
An efficient implementation for

the 0-1 multi-objective knapsack problem

Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten

LAMSADE, Université Paris Dauphine, Place Du Maréchal De Lattre de Tassigny,
75 775 Paris Cedex 16 France. {bazgan,hugot,vdp}@lamsade.dauphine.fr

Abstract. In this paper, we present an approach, based on dynamic pro-
gramming, for solving 0-1 multi-objective knapsack problems. The main
idea of the approach relies on the use of several complementary domi-
nance relations to discard partial solutions that cannot lead to new non-
dominated criterion vectors. This way, we obtain an efficient method that
outperforms the existing methods both in terms of CPU time and size
of solved instances. Extensive numerical experiments on various types of
instances are reported. A comparison with other exact methods is also
performed. In addition, for the first time to our knowledge, we present
experiments in the three-objective case.

Keywords: multi-objective knapsack problem, efficient solutions, dynamic
programming, dominance relations, combinatorial optimization.

1 Introduction

In multi-objective combinatorial optimization, a major challenge is to develop
efficient procedures to generate efficient solutions, that have the property that no
improvement on any objective is possible without sacrificing on at least another
objective. The aim is thus to find the efficient set (which consists of all the
efficient solutions) or, more often, a reduced efficient set (which consists of only
one solution for each non-dominated criterion vector). The reader can refer to
[1] about multi-objective combinatorial optimization.

This paper deals with a particular multi-objective combinatorial optimiza-
tion problem: the 0-1 multi-objective knapsack problem. The single-objective
version of this problem has been studied extensively in the literature (see,e.g,
[2,3]). Moreover, in the multi-objective case, many real-world applications are
reported dealing with capital budgeting [4], relocation issues arising in conserva-
tion biology [5], and planning remediation of contaminated lightstation sites [6].

Several exact approaches have been proposed in the literature to find the
efficient set or a reduced efficient set for the multi-objective knapsack problem.
We first mention a theoretical work [7], without experimental results, where
several dynamic programming formulations are presented. Two specific methods,
with extensive experimental results, have been proposed: the two-phase method
including a branch and bound algorithm proposed in [8], and the method of
[9], based on transformation of the problem into a bi-objective shortest path

problem. All these methods have been designed for the bi-objective case and
cannot be extended in a straightforward way to a higher number of objectives.

In this paper, we present a new approach based on dynamic programming.
The main idea of the approach relies on the use of several complementary
dominance relations to discard partial solutions that cannot lead to new non-
dominated criterion vectors. This way, we obtain an efficient method that out-
performs the existing methods both in terms of CPU time and size of solved
instances (up to 4000 items in less than 2 hours in the bi-objective case). In
our experiments, we compare our approach with the method of [9], which is the
most efficient method currently known, and with an exact method based on a
commercial Integer Programming solver. In addition, for the first time to our
knowledge, we present experiments in the three-objective case.

This paper is organized as follows. In section 2, we review basic concepts
about multi-objective optimization and formally define the multi-objective knap-
sack problem. Section 3 presents the dynamic programming approach and the
dominance relations. Section 4 is devoted to implementation issues. Computa-
tional experiments and results are reported in section 5. Conclusions are provided
in a final section. All proofs are given in the appendix section.

2 Preliminaries

2.1 Multi-objective optimization

Consider a multi-objective optimization problem with p criteria or objectives
where X denotes the finite set of feasible solutions. Each solution x ∈ X is
represented in the criterion space by its corresponding criterion vector f(x) =
(f1(x), . . . , fp(x)). We assume that each criterion has to be maximized.

From these p criteria, the dominance relation defined on X , denoted by ∆,
states that a feasible solution x dominates a feasible solution x′, x∆x′, if and only
if fi(x) ≥ fi(x

′) for i = 1, . . . , p. We denote by ∆ the asymmetric part of ∆. A
solution x is efficient if and only if there is no other feasible solution x′ ∈ X such
that x′∆ x, and its corresponding criterion vector is said to be non-dominated.
Thus, the efficient set is defined as E(X) = {x ∈ X : ∀x′ ∈ X, not(x′∆x)}.
The set of non-dominated criterion vectors, which corresponds to the image of
the efficient set in the criterion space, is denoted by ND . Since the efficient set
can contain different solutions corresponding to the same criterion vector, any
subset of E(X) that contains one and only one solution for every non-dominated
criterion vector is called a reduced efficient set. Observe that X ′ ⊆ X is a reduced
efficient set if and only if it is a covering and independent set with respect to
∆. We recall that, given % a binary relation defined on a finite set A, B ⊆ A
is a covering (or dominating) set of A with respect to % if and only if for all
a ∈ A\B there exists b ∈ B such that b%a, and B ⊆ A is an independent (or
stable) set with respect to % if and only if for all b, b′ ∈ B, b 6= b′, not(b%b′).

