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Abstract. Due to the exploratory nature of scientific experiments, computational sci-
entists need to steer dataflows running on High-Performance Computing (HPC) ma-
chines by tuning parameters, modifying input datasets, or adapting dataflow elements 
at runtime. This happens in several application domains, such as in Oil and Gas where 
they adjust simulation parameters, or in Machine Learning where they tune models’ 
hyperparameters during the training. This is also known as computational steering or 
putting the “human-in-the-loop” of HPC simulations. Such adaptations must be tracked 
and analyzed, especially during long executions. Tracking adaptations with provenance 
not only improves experiments’ reproducibility and reliability, but also helps scientists 
to understand, online, the consequences of their adaptations. We propose PROV-DfA, 
a specialization of W3C PROV elements to model computational steering. We provide 
provenance data representation for online adaptations, associating them with the 
adapted domain dataflow and with execution data, all in the same provenance database. 
We explore a case study in the Oil and Gas domain to show how PROV-DfA supports 
scientists in questions like “who, when, and which dataflow elements were adapted and 
what happened to the dataflow and execution after the adaptation (e.g., how much ex-
ecution time or processed data was reduced)”, in a real scenario. 
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1 Introduction 

It is known that certain actions are better performed by humans than by machines, es-
pecially when the actions require very specific domain or application knowledge [1]. 
Due to the exploratory nature of scientific experiments, this often happens in computa-
tional experiments modeled as scientific workflows, where computational scientists 
(the users in this work, who are specialists in application-specific systems, such as en-
gineers, bioinformaticians, data scientists etc.) need to dynamically adapt online work-
flows while they are running on High-Performance Computing (HPC) machines, i.e., 
without stopping, modifying, and resubmitting the execution [2]. 

The data dependencies between programs composing the scientific workflow form 
the dataflow. Many elements of the dataflow (e.g., data elements, datasets, attribute 
values, data transformations) can be modified, online, by humans. This occurs in sev-
eral application domains. For instance, in Oil and Gas HPC simulations where users 
need to fine tune parameters of a solver[3]; in Machine Learning model training, where 
data scientists use their knowledge on the data and on the methods to determine better 
ranges of values for hyperparameters, after analyzing their impact on the performance 



(e.g., accuracy); or in Uncertainty Quantification iterative simulations where users con-
trol loop stop conditions [4]. Online data analysis and online adaptation steered by hu-
mans comprise “computational steering”, often referred to as “human-in-the-loop” of 
HPC applications [2]. In that context, each adaptation occurred for a reason (best known 
by the user), in a certain time, influenced elements of the dataflow, and had effects in 
the running workflow, like data or execution time reduction [5]. Therefore, adaptations 
generate major improvement on performance, resource consumption, and quality of re-
sults [6], and thence need to be tracked. 

Not tracking such adaptations has impactful disadvantages. It may compromise ex-
periment reproducibility as users hardly remember what and how dataflow elements 
were modified (especially modifications in early stages), and what happened to the ex-
ecution because of a specific adaptation. This is more critical when users adapt several 
times in long experiments, which may last for weeks. In addition to losing track of 
changes, one misses opportunities to learn from the user steering data (i.e., data gener-
ated when humans adapt a certain dataflow element) with the associated dataflow. For 
example, by registering user steering data, one may query the data and discover that 
when input parameters are changed to certain range of values, the output result im-
proves by a defined amount. Moreover, opportunities to use the data for AI-based rec-
ommendations on what to adapt next, based on a database of adaptations, are lost.  

Although data provenance in HPC workflows has improved significantly over the 
past years, adding online data analyses integrating domain and execution data [7] to 
reproducibility [8], provenance of computational steering in HPC workflows remains 
an open challenge [6]. Provenance data management and computational steering in 
HPC are still worlds apart, despite the increasingly need for joint contribution. Indeed, 
in two recent surveys [6, 9], the authors highlight online provenance capture and hu-
man-in-the-loop of HPC simulations as research and development needed. We believe 
that a provenance representation able to model dynamic interactions in a computational 
steering system will facilitate data representation, understanding, and standardization 
among systems. To the best of our knowledge, such model does not exist yet.  

