

PROJET IA  
DATABASE PRIVACY IN MODERN COMPUTER SCIENCE  
A GENTLE INTRODUCTION TO K-ANONYMITY AND DIFFERENTIAL PRIVACY

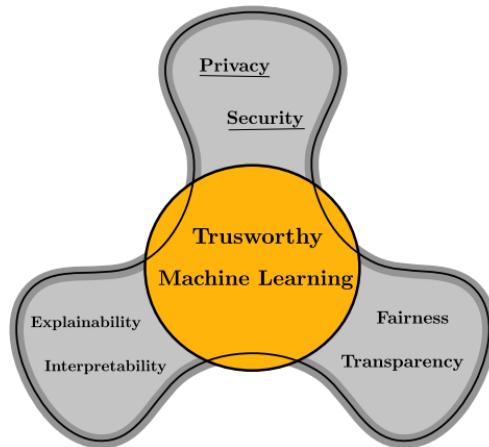
**Alexandre VÉRINE - Blaise DELATTRE**

Université Paris Dauphine - PSL

December 11, 2025

**Dauphine** | PSL 

# TRUSTWORTHY MACHINE LEARNING



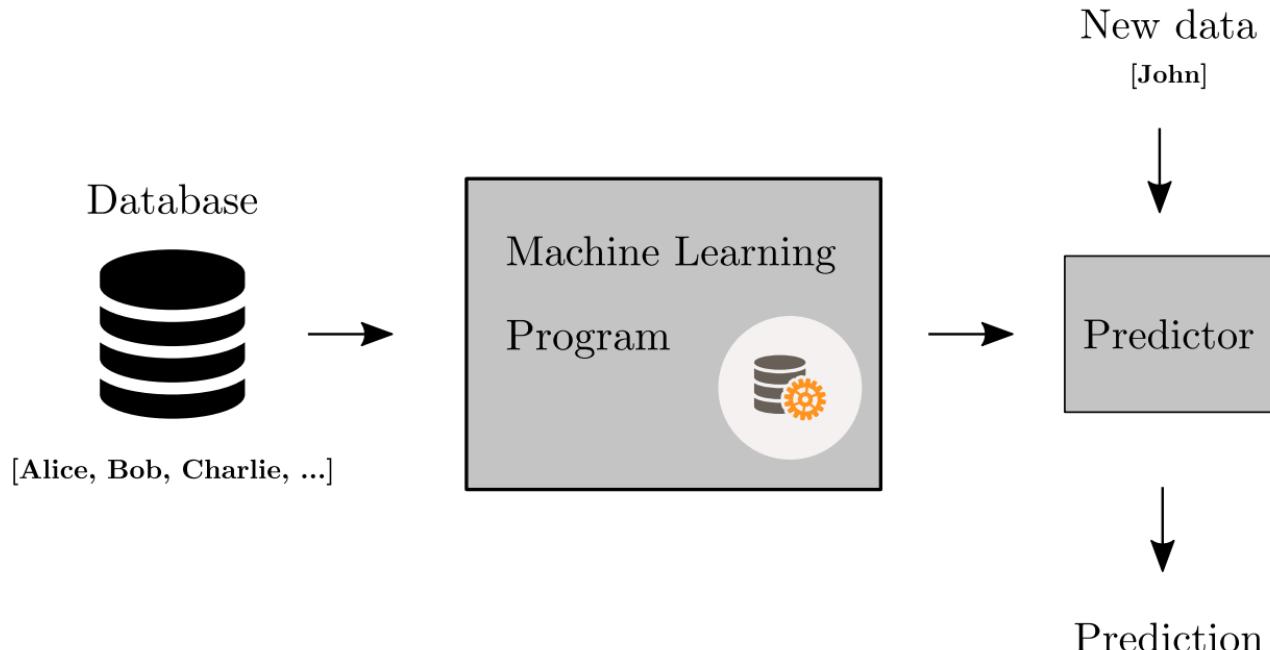
- Massive use of machine learning algorithms raises major issues.
- Industries and governments **have to** treat these issues (GDPR 2018).
- This course focuses on the notions of **Security** and **Privacy**.

**Main questions today:** How modern computer science can be a threat to individuals' privacy? How can practitioners address this issue?