2.2 The 0 − 1 multi-objective knapsack problem

An instance of the 0− 1 multi-objective knapsack problem consists of an integer
capacity W > 0 and n items. Each item k has a positive integer weight wk and
p non negative integer profits vk

1 , . . . , vk
p (k = 1, . . . , n). A feasible solution is

represented by a vector x = (x1, . . . , xn) of binary decision variables xk, such
that xk = 1 if item k is included in the solution and 0 otherwise, which satisfies
the weight constraint

∑n

k=1 wkxk ≤ W . The value of a feasible solution x ∈ X
on the ith objective is fi(x) =

∑n
k=1 vk

i xk (i = 1, . . . , p). For any instance of this
problem, we aim at determining the set of non-dominated criterion vectors.

3 Dynamic Programming and dominance relations

We first describe the sequential process used in Dynamic Programming (DP)
and introduce some basic concepts of DP (section 3.1). Then, we present the
concept of dominance relations in DP (section 3.2).

3.1 Sequential process and basic concepts of DP

The sequential process used in DP consists of n phases. At any phase k we
generate the set of states Sk which represents all the feasible solutions made
up of items belonging exclusively to the k first items (k = 1, . . . , n). A state
sk = (sk

1 , . . . , sk
p, sk

p+1) ∈ Sk represents a feasible solution of value sk
i on the

ith objective (i = 1, . . . , p) and of weight sk
p+1. Thus, we have Sk = Sk−1 ∪

{(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤ W, sk−1 ∈ Sk−1} for k =

1, . . . , n where the initial set of states S0 contains only the state s0 = (0, . . . , 0)
corresponding to the empty knapsack. In the following, we identify a state and
its corresponding feasible solution. Thus, relation ∆ defined on X is also valid
on Sk, and we have sk∆s̃k if and only if sk

i ≥ s̃k
i , i = 1, . . . , p.

Definition 1 (Completion, extension, restriction). For any state sk ∈ Sk

(k < n), a completion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} such
that sk

p+1 +
∑

j∈J wj ≤ W . We assume that any state sn ∈ Sn admits the empty

set as unique completion. A state sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n)
if and only if there exists a completion J of sk such that sn

i = sk
i +

∑
j∈J vj

i for

i = 1, . . . , p and sn
p+1 = sk

p+1 +
∑

j∈J wj. The set of extensions of sk is denoted

by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restriction at phase k of state
sn ∈ Sn if and only if sn is an extension of sk.

3.2 Dominance relations in Dynamic Programming

The efficiency of DP depends crucially on the possibility of reducing the set of
states at each phase. For this purpose, dominance relations between states are
used to discard states at any phase. Dominance relations are defined as follows.

Definition 2 (Dominance relation between states). A relation Dk on Sk,
k = 1, . . . , n, is a dominance relation, if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), sn∆s̃n (1)

A dominance relation Dk is not necessarily transitive. However, due to the tran-
sitivity of ∆, if Dk is a dominance relation then its transitive closure D̂k is also
a dominance relation.

We introduce now a way of using dominance relations in Algorithm DP (see
Algorithm 1). At each phase k, Algorithm DP generates a subset of states Ck ⊆
Sk. This is achieved by first creating from Ck−1 a temporary subset T k ⊆ Sk.
Then, we apply dominance relation Dk to each state of T k in order to check if
it is not dominated by any state already in Ck (in which case it is added to Ck)
and if it dominates states already in Ck (which are then removed from Ck).

Algorithm 1: Dynamic Programming

C0 ← {(0, . . . , 0)};1

for k← 1 to n do2

T k ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤W, sk−1 ∈3

Ck−1};
/* Assume that T k = {sk(1), . . . , sk(r)} */

Ck ← {sk(1)};4

for i← 2 to r do5

/* Assume that Ck = {s̃k(1), . . . , s̃k(ℓi)} */

nonDominated ← true ; j ← 1;6

while j ≤ ℓi and nonDominated do7

if s̃k(j)Dksk(i)
then nonDominated ← false8

else if sk(i)Dk s̃k(j)
then Ck ← Ck\{s̃k(j)};9

j ← j + 1;10

while j ≤ ℓi do11

if sk(i)Dks̃k(j)
then Ck ← Ck\{s̃k(j)};12

j ← j + 1;13

if nonDominated then Ck ← Ck ∪ {sk(i)};14

return Cn;15

The following results characterize the set Ck obtained at the end of each
phase k and establish the validity of Algorithm DP.