In this work, we propose PROV-DfA, a data provenance representation for model-
ing online human adaptations in HPC workflows, built on W3C PROV standards. It 
allows for explicit representation of the dataflow and provenance of user-steered data-
flow adaptations. PROV-DfA can be implemented in provenance databases of Parallel 
Scientific Workflow Management Systems (WMS) [2], or computational steering 
frameworks [10], or standalone HPC applications that allow for user-steered online ad-
aptation. It can represent typical adaptations in HPC applications, while integrating 
with data for provenance, execution, and domain dataflow, all in a same data represen-
tation. We specialize PROV-DfA for provenance parameter tuning, loop control of it-
erative simulations, and data reduction. To validate our approach, we explore a case 
study in an Oil and Gas HPC workflow, where the user adapted online elements of the 
dataflow. We show how those adaptations can be represented using PROV-DfA to an-
swer “who”, “what”, “when”, and “how” queries in a relational provenance database to 
show, for example, the impact on the results after specific dataflow adaptations. 

Paper organization. Related work is presented in Section 2 and background in 
Section 3. PROV-DfA is presented in Section 4 and in Section 5 we specialize it for 
provenance of three dataflow adaptations. Section 6 shows the case study. Section 7 
concludes. 



2 Related Work 

As mentioned in introduction, recent surveys [6, 9] bring up challenges of runtime prov-
enance and human-in-the-loop of HPC workflows. Also, Atkinson et al. [11] discuss 
the future of scientific workflows, and they mention that "monitoring and logging will 
be enhanced with more interactive components for intermediate stages of active work-
flows." As a result, we found no related work for provenance representation of human-
in-the-loop of HPC workflows. Thus, we analyze computational steering works that 
could highly benefit from provenance representation of human adaptation in dataflows. 

Long lasting scientific applications require user steering [2, 10]. BSIT [12] is a plat-
form tailored for seismic applications that supports adaptations in parameters, pro-
grams, datasets. Few parallel WMSs support human adaptation [13–15], but no prove-
nance of adaptation. Chiron WMS [4, 5]  enables users to change filter values, adapt 
loop conditions of iterative workflows, and reduce input datasets. These works show 
that online adaptations significantly reduce overall execution time, since users can iden-
tify a satisfactory result before the programmed number of iterations.  

WorkWays [16] is a science gateway that enables users to dynamically adapt the 
workflow by reducing the range of parameters. It uses Nimrod/K as its underlying par-
allel workflow engine, which is an extension of the Kepler workflow system [17]. It 
presents tools for interaction, such as graphic interfaces, data visualization, and interop-
erability among others. WINGS [18] is a WMS concerned with workflow composition 
and its semantics. It focuses on assisting users in automatic data discovery. It helps to 
generate and to execute multiple combinations of workflows based on user constraints, 
selecting appropriate input data, and eliminating workflows that are not viable. 

Stamatogiannakis et al. [19] propose a provenance-based representation and analy-
sis for unstructured processes, including representation of user interactions. However, 
their target applications are unstructured processes like editing in a content manage-
ment system, which differ from our target HPC workflows applications, which are con-
sidered structured processes. 

Bourhis et al. [20] propose a provenance-based solution for data-centric applica-
tions supporting queries like “why such result was generated?”, “what would be the 
result if an application logic is modified?”, and “how can a user interact with the ap-
plication to achieve a goal?”, in the context of users interacting with the application in 
a "what-if" manner. However, no online user-steered dataflow adaptation in HPC work-
flows is tackled. Finally, we envision that AI-based systems recommending on what to 
adapt next [21], could highly benefit from a provenance database containing human 
user steering data to improve their models. 

3 Workflows, Computational Steering and Data Provenance 

3.1 Dataflow-oriented Approach and Runtime Provenance 

HPC computational experiments are often modeled as scientific workflows. While 
workflows are related to the execution flow control between chained activities (e.g., 
scientific programs, processes, scripts, functions or parts of programs) [9], in dataflows 
datasets are transformed by the chaining of data transformations [22]. A workflow 𝑊 
has an associated dataflow 𝐷, which has a composition of 𝑛 data transformations (DT), 



so that 𝐷 = {𝐷𝑇',…	 , 𝐷𝑇+}. Each 𝐷𝑇-,  1	 ≤ 𝑦 ≤ 𝑛, is executed by a workflow activity, 
and consumes or produces datasets. Datasets are further specialized into Input Datasets 
(𝐼23) and Output Datasets (𝑂23). Each 𝐷𝑇-	consumes one or more 𝐼23	and produces 
one or more 𝑂23. Let 𝐼- = 𝐼23' ∪ …∪ 𝐼237 be a set containing all 𝐼23 consumed by the 
𝐷𝑇- and 𝑂- = 𝑂23 ∪ …∪ 𝐼238 be a set containing all 𝑂23 produced by the	𝐷𝑇-. Then, 
we have adapted from [22, 23]: 