## TABLE OF CONTENTS

|                                                                           |    |
|---------------------------------------------------------------------------|----|
| 1. Modern computer science: a threat for individual privacy? . . . . .    | 4  |
| 2. k-anonymity / l-diversity / t-closeness . . . . .                      | 10 |
| 3. Differential privacy: a principled privacy preserving theory . . . . . | 17 |

## MODERN COMPUTER SCIENCE IS DATA DRIVEN



## SENSITIVE DATABASES



- Databases are massively used in many sensitive domains e.g. **cyber-security, banking, healthcare**.
- **Healthcare:** One want to know that smoking causes cancer, but not that Alice smokes/has a cancer.

**Question:** Is machine learning compatible with privacy?

## CLASSICAL DATA ANONYMIZATION DOES NOT PRESERVE PRIVACY

- Some algorithms (e.g. KNN or SVM) release directly the database including sensitive characteristics. This is obviously not private!
- To protect privacy, a workaround is to remove from the database any information which trivially identifies an individual such as "name" and "social security number" fields, etc. (**not always a good idea**)
- **Sweeney:** *"87% of the population in the United States had reported characteristics that likely made them unique based only on {5-digit ZIP, gender, date of birth}"*

## ADVANCED DATA ANONYMIZATION DOES NOT WORK EITHER

# NETFLIX



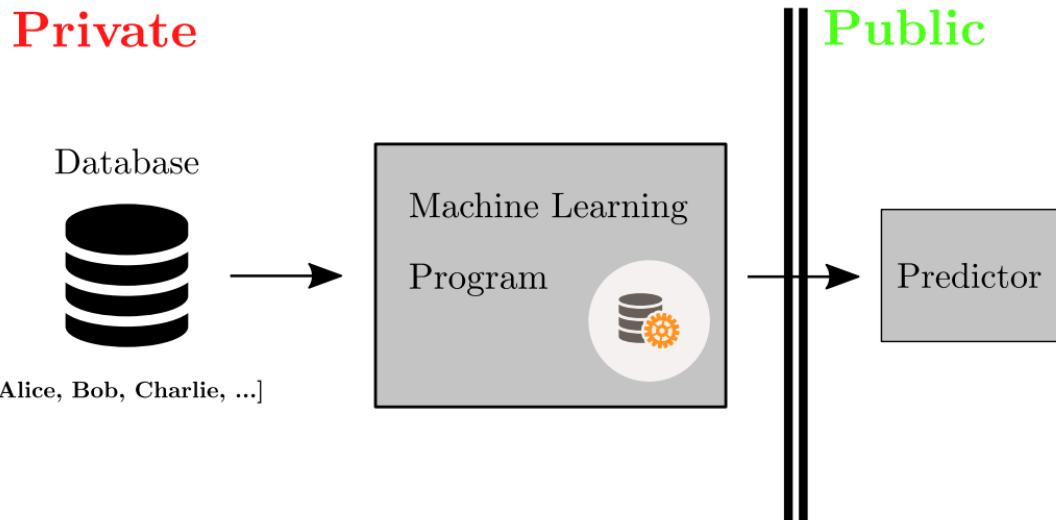
### So called advanced anonymization:

- Unique identifiers removed
- Shuffle of some characteristics
- Modification of some ratings.

**Narayanan et al.** showed that few movie ratings suffice to uniquely identify anonymized users from Netflix prize dataset by linking with IMDB publicly available database. This was a subject of lawsuits and had a major impact on Netflix's privacy policy.

## NO ACCESS TO THE DATABASE IS NOT SUFFICIENT

If there is no anonymization possible, users should not have access to the database (the database is **private**), but only to a **public** predictor.



This defense has also been broken by **membership inference attacks**.

## HOW TO PROTECT THE DATABASE ?

Let us suppose that the Adversary can recover the database. We want to pre-process it such that still keeps individual privacy.

| Name    | Age | Sex | Smoker ? |
|---------|-----|-----|----------|
| Alice   | 20  | F   | 1        |
| Bob     | 22  | M   | 1        |
| Charlie | 21  | F   | 0        |
| Dona    | 21  | F   | 0        |
| Ernest  | 50  | M   | 0        |
| Fred    | 57  | M   | 0        |
| Grace   | 55  | F   | 0        |
| Henry   | 62  | M   | 0        |



- Solution 1: k-anonymity → l-diversity → t-closeness
- Solution 2: Differential privacy

## DEFINITION OF K-ANONYMITY

A database is said k-anonymous each row is identical with at least k-1 other rows (excluding the sensitive columns).