Proposition 1. For any dominance relation Dk on Sk, the set Ck obtained at
the end of phase k in Algorithm DP is a covering set of T k with respect to D̂k

that is also independent with respect to Dk (k = 1, . . . , n).

Proof. Clearly, Ck is independent with respect to Dk, since we insert in Ck a
state sk at step 14 only if it is non-dominated by all others states of Ck (step 8)
and we have removed from Ck all states dominated by sk (step 9).

We have s̃k ∈ T k\Ck either because it did not pass the test at step 8 or was
removed at step 9 or 12. In both cases, this is due to a state s̄k already in Ck

or to be included in Ck (at step 14) such that s̄kD̂ks̃k. Indeed, in the first case
this is obvious since we have s̄kDks̃k, and in the second case we can have either
s̄kDks̃k or there exists a state s̄′k such that s̄′kDks̃k, that is not added to Ck

(step 14) due to a state s̄k currently in Ck (step 8) such that s̄kDks̄′kDks̃k. In
both cases, it may happen that s̄k will be removed from Ck at a later iteration
of the for loop (at step 9 or 12) if there exists a new state ŝk ∈ T k, such that

ŝkDks̄k. However, transitivity of D̂k ensures the existence, at the end of phase
k, of a state sk ∈ Ck such that skD̂ks̃k. ⊓⊔

Theorem 1. For any family of dominance relations D1, . . . , Dn, Algorithm DP
returns Cn a covering set of Sn with respect to ∆. Moreover, if Dn = ∆, Cn

represents the set ND of non-dominated criterion vectors.

Proof. Considering s̃n ∈ Sn\Cn, all its restrictions have been removed using
Dk during phases k ≤ n. Let k1 be the highest phase where T k1 still contains
restrictions of s̃n, which will be removed by applying Dk1 . Consider any of these
restrictions, denoted by s̃k1

(n). Since s̃k1

(n) ∈ T k1\Ck1 , we know from Proposition 1,

that there exists sk1 ∈ Ck1 such that sk1D̂k1 s̃k1

(n). Since D̂k1 is a dominance

relation, by (1), we have that for all extensions of s̃k1

(n), and in particular for s̃n,

there exists sn1 ∈ Ext(sk1) such that sn1∆s̃n. If sn1 ∈ Cn, then the covering
property holds. Otherwise, there exists a phase k2 > k1, corresponding to the
highest phase where T k2 still contains restrictions of sn1 , which will be removed
by applying Dk2 . Consider any of these restrictions, denoted by sk2

(n1)
. As before,

we establish the existence of a state sk2 ∈ Ck2 such that there exists sn2 ∈
Ext(sk2) such that sn2∆sn1 . Transitivity of ∆ ensures that sn2∆s̃n. By repeating
this process, we establish the existence of a state sn ∈ Cn, such that sn∆s̃n.

By Proposition 1, if Dn = ∆, Cn is an independent set with respect to ∆.
Thus Cn, which corresponds to a reduced efficient set, represents the set of non
dominated vectors. ⊓⊔

When dominance relation Dk is transitive, Algorithm DP can be drastically
simplified in several ways. First, when we identify, at step 8, a state s̃k(j) ∈ Ck

such that s̃k(j)Dksk(i), transitivity of Dk and independence of Ck with respect
to Dk ensure that sk(i) cannot dominate any state in Ck, which makes the
loop 11-13 useless. Second, if we identify, at step 9, a state s̃k(j) ∈ Ck such
that sk(i)Dks̃k(j), transitivity of Dk and independence of Ck with respect to Dk

ensure that sk(i) cannot be dominated by a state of Ck, which allows us to leave
immediately the current loop 7-10.

Further improvements can still be made since it is usually possible to generate
states of T k = {sk(1), . . . , sk(r)} according to a dominance preserving order for
Dk such that for all i < j (1 ≤ i,j ≤ r) we have either not(sk(j)Dksk(i)) or(
sk(j)Dksk(i) and sk(i)Dksk(j)

)
. The following proposition gives a necessary and

sufficient condition to establish the existence of a dominance preserving order
for a dominance relation.

Proposition 2. Let Dk be a dominance relation on Sk. There exists a dom-
inance preserving order for Dk if and only if Dk does not admit cycles in its
asymmetric part.

Proof. ⇒ The existence of a cycle in the asymmetric part of Dk would imply
the existence of two consecutive states sk(j) and sk(i) on this cycle with j > i, a
contradiction.
⇐ Any topological order based on the asymmetric part of Dk is a dominance
preserving order for Dk. ⊓⊔

If states of T k are generated according to a dominance preserving order for
Dk, step 9 and loop 11-13 can be omitted.

