
Automating Provenance Capture in Software
Engineering with UML2PROV

Carlos Sáenz-Adán1∗, Luc Moreau2, Beatriz Pérez1, Simon Miles2, and
Francisco J. García-Izquierdo1

1 Dept. of Mathematics and Computer Science, Univ. of La Rioja, La Rioja, Spain,
{carlos.saenz,beatriz.perez,francisco.garcia}@unirioja.es

2 Dept. of Informatics, King’s College London, London, UK,
{luc.moreau,simon.miles}@kcl.ac.uk

Abstract. UML2PROV is an approach to address the gap between ap-
plication design, through UML diagrams, and provenance design, using
PROV-Template. Its original design (i) provides a mapping strategy from
UML behavioural diagrams to templates, (ii) defines a code generation
technique based on Proxy pattern to deploy suitable artefacts for prove-
nance generation in an application, (iii) is implemented in Java, using
XSLT as a first attempt to implement our mapping patterns. In this pa-
per, we complement and improve this original design in three different
ways, providing a more complete and accurate solution for provenance
generation. First, UML2PROV now supports UML structural diagrams
(Class Diagrams), defining a mapping strategy from such diagrams to
templates. Second, the UML2PROV prototype is improved by using a
Model Driven Development-based approach which not only implements
the overall mapping patterns, but also provides a fully automatic way
to generate the artefacts for provenance collection, based on Aspect Ori-
ented Programming as a more expressive and compact technique for cap-
turing provenance than the Proxy pattern. Finally, there is an analysis
of the potential benefits of our overall approach.

Keywords: Provenance data modeling and capture · PROV-Template · UML

1 Introduction

The diversity of provenance models used by existing software products (such as
PASS [1], PERM [2], or Taverna [3]) to capture provenance has motivated the
creation of PROV [4], an extensible provenance model created to exchange and
integrate provenance captured among different provenance models. By giving
support to PROV, these tools facilitate the software engineer’s task of creating,
storing, reading and exchanging provenance; however, they do not help decide
which provenance data should be included, nor how software should be designed
to allow its capture. In this context, the ability to consider the intended use of
provenance during software development has become crucial, especially in the
design phase, to support software designers in making provenance-aware systems.

Several design methodologies have been proposed to shorten the develop-
ment time of software products. In particular, the Unified Modeling Language
(UML) [5] has become a standard notation for OO software design. However,
it does not offer support for provenance. In fact, our experience in developing
software applications enhanced with support for provenance is that including
provenance within the design phase can entail significant changes to an applica-
tion design [6]. Against this background, PROV-Template [7] has been proposed
as a declarative approach that enables software engineers to develop programs
that generate provenance compatible with the PROV standard. Provenance tem-
plates are provenance documents expressed in a PROV-compatible format and
containing placeholders (referred as variables), for values. PROV-Template in-
cludes an expansion algorithm by means of which, given a template and a set of
bindings (associating variables to values), replaces the placeholders by the con-
crete values, generating a provenance record in one of the standardized PROV
representations. Although this approach reduces the development and mainte-
nance effort, it still requires designers to have provenance knowledge.

To overcome these challenges, we introduced UML2PROV [8], an approach
to address the gap between application design, through UML behavioural dia-
grams, and provenance design, using PROV-Template. Briefly speaking, we (i)
provided a mapping strategy from UML State Machine and Sequence diagrams
to templates, (ii) defined a code generation technique based on the Proxy pat-
tern to deploy suitable artefacts for provenance generation in an application,
and (iii) developed a first prototype of UML2PROV in Java, using XSLT as a
first attempt to implement our mapping patterns. In this paper, we complement
and improve our previous approach by providing a more complete and accu-
rate solution for provenance generation. First, we mainly give support to UML
structural diagrams (UML Class Diagrams), by establishing a mapping strategy
from such type of diagrams to templates. Our approach for capturing provenance
data included on a system’s class diagram provides a mean of storing lower level
factors from objects’ internal structure, factors not given by the previously con-
sidered behavioural diagrams. Overall, we provide an effective mechanism that
integrates provenance data regarding both structural and behavioural aspects of
a system, allowing for more realistic software designs to be supported. Second,
we improve our first prototype by using a Model Driven Development (MDD)-
based approach which implements the overall mapping patterns, and provides a
fully automatic way to generate the artefacts for provenance collection based on
Aspect Oriented Programming (AOP). Finally, we analyse the potential bene-
fits of our overall approach in terms of time it takes to generate the templates,
run-time overhead given by bindings collection, development and maintenance.