To do so we suppress or **generalize** rows until the condition is met:

1. Select some feature(s) of interest, e.g. age
2. Group the rows according to the selected feature(s)
3. Unify the attributes within each group. For example:
  - Replace the numerical attributes by the median within the group
  - Replace the categorical attribute by the set of existing categories within the group

## GETTING K-ANONYMITY WITH K=2

| Name    | Age | Sex | Smoker ? |
|---------|-----|-----|----------|
| Alice   | 20  | F   | 1        |
| Bob     | 22  | M   | 1        |
| Charlie | 21  | F   | 0        |
| Dona    | 21  | F   | 0        |
| Ernest  | 50  | M   | 0        |
| Fred    | 57  | M   | 0        |
| Grace   | 55  | F   | 0        |
| Henry   | 62  | M   | 0        |

| Name    | Age  | Sex   | Smoker ? |
|---------|------|-------|----------|
| Alice   | 21   | {F,M} | 1        |
| Bob     | 21   | {F,M} | 1        |
| Charlie | 21   | F     | 0        |
| Dona    | 21   | F     | 0        |
| Ernest  | 52.5 | {F,M} | 0        |
| Fred    | 59.5 | M     | 0        |
| Grace   | 52.5 | {F,M} | 0        |
| Henry   | 59.5 | M     | 0        |



| Name    | Age | Sex | Smoker ? |
|---------|-----|-----|----------|
| Alice   | 20  | F   | 1        |
| Bob     | 22  | M   | 1        |
| Charlie | 21  | F   | 0        |
| Dona    | 21  | F   | 0        |
| Ernest  | 50  | M   | 0        |
| Fred    | 57  | M   | 0        |
| Grace   | 55  | F   | 0        |
| Henry   | 62  | M   | 0        |

## GETTING K-ANONYMITY WITH K=4

| Name    | Age | Sex | Smoker ? |
|---------|-----|-----|----------|
| Alice   | 20  | F   | 1        |
| Bob     | 22  | M   | 1        |
| Charlie | 21  | F   | 0        |
| Dona    | 21  | F   | 0        |
| Ernest  | 50  | M   | 0        |
| Fred    | 57  | M   | 0        |
| Grace   | 55  | F   | 0        |
| Henry   | 62  | M   | 0        |

| Name    | Age | Sex   | Smoker ? |
|---------|-----|-------|----------|
| Alice   | 21  | {F,M} | 1        |
| Bob     | 21  | {F,M} | 1        |
| Charlie | 21  | {F,M} | 0        |
| Dona    | 21  | {F,M} | 0        |
| Ernest  | 56  | {F,M} | 0        |
| Fred    | 56  | {F,M} | 0        |
| Grace   | 56  | {F,M} | 0        |
| Henry   | 56  | {F,M} | 0        |



| Name    | Age | Sex | Smoker ? |
|---------|-----|-----|----------|
| Alice   | 20  | F   | 1        |
| Bob     | 22  | M   | 1        |
| Charlie | 21  | F   | 0        |
| Dona    | 21  | F   | 0        |
| Ernest  | 50  | M   | 0        |
| Fred    | 57  | M   | 0        |
| Grace   | 55  | F   | 0        |
| Henry   | 62  | M   | 0        |

## FROM K-ANONYMITY TO L-DIVERSITY

l-diversity is an **extension** of the k-anonymity that handles the sensitive column(s). A database (that is already k-anonymous) is said to be l-diverse if each group has l distinct values for the sensitive field.

- Here we only have 2 possible values hence we can only have l=1 or 2
- l diversity can be implemented two ways:
  - Use l-diversity as another constraint for k-anonymity (notebook)
  - Replace arbitrarily some values to force the condition

| Name    | Age | Sex   | Smoker ? |
|---------|-----|-------|----------|
| Alice   | 21  | {F,M} | 1        |
| Bob     | 21  | {F,M} | 1        |
| Charlie | 21  | {F,M} | 0        |
| Dona    | 21  | {F,M} | 0        |
| Ernest  | 56  | {F,M} | 1        |
| Fred    | 56  | {F,M} | 0        |
| Grace   | 56  | {F,M} | 0        |
| Henry   | 56  | {F,M} | 0        |

## FROM L-DIVERSITY TO T-CLOSENESS

t-closeness is another **extension** of the k-anonymity that also handles the sensitive column(s). A database is said to be t-close if the **distance** between the distribution of the sensitive attribute within any group and the distribution of the attribute in the whole table is no more than a threshold t.