In our presentation, Algorithm DP provides us with the set of non-dominated
criterion vectors. The approach can be easily adapted to obtain a reduced effi-
cient set by adding to each generated state components characterizing its cor-
responding solution. Moreover, the efficient set can be obtained by using domi-
nance relations Dk (k = 1, . . . , n) satisfying condition (1), where ∆ is replaced
by ∆, and provided that Cn is an independent set with respect to ∆.

4 Implementation issues

We first present the order in which we consider items in the sequential process
(section 4.1). Then, we present three dominance relations that we use in DP
(section 4.2) and a brief explanation of the way of applying them (section 4.3).

4.1 Item order

The order in which items are considered is a crucial implementation issue in
DP. In the single-objective knapsack problem, it is well-known that, in order to
obtain a good solution, items should usually be considered in decreasing order
of value to weight ratios vk/wk (assuming that ties are solved arbitrarily) [2,3].
For the multi-objective version, there is no such a natural order.

We introduce now three orders Osum, Omax, and Omin that are derived by ag-
gregating orders Oi induced by the ratios vk

i /wk for each criterion (i = 1, . . . , p).
Let rℓ

i be the rank or position of item ℓ in order Oi. Osum denotes an or-
der according to increasing values of the sum of the ranks of items in the p
orders Oi (i = 1, . . . , p). Omax denotes an order according to the increasing val-
ues of the maximum or worst rank of items in the p orders Oi (i = 1, . . . , p),
where the worst rank of item ℓ in the p orders Oi (i = 1, . . . , p) is computed
by maxi=1,...,p{r

ℓ
i} + 1

pn

∑p

i=1 rℓ
i in order to discriminate items with the same

maximum rank. Similarly, Omin denotes an order according to the increasing
values of the minimum rank of items in the p orders Oi (i = 1, . . . , p).

In the computational experiments, in Section 5, we show the impact of the
order on the efficiency of our approach.

4.2 Dominance relations

Each dominance relation focuses on specific considerations. It is then desirable
to make use of complementary dominance relations. Moreover, when deciding to
use a dominance relation, a tradeoff must be made between its potential ability
of discarding many states and the time it requires to be checked.

We present now the three dominance relations used in our method. The first
two relations are very easy to establish and the last one, although more difficult
to establish, is considered owing to its complementarity with the two others.

We first present a dominance relation based on the following observation.
When the residual capacity associated to a state sk of phase k is greater than or
equal to the sum of the weights of the remaining items (items k + 1, . . . , n), the
only completion of sk that can possibly lead to an efficient solution is the full
completion J = {k + 1, . . . , n}. It is then unnecessary to generate extensions of
sk that do not contain all the remaining items. We define thus the dominance
relation Dk

r on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
r s̃k ⇔






s̃k ∈ Sk−1,
sk = (s̃k

1 + vk
1 , . . . , s̃k

p + vk
p , s̃k

p+1 + wk)
s̃k

p+1 ≤ W −
∑n

j=k wj

Proposition 3 (Relation Dk
r).

(a) Dk
r is a dominance relation (c) Dk

r admits dominance preserving orders
(b) Dk

r is transitive

Proof. (a) Consider two states sk and s̃k such that skDk
r s̃k. This implies, that

sk∆s̃k. Moreover, since sk
p+1 = s̃k

p+1 + wk ≤ W −
∑n

j=k+1 wj , any subset J ⊆

{k + 1, . . . , n} is a completion for s̃k and sk. Thus, for all s̃n ∈ Ext(s̃k), there
exists sn ∈ Ext(sk), based on the same completion as s̃n, such that sn∆s̃n. This
establishes that Dk

r satisfies condition (1) of Definition 2.
(b) Obvious.
(c) By Proposition 2, since Dk

r is transitive. ⊓⊔

This dominance relation is quite poor, since at each phase k it can only ap-
pear between a state that does not contain item k and its extension that contains
item k. Nevertheless, it is very easy to check since, once the residual capacity
W −

∑n

j=k wj is computed, relation Dk
r requires only one test to be established

between two states.

A second dominance relation Dk
∆ is defined on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
∆s̃k ⇔

{
sk∆s̃k

sk
p+1 ≤ s̃k

p+1, if k < n

Dominance relation Dk
∆ is a generalization to the multi-objective case of the

dominance relation usually attributed to Weingartner and Ness [10] and used in
the classical Nemhauser and Ullmann algorithm [11].

Proposition 4 (Relation Dk
∆).