This paper is organized as follows: Section 2 gives an overview of UML2PROV.
Section 3 describes our overall approach to translate UML Class diagrams to
templates. A detailed description of the new implementation we propose for our
first UML2PROV prototype is described in Section 4. We analyse our overall ap-
proach in Section 5, while Section 6 discusses related work. Finally, conclusions
and further work are set out in Section 7.

2

satisfy

in

out

out

Application

out

in

UML2PROV

Software
designer

Provenance
consumer

Context
independent
component

Context
dependent

component

Bindings generation
module

Sq diagrams/
SM diagramsOCL

constraints

PROV
Templates

PROV
Documents

Template
expander

in out

Bindings

Fig. 1. The UML2PROV approach. The red and blue colours are used to refer to design
time and runtime documents of the approach, respectively.

2 Overview: The UML2PROV approach
To lay the foundation for a more in-depth understanding of the following sections,
we provide an overview of the UML2PROV architecture presented in [8]. We
illustrate our explanations using Figure 1 which identifies the key facets of our
proposal together with the different stakeholders involved on the process. The
overall process consists of both design time (red) and runtime (blue) elements.
Design time facets. They correspond to the UML diagrams modelling the sys-
tem, the associated PROV templates generated from those diagrams, and the
bindings generation module. In particular, this module is composed by: a context-
independent component, which contains the bindings’ generation code that is
common to all applications, and a context-dependent component, which is gen-
erated from the system’s UML diagrams and includes the bindings’ generation
code specific to the concrete application. The starting point of the overall pro-
cess corresponds to the UML system design, created by the software designers as
stated by the concrete domain’s requirements. Among the two major categories
of UML diagrams (structural and behavioural) [5], in [8] we focused on these lat-
ter ones given the strong relation that provenance bears with all behavioural data
taking part in producing a final item. Having defined the UML diagrams, and
before applying our UML2PROV proposal, the diagrams are checked against a
set of OCL [9] constraints we have defined to ensure that they are consistent with
each other (see [10] for details about these constraints). Then, the UML2PROV
proposal takes as input the UML diagrams and automatically generates: (1) the
PROV templates with the design of the provenance to be generated, relying on
the information extracted from such diagrams, and (2) the context-dependent
component aimed at capturing provenance according to the PROV templates.
Runtime execution facets. They consist of the values logged by the application,
in the form of bindings, and the PROV documents. As far as the process is con-
cerned, taking as source both the templates and the bindings previously created,
the provenance consumer uses the provenance template expander included in the
PROV Template proposal to generate the final PROV documents (see Figure 1).

3 From Class Diagrams to Templates
Our class diagrams to templates mapping takes operations as cornerstone el-
ements. Translating data implicit on operations provides us with a complete
background including not only the internal structure of the object before and

3

Table 1. Extension of the taxonomy of methods’ stereotypes given in [11].
Stereotype

category
Stereotype

name Descrip on

get Returns a data member.
*get-collec on Returns an element from a data member collec on.
predicate Returns a Boolean value which is not a data member.
property Returns informa on about data members.
void-accessor Returns informa on through a parameter.
set Sets a data member.
*set-add-collec on Adds an element within a data member collec on.
*set-remove-collec on Removes an element within a data member collec on.
command
non-void-command

Crea onal constructor/destructor Creates/Destroys objects.
collaborator Works with objects (parameter, local variable and return object).
controller Changes an external object's state.
incidental Does not read/change the object's state.
empty Has no statements.

Degenerate

Perform a complex change to the object's state.

Structural
Accessor

Structural
Mutator

Collabora onal

after the execution (values of the attributes), but also information showing the
internal changes (e.g. setting a new attribute, adding/removing an element in a
collection). This represents a significant new capability since we were not able to
extract these lower-level aspects from Sequence/State Machine Diagrams in [8].