𝑂- ← 𝐷𝑇-:𝐼-;, for	all	𝐷𝑇-	of	the	dataflow	𝐷. 
Moreover, datasets are composed of data elements. Data elements in a given dataset 

DS  have a data schema Σ (𝐷𝑆) 	= 	 {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1,… , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑢}. The schema can be fur-
ther specified as: Σ(𝐼23) 	= 	 {𝐹Q, 𝑉Q, 𝑃Q , 𝐿Q} and Σ(𝑂23) 	= 	 {𝐹U, 𝑉U, 𝐶U, 𝐿W}, where: 
• 𝐹Q and 𝐹W	contain attributes that represent pointers to input and output files, respec-

tively. These files are often large raw (textual, imagery, matrices, binary data, etc.) 
scientific datasets in a wide variety of formats depending on the scientific domain 
(e.g., FITS for astronomy, SEG-Y for seismic, NetCDF for fluid simulations). 

• 𝑉Q	and 𝑉W	 contain attributes for extracted data or metadata from input and output 
files, respectively. In case of output data, some applications write calculated values, 
like the main results of a data transformation into files and they often need to be 
tracked. 𝑉W	 represents these special resulting extracted data, which are often scalars, 
useful for domain data analyses [7, 22, 24]. 𝑉Q	and 𝑉W	 can be seen as a view over 
the actual large raw datasets, as users can have a big picture of the content of the 
large datasets through them. 

• 𝑃Q contains attributes for general purpose input parameter values of the data trans-
formation. For example, numerical solver parameters, thresholds, and any other pa-
rameter that can be adjusted.  

• 𝐿Q contain attributes used in the data transformation in case it evaluates a loop [4]. 
Several applications modeled as scientific workflows have an iterative workflow 
execution model. Examples include uncertainty quantification and solvers from the 
Oil and Gas industry [4, 9]. In such workflows, typically there are loops like “while 
e > threshold” or “while i < max”. While 𝑃Q	are for general purpose parameters,  𝐿Q 
contains parameters that are used for loop-stop conditions (e.g., “max”, “threshold”). 

• 𝐿Wcontain output values related to an iteration in case of data transformations that 
evaluate a loop. In that case, each iteration may be modeled as a loop evaluation 
execution and produces an attribute value that has the current iteration counter. 

• 𝐶W	contain attributes for any output values that are explicit data transformation re-
sults. For example, besides large scientific data files produced by data transfor-
mations, they may produce output quantities, often scalar values or simple arrays 
that are very meaningful for the result. Since they may be of high interest for the 
user, these values are typical provenance data that need to be registered. 

A schema of a dataset DS may not have all these attributes, i.e., they are optional. For 
example, if a data transformation consuming a dataset DS does not evaluate a loop, Σ 

(𝐷𝑆) does not contain 𝐿Q or 𝐿W. 
Several real HPC workflows have been modeled and specified as previously de-

scribed, allowing for enhanced provenance data representation [5, 7, 22, 24]. Thus, in 
addition to well-known advantages of collecting provenance in HPC workflows, such 
as for experiments’ reproducibility and results’ reliability [8], runtime provenance aug-



ments online data analytical potential and is especially useful for long-running work-
flows [2, 4, 5]. In addition to data analyses via ad-hoc analytical queries, visualization 
tools (e.g., ParaView Catalyst) may be coupled to applications querying the database 
for a graphic view of the execution [24]. Based on online data analyses, the user may 
dynamically adapt dataflow elements, such as parameters, input data etc. [5]. This is 
known as computational steering or “human-in-the-loop” of HPC applications. 

3.2 A Diagram for Runtime Provenance in HPC Workflows 

In a previous work [25], we presented PROV-Wf, which is a PROV-DM [26] special-
ization. PROV-Wf models workflow provenance, domain-specific, and execution data, 
all in a same representation. ProvONE [27] has been compared to PROV-Wf  in a pre-
vious work [28]. It has been implemented in provenance databases of existing WMSs, 
in real-world workflows [4, 5, 22].  