(a) Dk
∆ is a dominance relation (c) Dk

∆ admits dominance preserving orders

(b) Dk
∆ is transitive (d) Dn

∆ = ∆

Proof. (a) Consider two states sk and s̃k such that skDk
∆s̃k. This implies, that

sk∆s̃k. Moreover, since sk
p+1 ≤ s̃k

p+1, any subset J ⊆ {k + 1, . . . , n} that is a

completion for s̃k is also a completion for sk. Thus, for all s̃n ∈ Ext(s̃n), there
exists sn ∈ Ext(sn), based on the same completion as s̃n, such that sn∆s̃n. This
establishes that Dk

∆ satisfies condition (1) of Definition 2.
(b) Obvious.
(c) By Proposition 2, since Dk

∆ is transitive.
(d) By definition. ⊓⊔

Relation Dk
∆ is a powerful relation since a state can possibly dominate all

other states of larger weight. This relation requires at most p + 1 tests to be
established between two states.

The third dominance relation is based on the comparison between extensions
of a state and an upper bound of the extensions of another state. In our context,
a criterion vector u = (u1, . . . , up) is an upper bound for a state sk ∈ Sk if and
only if for all sn ∈ Ext(sk) we have ui ≥ sn

i , i = 1, . . . , p.

We can derive a general type of dominance relations as follows: considering
two states sk, s̃k ∈ Sk, if there exists a completion J of sk and an upper bound
ũ for s̃k such that sk

i +
∑

j∈J vj
i ≥ ũi, i = 1, . . . , p, then sk dominates s̃k.

This type of dominance relations can be implemented only for specific com-
pletions and upper bounds. In our experiments, we just consider two specific
completions J ′ and J ′′ defined as follows. After relabeling items k + 1, . . . , n
according to order Osum, completion J ′ is obtained by inserting sequentially
the remaining items into the solution provided that the capacity constraint is
respected. More precisely, J ′ correspond to Jn where Jk = ∅ and Jℓ = Jℓ−1∪{ℓ}
if sk

p+1 +
∑

j∈Jℓ−1
wj + wℓ ≤ W , ℓ = k + 1, . . . , n. J ′′ is defined similarly by

relabeling items according to order Omax.

To compute u, we use the upper bound presented in [2] for each criterion
value. Let us first define W (sk) = W − sk

p+1 the residual capacity associated to

state sk ∈ Sk. We denote by ci = min{ℓi ∈ {k+1, . . . , n} :
∑ℓi

j=k+1 wj > W (sk)}

the position of the first item that cannot be added to state sk ∈ Sk when items
k + 1, . . . , n are relabeled according to order Oi. Thus, according to [2, Th 2.2],
when items k + 1, . . . , n are relabeled according to order Oi, an upper bound on
the ith criterion value of sk ∈ Sk is for i = 1, . . . , p:

ui = sk
i +

ci−1∑

j=k+1

vj
i +max

{⌊
W (sk)

vci+1
i

wci+1

⌋
,

⌊
vci

i − (wci − W (sk))
vci−1

i

wci−1

⌋}
(2)

Finally, we define Dk
b a particular dominance relation of this general type for

k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
b s̃k ⇔






sk
i +

∑
j∈J′ vj

i ≥ ũi, i = 1, . . . , p

or

sk
i +

∑
j∈J′′ vj

i ≥ ũi, i = 1, . . . , p

where ũ = (ũ1, . . . , ũp) is the upper bound for s̃k computed according to (2).

Proposition 5 (Relation Dk
b).

(a) Dk
b is a dominance relation (c) Dk

b admits dominance preserving orders
(b) Dk

b is transitive (d) Dn
b = ∆

Proof. (a) Consider states sk and s̃k such that skDk
b s̃k. This implies that there

exists J ∈ {J ′, J ′′} leading to an extension sn of sk such that sn∆ũ. Moreover,
since ũ is an upper bound of s̃k, we have ũ∆s̃n, for all s̃n ∈ Ext(s̃k). Thus, by
transitivity of ∆, we get sn∆s̃n, which establishes that Dk

b satisfies condition (1)
of Definition 2.
(b) Consider states sk, s̃k, and s̄k such that skDk

b s̃k and s̃kDk
b s̄k. This implies

that, on the one hand, there exists J1 ∈ {J ′, J ′′} such that sk
i +

∑
j∈J1

vj
i ≥ ũi

(i = 1, . . . , p), and on the other hand, there exists J2 ∈ {J ′, J ′′} such that
s̃k

i +
∑

j∈J2
vj

i ≥ ūi (i = 1, . . . , p). Since ũ is an upper bound for s̃k we have

ũi ≥ s̃k
i +

∑
j∈J2

vj
i (i = 1, . . . , p). Thus we get skDk

b s̄k.