Aimed at defining concrete operation transformation patterns, their different
nature must be taken into account if we want to provide meaningful provenance
which explains the nuances of each type of operation’s execution. For instance,
the key factors involved in the execution of an operation such as getName (which
would return information about a data member) are different from the ones
related to a setName operation (which would set a data member). Thus, the
provenance data to be generated in both cases would be expected to be different.
For this reason, we have first established a taxonomy of UML Class Diagrams’
operations (Subsection 3.1) to identify the different types of operations. Second,
based on such a classification, we have defined different transformation mappings
(Subsection 3.2) depending on each type of operation.

3.1 A taxonomy of operations stereotypes

More than a nuance in terminology, the distinction between operation andmethod
is important to lay the foundations of this section. Operations are characterized
by their declaration, including name or parameters [5]. Methods are made up
of the declaration (given by the operation) as well as the behaviour. From now
on, we use the term operation and method interchangeably, always referring to
the behaviour. In particular, we refer to the low-level behaviour related to the
internal structure of the object’s class to which the operation belongs.

In order to establish a taxonomy of operations that allows us to identify the
different transformation patterns, we have undertaken a literature search looking
for different categorizations of operations. Among the different works, the pre-
sented by Dragan et al. [11] stands out for being one of the most complete. Such a
taxonomy is showed in Table 1 where, as we explain later, we have also included
additional stereotypes needed in our proposal (marked with an asterisk). Their
taxonomy establishes five categories of methods by defining stereotypes for their

4

categorization, three of which have been included in our proposal (Structural Ac-
cessor, Structural Mutator and Creational). An explanation of these categories
together with their specific transformation will be presented in Subsection 3.2.

Whilst this taxonomy covers a wide range of behaviours, it lacks specific
stereotypes for methods that manage collections of data members (e.g. search,
addition or removal). Aimed at identifying this kind of methods on class diagrams
to generate concrete provenance data, we have enriched the previous taxonomy
with the additional stereotypes get-collection, set-add-collection and set-remove-
collection (marked with an asterisk in Table 1). On the other hand, some stereo-
types denote behaviours that cannot be faced without checking the source code
(empty), or behaviours already provided by Sequence/State Machine Diagrams.
In particular, Sequence Diagrams allow us to know if an operation works with
objects (collaborator), and State Machine Diagrams provide us with information
regarding external (controller) and internal (incidental) state changes. Thus, we
have not considered Collaborational and Degenerate categories.

3.2 Class Diagrams to templates transformation patterns

Our transformations are focused on operations customized by stereotypes so
that, depending on the stereotype applied to an operation, they translate such an
operation into the corresponding PROV template representing the object ’s state.
We define the state of an object as its internal structure, consisting of the ob-
ject’s properties (attributes and relationships) together with the values of those
properties. The set of mappings comprises 8 transformation patterns identified
CDP1-8, referred to as C lass D iagram Pattern. Table 2 shows patterns CDP1-6,
while patterns referring to collections, CDP7 (set-remove-collection) and CDP8
(set-add-collection), are presented in [10] due to space reasons. Table 2 has three
columns: the first one shows each pattern together with the corresponding prove-
nance template; the second and third columns depict the provenance document
generated after expansion, and the provenance information collected during the
operation’s execution (bindings), respectively. The information shown in these
two last columns corresponds to the case study we use in [8] referring to a system
that manages the enrolment and attendance of students to seminars of a Univer-
sity course. We have used the Student ’s class constructor and the self-explained
getName and setName operations to exemplify CDP1, CDP3, and CDP5. In Ta-
ble 2: (1) the stereotypes (i.e. the types of operations) tackled by each pattern
are showed between curly brackets, and (2) the prov:Entities created as a result
of the operation’s execution are in dark yellow, while prov:Entities assumed to
exist before the operation’s invocation are in light yellow.

All patterns share common transformations. First, all the operations are
translated into a prov:Activity identified by var:operation. Second, when appli-
cable, the object’s initial state is given by a prov:Entity identified by var:source.
Third, each input operation’s argument is mapped to a prov:Entity named
var:input. Finally, when applicable, two prov:used relationships link var:operation
with var:source and var:input to represent that the operation “uses” an initial
state of the object (var:source), and a set of input arguments (var:input).