More recently, we extended PROV-Wf into PROV-Df to explicitly represent the 
dataflow of a workflow [22]. Even without a WMS, runtime provenance can be ex-
tracted and integrated to domain data by instrumenting an application. Collecting prov-
enance in standalone HPC applications without a WMS is desired, as there are applica-
tions that already employ highly efficient parallel libraries and the WMS scheduling 
conflicts with the HPC application execution control [24]. A diagram of PROV-Df ex-
tended, in this work, for registering human actions, is presented next (Section 4). 

In this paper, we use “prov:” namespace to indicate PROV classes or relationships. 
Each ExecuteDataTransformation consumes (prov:used) and produces 
(prov:wasGeneratedBy) AttributeValues. These values may have been extracted by 
an ExecuteExtractor [7]. Data elements compose the dataset (Dataset). For prospec-
tive provenance, the dataset has an associated DatasetSchema, which is composed of 
Attribute. Attributes describe the AttributeValues generated during execution. They 
have a data type (integer, text etc.) and may have extra fields in the Attribute class to 
allow for attribute specification (i.e., determine if the attribute is in 
{𝐹Q, 𝐹W, 𝑉Q, 𝑉W, 𝑃Q , 𝐿Q, 𝐿W, 𝐶W}). Such specifications enrich domain data analyses and al-
low for identifying attributes that can be adapted. Data about execution, such as dura-
tion and performance data (CPU, memory), linkage to subsequent and previous execu-
tions, and their related prospective provenance can be stored relating to instances of 
ExecuteDataTransformation. 

We put this provenance representation into practice in a Bioinformatics HPC work-
flow to answer “what”, “when”, and “how” questions , useful for the bioinformatician 
[7]. She could query output domain data extracted from produced raw datasets, and 
relate domain data to performance data. However, despite the effort for data provenance 
in HPC workflows, there is no provenance representation for user steering data.  

4 Provenance of Dynamic Adaptation in User-steered Dataflows 

During the execution of an HPC workflow, users analyze elements of a dataflow to 
steer the execution. In this work, we introduce PROV-DfA by specializing provenance 
data model classes to represent these dynamic adaptations. Instead of creating a com-
pletely new provenance model, we first begin by consolidating a base model using sev-
eral past contributions to PROV-Wf and PROV-Df [5, 7, 22, 25] to build into PROV-



DfA). PROV-DfA adds provenance of online dataflow adaptations to these previous 
PROV-extended models. 

 PROV-DfA introduces the classes SteeringAction, Analysis, Adaptation, and 
Adapter; and the relationship WasSteeredBy. We use a UML class diagram, where the 
<<stereotypes>> in classes specify PROV super-classes (mainly Agents, Entities, 
and Activities) and between classes specify relationships. Classes in white back-
ground represent prospective provenance, whereas in gray represent retrospective prov-
enance. prov:Entity in yellow means that classes in PROV-DfA that are subclasses of 
prov:Entity (prospective or retrospective) can be used in place, as we explain next. 

 
Figure 1. PROV-DfA overview. A larger visualization is on GitHub [29]. 

Adaptation is a steering action performed by a human that causes a change in the flow-
ing data elements in the dataflow. In PROV-DfA, it is represented by Adaptation, a 
subclass of SteeringAction, subclass of prov:Activity. An adaptation was steered by 
(wasSteeredBy) a prov:Person, occurred at a specified time (prov:startedAtTime), 
had an adaptation characteristic (adaptationCharacteristic) that can be “update” or 
“insert/delete”. Users may add a plain description to the adaptation, to describe what 
was going on in the experiment when they decided to perform a specific change. Also, 
as inherited by SteeringAction, an Adaptation may have been informed by a previous 
Adaptation, hence the auto-relationship prov:wasInformedBy. This is the case, for ex-
ample, of a rollback adaptation, requested by a user, that happened right after the user 
modified parameters in a simulation, which is another adaptation. 

Since adaptations in the dataflow occur while the workflow is executing, it is im-
portant to keep track of the execution state. The most representative PROV-DfA activ-
ity that represents the execution state is ExecuteDataTransformation. When an adap-
tion occurs, these instances carry information about time, pointers to domain data val-
ues being consumed or produced, computational resources being consumed, etc. Thus, 
being able to track which specific data transformation was running at the moment of 
the adaptation may be very useful for extended analyses that integrates adaptation with 



provenance, domain, and execution data. For this, we relate which ExecuteDataTrans-
formation instances were influenced (prov:wasInformedBy) by adaptations. How ad-
aptations relate to ExecuteDataTransformation, as well as how prov:Entities are af-
fected depend on characteristic of the online adaptation, as explained next. 