(c) By Proposition 2, since Dk
b is transitive.

(d) By definition. ⊓⊔

Dk
b is harder to check than relations Dk

r and Dk
∆ since it requires much more

tests and state-dependent information.
Obviously, relation Dk

b would have been richer if we had used additional
completions (according to other orders) for sk and computed instead of one
upper bound u, an upper bound set using, e.g., the techniques presented in [12].
Nevertheless, in our context since we have to check Dk

b for many states, enriching
Dk

b in this way would be extremely time consuming.

4.3 Use of multiple dominance relations

In order to be efficient, we will use the three dominance relations presented in
section 4.2 at each phase. As underlined in the previous subsection, dominance
relations require more or less computational effort to be checked. Moreover, even
if they are partly complementary, it often happens that several relations are valid
for a same pair of states. It is thus natural to apply first dominance relations
which can be checked easily (such as Dk

r and Dk
∆) and then test on a reduced

set of states dominance relations requiring a larger computation time (such as
Dk

b).
The running time of Algorithm DP using these relations is in O(n(min{W, U}

Up−1)2) where U is an upper bound on the value of all solutions on all criteria,

since Ck, which contains only non-dominated vectors with respect to profit values
and weight, has a cardinality in O(min{W, U}Up−1). Based on ideas of [13], in the
bi-objective case, in order to remove efficiently dominated states at each phase,
we use an AVL tree [14, sec. 6.3.3] for storing states which leads to a significant
improvement of the running time to O(n min{W, U} log(min{W, U})). Observe
that space complexity of Algorithm DP is in O(min{W, U}Up−1).

5 Computational experiments and results

5.1 Experimental design

All experiments presented here were performed on a bi-Xeon 3.4GHz with 3072Mb
RAM. All algorithms are written in C++. In the bi-objective case (p = 2), the
following types of instances were considered:

A: Random instances, v1
k ∈R [1, 1000], v2

k ∈R [1, 1000] and wk ∈R [1, 1000]

B: Unconflicting instances, where v1
k is correlated with v2

k, i.e. v1
k ∈R [111, 1000]

and v2
k ∈R [v1

k − 100, v1
k + 100], and wk ∈R [1, 1000]

C: Uncorrelated conflicting instances, where v1
k and v2

k are mirror values, i.e.
v1

k ∈R [1, 1000], v2
k ∈R [max{900− vk

1 ; 1}, min{1100− vk
1 ; 1000}], and wk ∈R

[1, 1000]

D: Correlated conflicting instances, where v1
k and vk

2 are mirror values, and
wk is correlated with v1

k and vk
2 , i.e. v1

k ∈R [1, 1000], v2
k ∈R [max{900 −

vk
1 ; 1}, min{1100− vk

1 ; 1000}], and wk ∈R [vk
1 + vk

2 − 200; vk
1 + vk

2 + 200].

where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these in-
stances, we set W = ⌊1/2

∑n
k=1 wk⌋.

Most of the time in the literature, experiments are made on instances of type
A. Sometimes, other instances such as those of type B, which were introduced in
[9], are studied. However, instances of type B should be viewed as quasi mono-
criterion instances since they involve two non conflicting criteria. Nevertheless,
in a bi-objective context, considering conflicting criteria is a more appropriate
way of modeling real-world situations. For this reason, we introduced instances of
types C and D for which criterion values of items are conflicting. For instances
of types C and D, items are around the line y = −x + 1000. In instances of
type D, wk is correlated with v1

k, v2
k. These instances were introduced in order

to verify if correlated instances are harder than uncorrelated instances as in the
single-criterion context [2].

For three-objective experiments, we considered the generalization of random
instances of type A where vi

k ∈R [1, 1000] for i = 1, . . . , 3 and wk ∈R [1, 1000].

For each type of instances and each value of n presented in this study, 10
different instances were generated. In the following, we denote by pTn a p criteria
instance of type T with n items. For example, 2A100 denotes a bi-objective
instance of type A with 100 items.

5.2 Results in the bi-objective case

First, in the experiments, we try to determine the best order to sort items for DP.
Table 1 shows clearly that the way of ordering items has a dramatic impact on the
CPU time and that order Omax is significantly better for all types of instances.
Thus, in the following, items are sorted and labeled according to Omax.

Table 1. Impact of different orders of items in our approach (Average CPU time in
seconds, p = 2).

Type n Omax Osum Omin Random

A 300 84.001 100.280 94.598 178.722
B 600 1.141 1.084 1.403 77.699
C 200 59.986 60.061 85.851 107.973
D 90 20.795 23.687 35.426 31.659

Second, we show the complementarity of dominance relations Dk
r , Dk

∆, and

Dk
b . Table 2 establishes that it is always better to use the three relations, due to

their complementarity.