**Example of distance** Let us for example use the Total variation distance:

$$TV(P_{overall}, P_{group}) = 1/2 (|P_{overall}(0) - P_{group}(0)| + |P_{overall}(1) - P_{group}(1)|)$$

| Name    | Age  | Sex   | Smoker ? |
|---------|------|-------|----------|
| Alice   | 21   | {F,M} | 1        |
| Bob     | 21   | {F,M} | 1        |
| Charlie | 21   | {F,M} | 0        |
| Dona    | 21   | {F,M} | 0        |
| Ernest  | 52.5 | {F,M} | 0        |
| Fred    | 59.5 | {F,M} | 0        |
| Grace   | 52.5 | {F,M} | 0        |
| Henry   | 59.5 | {F,M} | 0        |

- $P_{overall}(0) = 3/4, P_{overall}(1) = 1/4$
- $P_{group1}(0) = 1/2, P_{group1}(1) = 1/2$
- $TV(P_{overall}, P_{group1}) = 1/4$

## T-CLOSENESS, WHAT T TO CHOOSE ?

| Name    | Age  | Sex   | Smoker ? |
|---------|------|-------|----------|
| Alice   | 21   | {F,M} | 1        |
| Bob     | 21   | {F,M} | 1        |
| Charlie | 21   | {F,M} | 0        |
| Dona    | 21   | {F,M} | 0        |
| Ernest  | 52.5 | {F,M} | 0        |
| Fred    | 59.5 | {F,M} | 0        |
| Grace   | 52.5 | {F,M} | 0        |
| Henry   | 59.5 | {F,M} | 0        |

$$t \geq 1/4$$

| Name    | Age | Sex   | Smoker ? |
|---------|-----|-------|----------|
| Alice   | 21  | {F,M} | 1        |
| Bob     | 21  | {F,M} | 0        |
| Charlie | 21  | {F,M} | 0        |
| Dona    | 21  | {F,M} | 0        |
| Ernest  | 56  | {F,M} | 1        |
| Fred    | 56  | {F,M} | 0        |
| Grace   | 56  | {F,M} | 0        |
| Henry   | 56  | {F,M} | 0        |

$t$  small.

## CONCLUSION ON K-ANONYMITY/L-DIVERSITY/T-CLOSENESS

- Simple concepts that can be easy to apply
- How to choose  $k/l/t$ ? Not easy to trade-off privacy and accuracy
- No formal guarantees
- To go further: Differential Privacy.

## INFORMAL DEFINITION OF DIFFERENTIAL PRIVACY

- The adversary can recover the database.
- To protect the individuals, the database should be “the same” when Alice is in the database and when she is not.
- Differential Privacy formalize this notion

*“The outcome of any analysis is essentially equally likely, independent of whether any individuals joins, or refrains from joining the database”.*

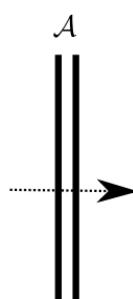
Cynthia Dwork, 2006.

## RANDOMIZED ALGORITHM

A **randomized algorithm**  $\mathcal{A}$  is an algorithm that outputs a random variable instead of deterministic values.

**Private** database  $d$

| Name    | Age  | Sex   | Smoker ? |
|---------|------|-------|----------|
| Alice   | 21   | {F,M} | 1        |
| Bob     | 21   | {F,M} | 1        |
| Charlie | 21   | {F,M} | 0        |
| Dona    | 21   | {F,M} | 0        |
| Ernest  | 52.5 | {F,M} | 0        |
| Fred    | 59.5 | {F,M} | 0        |
| Grace   | 52.5 | {F,M} | 0        |
| Henry   | 59.5 | {F,M} | 0        |



**Public** resulting database  $\mathcal{A}(d)$

| Name    | Age | Sex   | Smoker ? |
|---------|-----|-------|----------|
| Alice   | 21  | {F,M} | $X_1$    |
| Bob     | 21  | {F,M} | $X_2$    |
| Charlie | 21  | {F,M} | $X_3$    |
| Dona    | 21  | {F,M} | $X_4$    |
| Ernest  | 56  | {F,M} | $X_5$    |
| Fred    | 56  | {F,M} | $X_6$    |
| Grace   | 56  | {F,M} | $X_7$    |
| Henry   | 56  | {F,M} | $X_8$    |