5

http://www.w3.org/ns/prov#Entities
http://www.w3.org/ns/prov#Entities
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#used

Table 2. Patterns CDP1 -CDP6 including the proposed provenance templates, to-
gether with the expanded template and the values of the variables (bindings).

source: Student1_1

operation: getName_1

messageReply: e3

output:e1 (name)

input: e4 (new name)

operation: setName_1

source: Student1_1

target: Student1_2

attribute: e2 (identifier)

input: e1 and e2

operation: new_1

target: Student1_1

attribute: e1 (name)

and e2 (identifier)

source

operation

target

attribute

input

used

hadM
em

ber

wasDerivedFrom

used

hadMember

wasGeneratedBy

CDP5 CDP6
{set} {command, non-void-command}

Student1_1

setName_1 e2

e4

used

hadM
em

ber

wasDerivedFrom

used

hadMember

wasGeneratedBy Student1_2

source

operation

outputmessageReply
hadMember

targetAttribute

input

used

wasDerivedFrom

used

wasGeneratedBy wasDerivedFrom

Student1_1

getName_1

e1e3
hadMember

used

wasGeneratedBy

operation

target attribute

input

wasGeneratedBy
hadMember

used

operation source
wasInvalidatedBy

{constructor}

new_1

Student1_1

e2

wasGeneratedBy

hadMember/wasDerivedFrom

used

e1

hadMember/wasDerivedFrom

wasDerivedFrom

<<constructor>>Student(id:String, name:String)

<<get>>getName():String

<<set>>setName(name:String)

used

CDP1

Bindings

Bindings

Class Diagrams Patterns Template expanded Bindings

wasGeneratedBy

{destructor}CDP2

value: Carlos

value: Bea value: id0

value: Carlos

value: id0

CDP3 CDP4

{get, get-collection} {predicate,property,

void-accessor}
Bindings

Creational. The operations included in this category, which are constructor and
destructor, are addressed by CDP1 and CDP2, respectively. Following CDP1, a
constructor operation (identified by var:operation) creates a new object using
(or not) input arguments (identified by var:input). Such a new object is trans-
lated into a prov:Entity identified by var:target, together with its set of data
members, represented by the prov:Entity named var:attribute. Additionally, to
show that the new object (var:target) has been generated using the input argu-
ments (var:input), we define a prov:wasDerivedFrom relationship between them.
In turn, var:target is related to var:operation through prov:wasGeneratedBy to
show that the new object (var:target) has been generated by the constructor op-
eration (var:operation). Following CDP2, a destructor operation (identified by
var:operation) destroys an object (identified by var:source), fact represented by
the relationship prov:wasInvalidatedBy between var:source and var:operation.
Structural Accessors. The operations that do not change the state of an
object (internal structure) are translated by CDP3 and CDP4 (see Table 2).
In particular, these operations are used for retrieving information, represented
by the prov:Entity identified by var:output. While the operations get and get-
collection tackled by CDP3 return the data member directly, the operations
predicate, property and void-accessor addressed by CDP4 generate new infor-
mation based on the data member(s). To represent the return of information
(not the generation of information) in CDP3, we use a prov:Entity identified by
var:messageReply, which is created by the operation (var:operation), and en-
capsulates the retrieved information (var:output). These elements, highlighted
in italic and with dashed lines in CDP3 of Table 2, are related to var:operation
by the relationship prov:wasGeneratedBy. The relationship prov:hadMember is
also used to link them (var:messageReply as source and var:output as tar-
get). On the contrary, the information retrieved by the operations tackled in
CDP4 is generated by such operations, involving a data member which is rep-

6

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasInvalidatedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember

resented by an prov:Entity identified by var:targetAttribute. These additional
aspects, highlighted in bold in CDP4 of Table 2, are represented by the re-
lationships: prov:wasGeneratedBy, between var:operation and var:output, and
prov:wasDerivedFrom, between var:output and var:targetAttribute.
Structural Mutators. For operations that change the state of an object, we
distinguish (i) those that set a specific data member –set methods– together
with those whose behaviour performs a complex change –command and non-
void-command methods– (tackled by CDP5 and CDP6); from (ii) those that
manage data member collections –set-remove-collection and set-add-collection
methods– (tackled by CDP7 and CDP8, presented in [10]).