Table 2. Complementarity of dominance relations Dk
r , Dk

∆, and Dk
b in our approach

(Average CPU time in seconds, p = 2).

Type n Dk
∆ Dk

r and Dk
∆ Dk

∆ and Dk
b Dk

r , Dk
∆, and Dk

b

A 300 272.628 157.139 85.076 84.001
B 600 230.908 174.015 1.188 1.141
C 200 122.706 63.557 61.696 59.986
D 90 46.137 24.314 23.820 20.795

Lastly, we present, in Table 3, the performance of our approach on large
size instances. The largest instances solved here are those of type B with 4000
items and the instances with the largest number of non-dominated criterion
vectors are those of type D with 250 items for which the cardinality of the
set of non-dominated criterion vectors is in average of 8154.7. As predicted,
instances of type B are quasi mono-objective instances and have very few non-
dominated criterion vectors. The average maximum cardinality of Ck, which is
a good indicator of the memory storage needed to solve the instances, can be
very huge. This explains why we can only solve instances of type D up to 250
items.

Table 3. Results of our approach on large size instances (p = 2).

Type n
Time in (s) |ND| Avg

Min Avg Max Min Avg Max maxk{|C
k|}

A

100 0.152 0.328 0.600 98 159.3 251 17134.7
300 57.475 84.001 101.354 905 1130.7 1651 898524.7
500 677.398 889.347 1198.190 2034 2537.5 2997 5120514.7
700 4046.450 5447.921 7250.530 3768 4814.8 5939 18959181.7

B

1000 4.328 8.812 15.100 105 157.0 218 134107.2
2000 139.836 251.056 394.104 333 477.7 630 1595436.1
3000 1192.190 1624.517 2180.860 800 966.9 1140 6578947.2
4000 4172.530 6773.264 8328.280 1304 1542.3 1752 18642759.0

C
100 1.564 2.869 4.636 406 558.2 737 103921.5
300 311.995 373.097 470.429 2510 2893.6 3297 3481238.4
500 2433.320 4547.978 6481.970 5111 7112.1 9029 21282280.5

D

100 36.450 40.866 54.267 1591 1765.4 2030 1129490.3
150 235.634 265.058 338.121 2985 3418.5 3892 4274973.9
200 974.528 1145.922 1497.700 4862 5464.0 6639 12450615.5
250 2798.040 3383.545 3871.240 7245 8154.7 8742 26999714.8

5.3 Comparison with other exact methods in the bi-objective case

The results of a comparative study, in the bi-objective case, between the exact
method of [9], an exact method based on a commercial Integer Programming
(IP) solver and our approach using Dk

r , Dk
∆, and Dk

b are presented in Table 4.
We have selected the method of [9] since it is the most efficient method currently
known. An exact method based on a commercial IP solver has been selected, on
one hand, because it is relatively easy to implement, and on the other hand,
since each efficient solution is found by solving only one linear program, this
method has much less storage problems than the two others.

An exact method based on a commercial IP solver is presented in Algo-
rithm 2. This algorithm relies on the idea that since the decision space Z =
{f(x) : x ∈ X} is included in N2, all efficient solutions can be enumerated in
decreasing order of value on the first criterion. Cplex 9.0 is used as IP solver in
Algorithm 2 which is written in C++.

Algorithm 2: Computing a reduced efficient set with an IP Solver
Generate y an optimal solution of maxx∈X f1(x) and z an optimal solution of maxx∈X f2(x);1

Generate x1 an optimal solution of max{f2(x) : x ∈ X, f1(x) ≥ f1(y)};2

X⋆ ← X⋆ ∪ {x1} ; j ← 1;3

while f2(xj) < f2(z) do4

α← f2(z)− f2(xj)− 1;5

Generate xj+1 an optimal solution of max{αf1(x) + f2(x) : x ∈ X, f2(x) ≥ f2(xj) + 1};6

X⋆ ← X⋆ ∪ {xj+1} ; j ← j + 1;7

return X⋆;8

The three methods have been used on the same instances and the same
computer. For the exact method of [9], we used the source code, in C, obtained
from the authors. Table 4 presents results, in the bi-objective case, for instances

of type A, B, C, and D for increasing size of n while the method of [9] can solve
all instances of the series considered. Since the method of [9] is very storage
consuming, it can only solve instances of type A up to 300 items, of type B up
to 800 items, of type C up to 100 items and of type D up to 100 items whereas
we recall (see Table 3) that our approach can solve instances respectively up to
700, 4000, 500 and 250 items.

