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About us

+ Alexandre VERINE Ecole Normale Supérieure

• Deep Learning theory and application.
• Data Generation with Generative Models.
• Robustness to adversarial examples.

+ Blaise DELATTRE Paris Dauphine University

• Certified Robustness to adversarial examples.
• Stable Lipschitz neural networks.
• Randomized Smoothing.
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About the lectures

+ Two Projects:
• Robustness: 3 Practical lessons (∼3x3h30)

▶ 30/06/2025 Evening
▶ 01/07/2025 Morning
▶ 01/07/2025 Afternoon

• Privacy: 3 Practical lessons (∼3x3h30)
▶ 22/09/2025 Evening
▶ 29/09/2025 Evening
▶ 06/10/2025 Evening

+ One Presentation

• Present your research perspectives of both project
• Details on number per group, duration will be given later

▶ ???
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Principle of Adversarial Attacks
A dataset
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Principle of Adversarial Attacks
A decision boundary
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Principle of Adversarial Attacks
A classifier

f(x) = 1f(x) = −1
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Principle of Adversarial Attacks
Choosing a data point

f(x) = 1f(x) = −1

x1
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Principle of Adversarial Attacks
Perturbing the data point

f(x) = 1f(x) = −1

x1

x1 + δ
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Principle of Adversarial Attacks
Adversarial Attacks

What if δ is imperceptible ?
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Principle of Adversarial Attacks
Adversarial Attacks in Image recognition

Source : Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.
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Principle of Adversarial Attacks
Adversarial Attacks in Image recognition

Figure. Adversarial traffic signs (Sitawarin, Bhagoji et al., 2018)
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Principle of Adversarial Attacks
Adversarial Attacks for LLM

Figure. from https://hackernoon.com/

what-are-large-language-models-capable-of-the-vulnerability-of-llms-to-adversarial-attacks
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Principle of Adversarial Attacks
Definitions

To be imperceptible, the norm of the perturbation is bounded

We define an ϵ ∈ R such that ∥δ∥p ≤ ϵ.
In practice, we use ℓ2 and ℓ∞ norm to bound the perturbation.

Generating a adversarial example

Let f : Rd → Y be a classifier. Given an example x ∈ X ⊂ Rd and its true label y ∈ Y, the goal is to
find δ ∈ Rd such that :

Untargeted attacks
∥δ∥p ≤ ϵ and f (x + δ) ̸= y

Targeted attacks
∥δ∥p ≤ ϵ and f (x + δ) = t with t ̸= y
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Principle of Adversarial Attacks
Generating an adversarial example with ℓ2-norm
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Principle of Adversarial Attacks
Generating an adversarial example with ℓ∞-norm
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Attacks
FGSM Attack

FGSM

The Fast Gradient Sign Method (FGSM) is an attack scheme that uses the gradients of the neural
network to create adversarial examples, it is defined as:

xadv = x + ϵ · sign(∇xL(θ, x , y))

Paper :

[3] Explaining and Harnessing Adversarial Examples, Goodfellow et. al, ICLR 2015.
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Attacks
ℓ2-PGD Attack

ℓ2-PGD

ℓ2-PGD is an iterative method similar to ℓ∞-PGD, but it constrains the perturbation to an ℓ2-norm ball.
The iteration is defined as follows:

1. x0 ← x

2. repeat n times :
xt+1 = ΠB2(x ,ϵ) (xt + η∇xLθ(xt , y))

Paper :

[4] Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et. al, ICLR 2018.
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Attacks
ℓ2-PGD Attack
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Attacks
ℓ∞-PGD Attack

ℓ∞-PGD

ℓ∞-PGD is an iterative method that constructs the perturbed data as follows :

1. x0 ← x

2. repeat n times :
xt+1 = ΠB∞(x ,ϵ) (xt + ηsign(∇xLθ(xt , y)))

Paper :

[4] Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et. al, ICLR 2018.
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Attacks
ℓ2-Carlini & Wagner

For a given example x ∈ X of the class y ∈ Y, the ℓ2 Carlini & Wagner attack (C&W) aims to resolve
the following optimization problem :

min
x+δ

c∥δ∥2 + g(x + δ) (1)

where g(x + δ) ≤ 0 iff f (x + δ) ̸= y . You can find the different functions g in the paper :

[1] Towards Evaluating the Robustness of Neural Networks, Carlini and Wagner, IEEE 2017.
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Adversarial Training

Adversarial training is a method that aims to optimize (Goodfellow, 2015) :

min
θ

E(x ,y)

(
max
∥δ∥p≤ϵ

Lθ (x + δ, y)

)
(2)

To solve the inner maximization problem, we use in practice PGD attack. ([4] Madry et al. 2017)
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Lipschitz Networks

Lipschitz networks are robust to adversarial attacks because the Lipschitz constant bounds how much the
output of the network can change concerning small input perturbations.
The classifier f is said to be L-Lipschitz continuous for the ℓ2-norm if there exists a constant L ≥ 0 such
that

[7] Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks,
Tsuzuku et. al., NeurIPS 2018
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Randomized Networks

Another defense is to inject noise into the input data during the training and inference phases (Cohen,
2019; Pinot et al., 2019). It is shown that predicting

Eη∼N (0,σ2I ) [f (x + η)] ,

where η is the injected noise, brings more robustness.

[2] Certified adversarial robustness via randomized smoothing, Cohen et. al, ICML 2019.
[5] Theoretical evidence for adversarial robustness through randomization, Pinot et. al, NeurIPS 2019.
[6] Randomization matters. How to defend against strong adversarial attacks, Pinot et. al, ICML 2020.
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Practial Lesson

▶ Contenu du TP à sur ce site : www.alexverine.com

▶ Datasets: MNIST, CIFAR10

▶ Attacks: FGSM, PGD

▶ Defense: Adversarial Training

▶ 3 Practical sessions:

• Introduction: Adversarial Attacks on a Linear Model
• FGSM and PGD Attacks on a Neural Networks
• Adversarial Training: How to build a robust classifier

▶ Develop your own analysis on defenses. For instance:

• Power of the attack during training vs. Power of the attack at inference
• What types of attack can be implemented to protect a network from potential attacks?
• Number of iterations for PGD for adversarial training
• Try Randomized Smoothing with difference noises, MC estimations ...
• Try Lipschitz networks
• etc...
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