓ(eℓ
i) >

∑p
i=i∗+1 ℓ(eℓ

i) then

remove ew
i for i = 1, . . . , i∗ and remove eℓ

i for i = i∗ + 1, . . . , p. We get a partial
tour with weight at least (1/2 + δ)w(Mw) by inequality (5) and length at least
3ℓ(Mℓ)/4 ≥ (1/2 + δ)ℓ(Mℓ) by inequality (7). ⊓⊔

6 Future work

We considered the biobjective Max TSP. It would be interesting to study the
cases where there is a fixed number k ≥ 3 of objectives. There are still gaps
between positive and negative results given in this article. For example, when
both objective functions are metric, we provide a polynomial time ( 5

12 − ǫ)-
approximation and an upper bound of 3

4 . Maybe both results can be improved.
An interesting future work would be to investigate randomized algorithms. An-
other direct extension of our work is to consider the multiobjective asymmetric
Max TSP.
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