In addition to the set of transformations shared by all patterns as explained
before, CDP5 and CDP6 also have a set of common transformations. The op-
erations tackled by these patterns change the object’s state (internal struc-
ture) through the modification of some of its data member(s). Hence, the new
state of the object is represented by a prov:Entity identified by var:target,
while each object’s data member is translated using a prov:Entity identified by
var:attribute. To represent that such attributes (var:attribute) belong to the
new state of the object (var:target), we use the relationship prov:hadMember be-
tween them. In turn, var:target is also related to the operation (var:operation)
through prov:wasGeneratedBy, representing that the new object’s state has been
generated by such an operation. Additionally, var:target is linked, by means of
prov:wasDerivedFrom, with a prov:Entity identified by var:source, which rep-
resents the previous object’s state. In addition to these elements, the CDP5
pattern, which tackles set operations, includes the prov:hadMember relationship
between var:target and var:input to show that the input parameter is set as a
new data member (see the highlighted prov:hadMember relationship in Table 2).

4 Implementation
Here, we discuss our proposal for enhancing our first UML2PROV approach [8],
which is mainly characterized by: (1) the implementation of our transforma-
tion patterns from UML Diagrams to provenance templates files, and (2) the
generation of artefacts for provenance collection. Although both aspects were
reasonably tackled in our prototype, they were subject to improvement. Next,
we explain why and how we have enhanced our prototype leaning on Figure 2.

4.1 Implementation of the mapping patterns
Given the wide range of contexts of application, a manual translation of the UML
Diagrams of a system to templates constitutes a time-consuming, error-prone and
not cost-effective task. To overcome these challenges, we originally developed an
XSLT-based prototype as first attempt to implement our mapping patterns [8].
Although being a powerful solution, the usage of XSLT for implementing map-
ping rules is no longer the best option, given the availability of mapping and
transformation languages created by the MDD community which have better
properties in terms of maintenance, reusability, and support to software devel-
opment processes [12]. For this reason, in this paper, we propose to use an MDD
approach [13], focusing on models rather than computer programs, so that the

7

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

Fig. 2. MDD-based implementation proposal.

templates files are automatically generated using a refinement process from the
UML Diagrams (see the top of Figure 2). Our solution for template’s generation
follows an MDD-based tool chain, comprising transformations T1 and T2.

First, T1 performs a model–to–model (M2M) transformation, taking as source
the UML diagram models of the system (which conform to the UML metamodel)
and generating the corresponding provenance template models (which conform to
the PROV metamodel (PROV-DM [14]). Among the different MDD-based tools
in the literature, we have implemented this transformation by means of the ATL
Eclipse plug–in [15]. We have defined an ATL module named UML-PROV which
automatically translates each diagram model (sequence, state machine and class
diagram) into the corresponding provenance template models. Second, T2 car-
ries out a model–to–text (M2T) transformation, taking the provenance template
models resulted previously, and generating the final templates files serialized in
PROV-N notation. T2 has been implemented in the XPand tool [16] by means of
a one-to-one transformation module named PROV-PROVN. This module takes
the previously generated models and returns the template files in PROV-N.

By using the transformations defined in these two MDD–based tools, we are
able to automatically generate, starting from the UML Diagrams of a system,
the corresponding provenance template files. It is worth noting that the ATL
and Xpand transformations can be applied to UML Diagrams (Sequence, State
Machine, and Class Diagrams) in any context.

4.2 Generation of artefacts

Having generated the template files, we need suitable code artefacts to create
the bindings containing the pairs template variables–values. Programming the
creation of bindings typically involves manually adding many lines of code re-
peated along the whole application’s base code (obtaining the well-known scat-
tering code), with its consequent loss of time on development and maintenance.
Additionally, performing a manual creation of bindings requires the program-
mer to have a deep understanding of the design of both the application and
the provenance to be generated. In [8] we faced this issue by following a Proxy
pattern [17] approach as a first attempt to generate bindings with a minor pro-
gramming intervention. Whilst the Proxy pattern approach facilitates such a
generation by wrapping each object to extend its behaviour with extra lines
of code, this solution still requires to manually modify the application’s source
code. In order to provide a fully automatic way for bindings generation, we in-
stead propose to use the Aspect Oriented Programming (AOP) [18] paradigm.
AOP aims at improving the modularity of software systems, by capturing in-
herently scattered functionality, often called cross-cutting concerns (thus, data
provenance can be considered as a cross-cutting concern). Our solution exploits

8

AOP to seamlessly integrate cross-cutting concerns into existing software appli-
cations without interference with the original system. The core of AOP is the
aspect, which constitutes a separate module that describes the new functionality
that should be executed at precise locations as the original program runs.