Adapter is a software component that knows how to adapt the elements of the da-
taflow in a running workflow, making it a subclass of prov:SoftwareAgent. In any 
case, PROV-DfA is just responsible for registering the actions of an Adapter software. 
Thus, when the user decides to adapt an element of the dataflow, the Adapter is respon-
sible for modifying the requested element. Any information that describes the Adapter 
software (e.g., which element of the dataflow it adapts, where the program can be lo-
cated, how it can be invoked etc.) may be stored relating to the Adapter class. Adapter 
relates to classes that are subclasses of prov:Entity and to the adaptation itself (via 
prov:wasAssociatedWith). 

Characteristics of Online Adaptation. Adaptations may have a characteristic of 
either update (we say U-adaptation) or insert/delete (I/D-adaptation).  
• U-adaptations are updates where the user adjusts, tunes, or modifies one or more 
dataflow elements. Examples are parameter tuning, loop control adaptations, etc. In 
PROV-DfA, when the user performs a U-adaptation, a new instance of Adaptation is 
created. Also, a new instance of one of the prov:Entity subclasses in PROV-Df is 
created (e.g., AttributeValue, DataTransformation etc.) containing the new data, 
which will replace the old data in the dataflow. The newly created entity is related 
(prov:wasInformedBy) to the adaptation. Moreover, the newly created data is related to 
the old one via prov:wasRevisionOf, so that the track between the new and old data is 
maintained. Additionally, to relate the adaptation with execution state, PROV-DfA re-
lates (prov:wasInformedBy) the ExecuteDataTransformation instances that were in 
“running” state at the moment of the adaptation. Finally, Adapter is related to the pro-
spective entity (e.g., Attribute, DataTransformation) that specifies the entity adapted. 
• I/D-adaptations are steering actions that cause addition or deletion of data elements 
in the dataflow. Examples are data reduction or extension, data transformation or at-
tribute addition or deletion etc. A new instance of Adaptation is created and there is a 
relationship (prov:wasInformedBy) between the Adaptation and the added or deleted 
instances of a prov:Entity subclass. In case of deletions, the entity is not physically 
deleted from the provenance database, for the sake of provenance. Rather, it is assumed 
that when an Adaptation is a deletion, the deleted instance is logically deleted from the 
dataflow. This enables tracking entities deleted online. Since adding or deleting ele-
ments affects the execution, the instances of ExecuteDataTransformation directly af-
fected to the added or deleted elements of the dataflow are related (prov:wasIn-
formedBy) to the Adaptation instance. For example, in a data reduction [5], data trans-
formations that were supposed to execute were not executed because of a dynamic ad-
aptation. These instances of DataTransformationExecution not executed are related to 
the adaptation. Finally, Adapter and Adaptation are related like in U-adaptations. 

Furthermore, to use PROV-DfA in a real use case, it is expected that the user will 
work in collaboration with a data specialist, especially in PROV concepts. Together 
they specialize the diagram for the domain and application in use, and add provenance 
capture calls to the simulation via code instrumentation. Users analyze the data via 
provenance queries together with domain, execution, and user steering data. 



In summary, in PROV-DfA, an Adaptation is a prov:Activity steered by a 
prov:Person, which influenced instances of classes that are subclasses of prov:Entity, 
and influenced instances of ExecuteDataTransformation. The Adapter program relates 
to the prospective entity being adapted and to the adaptation. 

5 Specializing PROV-DfA Concepts 

In this section, we specialize PROV-DfA concepts to represent online parameter tuning, 
changes in loop control, and data reduction as PROV-DfA’s U and I/D-adaptations. We 
assume that there is a computational steering framework, such as the ones surveyed by 
Bauer et al. [10], or an underlying WMS engine, such as the ones surveyed by Mattoso 
et al. [2], or a standalone program adaptable online, as we show in a previous work [3]. 

5.1 Simulation Parameter Tuning 

Parameter tuning refers to the action of steering parameters of a data transformation in 
a dataflow, like numerical solver parameters or machine learning model hyperparame-
ters. In PROV-DfA, ParameterTuning is a specialization of Adaptation. Parameter tun-
ings are adaptations in attribute values (AttributeValue) that are related to data ele-
ments (DataElement) related to 𝐼23 (Dataset) of a certain data transformation (Data-
Transformation). The attribute value modified must have been derived from 
(prov:wasDerivedFrom) an Attribute whose attribute specification is 𝑃Q. 