Table 4. Comparison between the exact method of [9], Algorithm 2 using Cplex and our approach.

Type n
Avg time in (s) Avg

[9] Cplex Our approach |ND|

A
100 2.476 5.343 0.328 159.3
200 37.745 57.722 12.065 529.0
300 163.787 285.406 84.001 1130.7

B
600 27.694 27.543 1.141 74.3
700 47.527 29.701 2.299 78.6
800 75.384 68.453 5.280 118.1

C 100 12.763 208.936 2.869 558.2
D 100 127.911 23126.926 40.866 1765.4

Considering CPU time, we can conclude that our approach is always faster
than the exact method of [9] and than Algorithm 2 with Cplex on the considered
instances. We can also observe that the CPU time needed to solve correlated
and conflicting instances of type D by Algorithm 2 with Cplex is especially large
(about 6.5 hours in average for instances 2D100). In addition, we can remark
that the exact method of [9] cannot solve conflicting instances (type C and D) of
moderate and large size for which the number of non-dominated criterion vectors
is large. Indeed, the exact method of [9] does not work very well on instances
with many non-dominated criterion vectors due to storage limitations.

5.4 Results in the three-objective case

In table 5, we present results of our approach concerning large size instances of
type A in the three-objective case. Observe that the number of non-dominated
criterion vectors varies a lot. This explains the variation of the CPU time which
is strongly related with the number of non-dominated criterion vectors.

Table 5. Results of our approach on instances of type A in the three-objective case.

n
Time in (s) |ND| Avg

Min Avg Max Min Avg Max maxk{|C
k|}

10 0.000 0.000 0.000 4 8.3 18 20.9
30 0.000 0.012 0.028 31 112.9 193 1213.2
50 0.112 0.611 1.436 266 540.6 930 12146.5
70 4.204 16.837 44.858 810 1384.4 2145 64535.4
90 80.469 538.768 2236.230 2503 4020.3 6770 285252.1

110 273.597 3326.587 11572.700 3265 6398.3 9394 601784.6

6 Conclusions

The goal of this work has been to develop and experiment a new dynamic pro-
gramming algorithm to solve the 0 − 1 multi-objective knapsack problem. We
showed that by using several complementary dominance relations, we obtain a
method which outperforms experimentally the existing methods. In addition,
our method is extremely efficient with regard to the other methods on the con-
flicting instances that model real world applications. Lastly, this method is the
first one to our knowledge that can be applied for knapsack with more than two
objectives and the results in the three-objective case are very satisfactory.

While we focused in this paper on the 0 − 1 multi-objective knapsack prob-
lem, we could envisage in future research to apply dominance relations based
on similar ideas to other multi-objective problems such as the multi-objective
shortest path problem or multi-objective scheduling problems.

References

1. Ehrgott, M.: Multicriteria optimization. LNEMS 491. Springer, Berlin (2005)
2. Martello, S., Toth, P.: Knapsack Problems. Wiley, New York (1990)
3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
4. Rosenblatt, M.J., Sinuany-Stern, Z.: Generating the discrete efficient frontier to

the capital budgeting problem. Operations Research 37(3) (1989) 384–394
5. Kostreva, M.M., Ogryczak, W., Tonkyn, D.W.: Relocation problems arising in

conservation biology. Comp. and Math. with App. 37 (1999) 135–150
6. Jenkins, L.: A bicriteria knapsack program for planning remediation of contami-

nated lightstation sites. Eur. J. Oper. Res. 140 (2002) 427–433
7. Klamroth, K., Wiecek, M.: Dynamic programming approaches to the multiple

criteria knapsack problem. Naval Research Logistics 47(1) (2000) 57–76
8. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.: Two-phases method and branch and

bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization 12 (1998) 139–155

9. Captivo, M.E., Climaco, J., Figueira, J., Martins, E., Santos, J.L.: Solving bicriteria
0-1 knapsack problems using a labeling algorithm. Computers and Operations
Research 30 (2003) 1865–1886

10. Weignartner, H., Ness, D.: Methods for the solution of the multi-dimensional 0/1
knapsack problem. Operations Research 15(1) (1967) 83–103

11. Nemhauser, G., Ullmann, Z.: Discrete dynamic programming and capital alloca-
tion. Management Science 15(9) (1969) 494–505

12. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimiza-
tion problems. To appear in Computers and Operations Research (2007)

13. Kung, H., Luccio, F., Preparata, F.: On finding the maxima of set of vectors. J.
Assoc. Comput. Mach. 22(4) (1975) 469–476

14. Knuth, D.E.: The Art of Computer Programming, Vol. 3. Addison Wesley (1997)