Taking this into account, we have followed an MDD-based approach for gen-
erating, starting from the source UML Diagrams, a context-dependent aspect
in AspectJ (an AOP extension created for Java) together with other auxiliary
components in Java, constituting what we have called artefacts for provenance
collection. This new transformation T3 has been implemented as an Xpand mod-
ule named UML-Artefacts (see the bottom of Figure 2) which, starting from the
UML diagram models which represent the system design, directly generates the
artefacts for provenance collection (Section 4 of online appendix [10] contains
an example). The generated AOP aspect implements the behaviour that is to
be executed to generate the bindings at specific points in the concrete appli-
cation code. We note that, although the new functionality to be executed for
bindings generation is common to all applications, such points are specific to the
concrete application. With our proposal, the programmer just needs to include
the resulted artefacts into the application, so that it will become automatically
provenance-aware without requiring any other intervention.

5 Analysis and Discussion

We first analyses the strengths and weaknesses of UML2PROV taking into ac-
count (i) the automatically generation of templates, focusing on the time it takes
to generate the templates and how much elements are included on the templates;
and (ii) the collection of bindings during the execution of the application, dis-
cussing its run–time overhead. Finally, we highlight development and mainte-
nance benefits of using UML2PROV.

As for the generation of the templates, since it is carried out during the design
phase, it does not interfere in any way with the overall application performance.
Regarding the amount of generated templates’ elements, each template defines a
fixed number of elements; thus, there is a linear association between the number
of elements and the number of templates generated. Thus, in case of a huge
amount of input/output arguments, and attributes, the number of elements after
the expansion process grows proportionally to the length of these elements.

Another issue that may concern the users of UML2PROV is the run–time
overhead. As a way of example, in Table 3 we provide a benchmark of seven
execution experiments (identified from 1 to 7) using the Stack case study pre-
sented in [10]. In particular, it depicts the execution times with and without
UML2PROV (see columns 2 and 3, respectively). We note that all experiments
use retrieved information from a database. Based on the benchmarks showed in
this table, as it would be expected, recording the provenance using our approach
increases the original processing time by ∼14.5%. We can consider worthwhile
this increment, taking into account that the approach herein captures prove-
nance from all the elements modelled in the UML Diagrams with a high level of
detail. In this line, an interesting aspect of future work would be to provide the

9

Table 3. Results obtained from seven experiments using the Stack case study [10].

ID
Without

 UML2PROV (ms)

With

UML2PROV (ms)

Increment

(%)

Number

variables
Descrip�on

1 48 56 16,67 2260 25 push opera�ons from Stack
2 84 97 15,48 4510 50 push opera�ons from Stack
3 161 182 13,04 9010 100 push opera�ons from Stack
4 45 53 17,78 3160 25 pop opera�ons from Stack
5 82 93 13,41 4710 50 pop opera�ons from Stack
6 153 175 14,38 7810 100 pop opera�ons from Stack
7 300 332 10,67 19952 Turn down a stack with size 100

Legend:
-ID: Experiment iden��er.

-Without UML2PROV: Average �me taken by 50 execu�ons

without UML2PROV.

-With UML2PROV: Average �me taken by 50 execu�ons

genera�ng bindings with UML2PROV.

-Increment: Percentage of �me increased by applying UML2PROV.

-Number variables: Total number of variables captured.

-Descrip�on: Brief explana�on of the experiment

* The experiments were run on a personal computer, Intel(R) Core(TM) i7 CPU, 2.8 GHz, running Windows 10 Enterprise. This computer runs Oracle JDK 1.8 together with MySQL 5.5

UML designer with a mechanism to specify both the (i) the specific elements
in the UML Diagrams to be traced, and (ii) the level of detail of the captured
provenance for each selected element.