It is a U-adaptation. As such, a new instance of ParameterTuning is created and 
related to the new instance of its adapted entity, i.e., AttributeValue, with the new 
value for the parameter. The new value is related to the old one via prov:wasRevi-
sionOf. ExecuteDataTransformation instances running at the moment of the adapta-
tion are related to the Adaptation instance. Finally, since users tune parameters of data 
transformations, the Adapter relates to the DataTransformation associated to Dataset-
Schema that had the Attribute modified. 

5.2 Online Adaptation of Iterative Simulations 

Workflows with an iterative workflow execution model have data transformations that 
evaluate loops. Using the dataflow-oriented approach concepts (Section 3.1), values for 
these loop-stop conditions may be modeled as an attribute in 𝐿Q of a data transformation 
that evaluates a loop and the iteration counter can be modeled as an attribute in 𝐿W of 
the data transformation. Moreover, each iteration generates an instance in Exe-
cuteDataTransformation for the loop evaluation. During execution of each iteration, a 
relationship between the output of this data transformation, containing the current iter-
ation value, and the ExecuteDataTransformation instance is particularly useful for 
such workflows, as it identifies a specific part of the workflow execution, and often 
users can analyze results as the workflow iterates. Such control information is important 
for the adaptation, as users can associate their specific actions with execution data, such 
as which point in workflow elapsed time that action happened or what memory/CPU 
consumption were. In complex iterative simulation, capturing data at each iteration may 
be managed in transit by an efficient database management solution. In a recent work 
[24], we show an efficient database implementation using an analytics-optimized 
DBMS and asynchronous provenance capture, including extractions from large domain 



raw data files (like metadata 𝑉Q  and 𝑉W), and related to provenance data in a real iterative 
HPC simulation. The overall overheads accounted for less than 1% of simulation time 
and added data, which is considered negligible. 

Therefore, in PROV-DfA, it is represented as LoopAdaptation, a subclass of Adap-
tation. Similarly to ParameterTuning, its instance is related to the new instance of 
AtrributeValue, containing the new value for the loop control condition, relating 
(prov:wasRevisionOf) to the old one. The adapted instance of AttributeValue must 
be derived from an Attribute whose attribute specification is 𝐿Q. Additionally, the gen-
erated ExecuteDataTransformation instance related to the output of the last iteration 
(i.e., last execution of the data transformation for loop evaluation) is related to the 
LoopAdaptation instance. Finally, the adapter must be able to dynamically modify the 
data transformation that represents the loop evaluation. That is, Adapter in this case 
relates to DataTransformation. 

5.3 Data Reduction 

Online user-steered data reduction are very useful for reducing execution time and 
amount of data to be processed during a simulation [5]. DataReduction is a subclass of 
Adaptation. In the dataflow-oriented approach, the datasets stored as large raw data 
files to be processed by a data transformation are represented by attributes composing 
data elements in an 𝐼23. Data files are represented as pointers in 𝐹Q, whereas 𝑉Q  contain 
extracted domain values from those files specified in 𝐹Q. An approach to reduce data is 
to specify a criteria based on 𝑉Q  values to eliminate files in 𝐹Q to be processed, enabling 
the adapter program to logically delete data elements in the 𝐼23. This makes the HPC 
application not to execute the data transformations for the removed elements [5]. 

Analogously, in PROV-DfA, reducing data means logically removing instances of 
DataElement (and consequently AttributeValues) of a Dataset (𝐼23). This can be the 
result of an I/D adaptation. Thus, there is a relationship (prov:wasInformedBy) between 
the removed instances of DataElement and AttributeValue and the adaptation. The 
ExecuteDataTransformation instances that would use (prov:used) the removed At-
tributeValue instances are related to the DataReduction instance. Additionally, the 
criteria to remove data elements [5] is stored within the adaptation instance. Finally, as 
users remove data elements in 𝐼23, the adapter is related to the DataTransformation 
associated to the Dataset that had the DataElement and AttributeValues removed. 