Where  $X_1, \dots, X_n$  are Bernoulli random variable

## FORMAL DEFINITION OF DIFFERENTIAL PRIVACY

A randomized algorithm  $\mathcal{A}$  is called  **$\epsilon$ -differentially private** if for any  $S \subset \text{Range}(\mathcal{A})$  and for all pair of database  $d \sim d'$ :

$$\mathbb{P}[\mathcal{A}(d) \in S] \leq e^\epsilon \mathbb{P}[\mathcal{A}(d') \in S]$$

$d \sim d'$  means that  $d$  and  $d'$  differ at most from one individual.

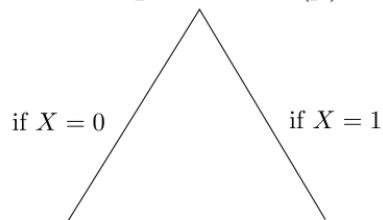
- What value of  $\epsilon$  is good? Typically  $\leq 1$  is good (but be careful).
- How can we craft  $\mathcal{A}$  to have differential privacy? Randomized response.

## RANDOMIZED RESPONSE

For each row:

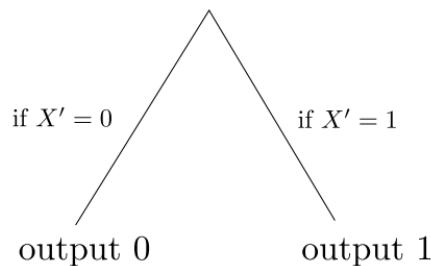
- With probability  $1-p$ , we leave the true sensitive value.
- With probability  $p$ , we change the value and set it to 1 with probability  $q$  and 0 with probability  $1-q$ .

Sample  $X \sim B(p)$



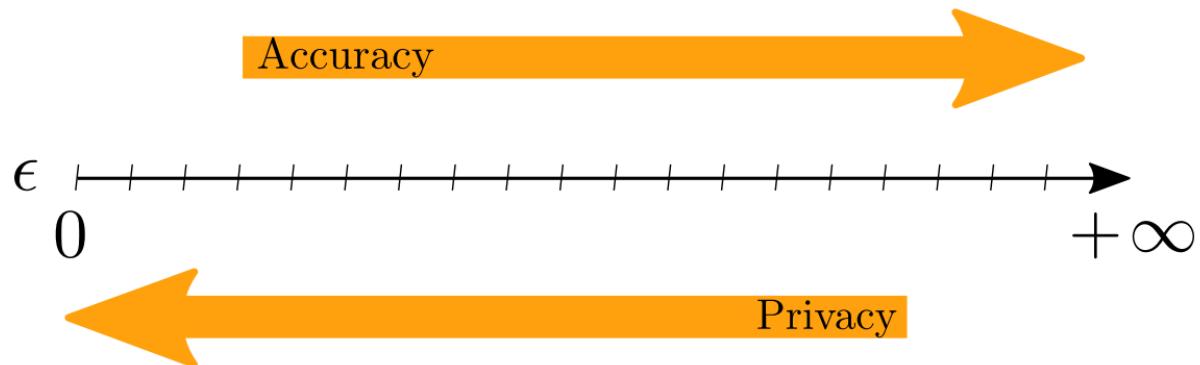
True value for Alice: 1

output 1      Sample  $X' \sim B(1 - q)$



## NO FREE LUNCH: TRADE-OFF ACCURACY/PRIVACY

- Randomized response is  $\epsilon$ -differential privacy, with  $\epsilon = -\ln(pq)$ .
- Other noise injection trick exist (e.g. Laplace mechanism)
- Privacy is not free, but one can certify some level of privacy/accuracy.



It simply states that accuracy and privacy are not trivially combined.

## TAKE-HOME MESSAGE

- **Trustworthy Machine Learning**, is rapidly gaining in interest.
- It is **hard but not impossible** to release private databases.
- k-anonymity and its extensions are a good start but do not provide formal guarantees.
- **Differential privacy** is a theoretically grounded framework for privacy preserving data management.
- It preserves privacy at the **expense of some controlled loss of accuracy**.