As said previously, UML2PROV makes the development and maintenance of
provenance-aware systems a simple task, by automatically generating provenance
templates and artefacts for provenance collection. In particular, the automation
of template’s generation entails direct benefits in terms of compatibility between
the design of the application and the design of the provenance to be generated.
Every time the design of the application changes, provenance design is updated
automatically. As a consequence, since the artefacts for provenance collection
–which create bindings– are also automatically generated from the design of
the application (as well as the templates), there are no problems with regard
to incompatibility between templates and bindings. In fact, since these artefacts
contain all the instructions to generate the bindings, programmers do not need to
traverse the overall application’s code, and include suitable instructions. Specif-
ically, for each variable in a provenance template, a method call is needed to
assign a value to it; thus, a programmer would need to write one line of code
per each variable in a template. Although Table 2 shows that the templates are
relatively small (e.g. CDP4 –which is the biggest– comprises 6 nodes), we note
that an application may encompass thousands of methods. Thus, our approach
makes the collection of bindings a straightforward task.

6 Related Work
There is a huge amount of scientific literature about provenance, which has been
collected and analysed by several surveys among different fields (see a complete
review in [19]). Additionally, there are several works which particularly undertake
the development of provenance-aware systems. For example, PASS [20], which
is a storage systems supporting the collection and maintenance of provenance;
PERM [2], which is a provenance-aware database middleware; or Taverna [3],
Vistrails [21] and Kepler [22] which include provenance into workflow systems.
Whilst these applications show efficacy in their research areas, they manually
weave provenance generation instructions into programs, making the code main-
tenance a cumbersome task. In contrast to this strategy, some mechanisms for
automatically provenance capture have been proposed in the literature. Among
the systems in which the developers do not need to manually manipulate the
code, Tariq et al. [23], noWorkflow [24] and Brauer et al. [25] stand out. Tariq
et al. [23] automatically weave provenance capture instructions within the ap-
plication before and after each function call during the compilation process. The
noWorkflow tool [24] is registered as a listener in the Python profiling API, so
that the profiler notifies when the functions have been activated in the source
code. Brauer et al. [25] use AOP aspects for generating provenance. Our ap-

10

proach is similar in spirit with all these works, since UML2PROV transparently
captures provenance in a non-intrusive way. Unlike these approaches which rely
on the source code of the application, UML2PROV constitutes a generic solution
based on the application’s design. It identifies the design of the provenance to
be generated (templates) and creates the context-dependent artefacts for prove-
nance collection using the application design given by UML Diagrams. This fact
unlinks the provenance capture with the specific implementation of the applica-
tion, providing a generic solution for developing provenance-aware applications.

Finally, we note PrIMe [6] which, although being considered the first provenance-
focused methodology, is standalone and is not integrated with existing software
engineering methodologies. UML2PROV complements PrIMe, since it integrates
the design of provenance by means of PROV-Templates enriched with UML.

7 Conclusions and Future Work
We have defined a comprehensive approach UML2PROV. First, we complete
it by giving support to Class Diagrams, establishing a mapping strategy from
such diagrams to templates. Second, we improve our first prototype by using an
MDD-based approach which not only implements the overall mapping patterns,
but also generates the AOP artefacts for provenance collection. Finally, there is
an analysis of the potential benefits of our overall approach.

In addition to the future work advanced previously, another line of future
work is the application of UML2PROV in a distributed system. We plan to tackle
this goal by automatically generating an artefact for provenance collection able
to capture provenance not only in a fully-in-memory system (as until now), but
also in a system comprising distributed components. Finally, we may use some
PROV attributes (e.g. prov:type, prov:role. . .) in the templates, in order to
specialize concrete elements. With such specializations, we aim to improve the
provenance consumption by creating less complex queries with higher accuracy,
reducing the noise levels in the retrieved provenance information.

Acknowledgements. This work was partially supported by the spanish MINECO
project EDU2016-79838-P, and by the U. of La Rioja (grant FPI-UR-2015).