6 Case Study 

In this section, we present PROV-DfA being used in a real case study in the Oil and 
Gas domain. In a previous work [24], we applied the domain dataflow-oriented ap-
proach (Section 3.1) in an HPC turbidity currents simulation, modeled as an iterative 
scientific workflow. Parts of the simulation code were identified as workflow activities, 
modeled as data transformations chained in a dataflow. Data and metadata extractors 
were developed, and the simulation source code was instrumented to call these domain 
values extractors, together with provenance data collectors, to populate the datasets in 
a provenance database at runtime. In Figure 2, we show large raw input files (with mesh 
data) stored on disk, with pointers in the solver 𝐼23. The solver 𝐼23	has over 70 param-
eters (i.e., 𝑃Q  attributes), among which only 2 are displayed in the figure (flow linear 



and non-linear tolerance). All these solver parameters are extracted from a configura-
tions file, which is read at each iteration. Yet, the maximum number of iterations 
(t_max) is a 𝐿Q attribute of the data transformation solver. Some metadata (𝑉Q) are ex-
tracted from input raw files at runtime to facilitate tracking their contents while they 
are processed. Elements of 𝑂23 of each data transformation are also collected (via raw 
data extractors and source code instrumentation) and stored in the database. For exam-
ple, the solver 𝑂23	contains calculated values, such as linear and non-linear results, as 
well as the current time iteration value. Moreover, the simulation was coupled to data 
analysis tools for in-situ data analysis while the workflow runs [24]. The entire simula-
tion using 3D real data lasts for weeks, making online data analysis a requirement.  

In addition to online data analyses, adapters were developed to enable online adap-
tation of the dataflow. Even though the user could adapt the running dataflow, the ad-
aptations were not being tracked. There were several adaptations during the simulation, 
and the user lost their track, jeopardizing the experiment’s reproducibility and results 
reliability, and missing opportunities to learn from the adaptations. 
 

 
Figure 2. Dataflow in the turbidity currents simulation [24]. 

We developed a first prototype to instrument the source code of the simulation 
adapters to collect provenance of adaptation and store in a relational database [3]. How-
ever, we developed an ad-hoc provenance data model to represent a specific type of 
adaptation, i.e., tuning some simulation parameters. In this section, we explore this case 
study to show parameter tuning and data reduction using PROV-DfA. 

In Figure 3, we present a visualization of an excerpt of the data in a provenance 
database implementing PROV-DfA. It shows a user tuning the flow linear tolerance 
parameter from 1e-5 to 1e-3 and a data reduction with criteria “mx < 7e6”. 

Using data in a relational provenance database implementing PROV-DfA, users can 
run the following queries (their SQL codes are on GitHub [29]). 

Inspecting parameter tunings (“who”, “when”, “what”). How many tunings did 
I do? Which parameters did I change? What were the values when I changed and what 
values did I change into? When did each adaptation happen? 



Understanding consequences of a tuning (“how”). In parameter tuning 3, how 
was the main solver output values 10 iterations before and after?  

Data reduction (“how”, “which”). On average, how long iterations were lasting 
before and after I reduced input files from the input data? Which files were affected?  

These queries show the potential of PROV-DfA for provenance databases keeping 
track of online dataflow adaptations in computational steering HPC workflows.  

 
Figure 3. Visualization of data using PROV-DfA. 

7 Conclusion 

In this work, we presented PROV-DfA, an extension of W3C PROV for provenance of 
dynamic adaptations in user-steered dataflows. Recent surveys [6, 9] call for research 
and development in human-in-the-loop of HPC workflows and dynamic data prove-
nance. We believe PROV-DfA is an important step towards modeling provenance of 
dynamic adaptations in computational steering. To the best of our knowledge, no such 
model exists yet. Different dynamic dataflow adaptations may be modeled as PROV 
DfA’s U- or I/D-adaptations. We showed it being used for modeling the track of pa-
rameter tuning, loop control of iterative simulations, and data reduction steered by us-
ers. We queried a provenance database implementing it to answer “who”, “what”, 
“when”, “how” queries. In the context of computational steering and provenance, our 
approach contributes for reproducibility, results’ reliability, online results understand-
ing as consequences of adaptations, and adds a potential for users or AI-based systems 
to learn from dynamic interaction data. For future work, we plan to explore PROV-DfA 
to model the track of other dynamic adaptations and extend it with online data analyses 
steered by users. We plan to integrate it to ProvONE [27] as well. We expect it can be 
adopted by WMSs, computational steering frameworks, or standalone HPC applica-
tions with steering capabilities that need to keep track of human interactions. 
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