References

1. Holland, D., Braun, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Choosing a data model and query language for provenance. In: Proceedings of
IPAW’08. (2008) 98–115

2. Glavic, B., Alonso, G.: Perm: Processing Provenance and Data on the same Data
Model through Query Rewriting. In: Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE’09). (2009) 174–185

3. Wolstencroft, K., et al.: The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic acids
research 41 (2013) 557–561

4. Groth P., Moreau L. (eds.): PROV-Overview. An Overview of the PROV Family
of Documents. W3C Working Group Note prov-overview-20130430 (2013) http:
//www.w3.org/TR/2013/NOTE-prov-overview-20130430/.

11

http://www.w3.org/ns/prov#type
http://www.w3.org/ns/prov#role
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

5. OMG. Unified Modeling Language (UML). Version 2.5: (2015) formal/15-03-01,
http://www.omg.org/spec/UML/2.5/. Last visited on March 2018.

6. Miles, S., Groth, P.T., Munroe, S., Moreau, L.: Prime: A methodology for devel-
oping provenance-aware applications. ACM Trans. Softw. Eng. Methodol. 20(3)
(2011) 8:1–8:42

7. Moreau, L., Batlajery, B.V., Huynh, T.D., Michaelides, D., Packer, H.: A Templat-
ing System to Generate Provenance. IEEE Transactions on Software Engineering
(2017) http://eprints.soton.ac.uk/405025/.

8. Sáenz-Adán, C., Pérez, B., Huynh, T.D., Moreau, L.: UML2PROV: automating
provenance capture in software engineering. In: Proc. of Sofsem’18. (2018) 667–681

9. OMG: Object Constraint Language, Version 2.4 (2014) formal/2014-02-03 http:
//www.omg.org/spec/OCL/2.4/PDF.

10. Supplementary material of UML2PROV (2018): https://uml2prov.github.io/.
11. Reverse Engineering Method Stereotypes. In: Proceedings of the 22nd IEEE In-

ternational Conference on Software Maintenance. (2006)
12. Catalina Martínez Costa, Marcos Menárguez-Tortosa, J.T.F.B.: Clinical data inter-

operability based on archetype transformation. Journal of Biomedical Informatics
44(5) (2011) 869–880

13. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5)
(2003) 19–25

14. Moreau, L., et al.: PROV-DM: The PROV Data Model. W3C Recommendation
REC-prov-dm-20130430, World Wide Web Consortium (2013) http://www.w3.
org/TR/2013/REC-prov-dm-20130430/.

15. ATL - a model transformation technology, version 3.8: (May 2017) Available at
http://www.eclipse.org/atl/. Last visited on March 2018.

16. XPand: Eclipse platform (2018) https://wiki.eclipse.org/Xpand, Last visited
on March 2018.

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison Wesley (1995)

18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proc. of the European Conference on
Object-Oriented Programming (ECOOP’97), Berlin, Heidelberg (1997) 220–242

19. Pérez, B., Sáenz-Adán, C., Rubio, J.: A systematic review of provenance systems.
Knowl. Inf. Syst. (2018)

20. Glavic, B., Dittrich, K.R.: Data Provenance: A Categorization of Existing Ap-
proaches. In: Proceedings of Datenbanksysteme in Büro, Technik und Wissenschaft
(BTW’07). (2007) 227–241

21. Silva, C.T., Anderson, E., Santos, E., Freire, J.: Using vistrails and provenance for
teaching scientific visualization. Computer Graphics Forum 30(1) (2011) 75–84

22. Altintas, I., Barney, O., Jaeger-Frank, E. In: Provenance Collection Support in the
Kepler Scientific Workflow System. (2006) 118–132

23. Tariq, D., Ali, M., Gehani, A.: Towards automated collection of application-level
data provenance. In: Proceedings of TaPP’12. (2012)

24. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: noworkflow: a tool for col-
lecting, analyzing, and managing provenance from python scripts. In: Proceedings
of VLDB’17. Volume 10. (2017) 1841–1844

25. Brauer, P.C., Fittkau, F., Hasselbring, W.: The aspect-oriented architecture of
the caps framework for capturing, analyzing and archiving provenance data. In:
Proceedings of IPAW’14, Springer (2014) 223–225

12

http://www.omg.org/spec/UML/2.5/
http://eprints.soton.ac.uk/405025/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF
https://uml2prov.github.io/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.eclipse.org/atl/
https://wiki.eclipse.org/Xpand

	Automating Provenance Capture in Software Engineering with UML2PROV

