
Simulated Domain-specific Provenance

Pinar Alper1, Elliot Fairweather2, and Vasa Curcin2

1 University of Luxembourg
2 King’s College London

Abstract. The main driver for provenance adoption is the need to col-
lect and understand knowledge about the processes and data that occur
in some environment. Before analytical and storage tools can be designed
to address this challenge, exemplar data is required both to prototype the
analytical techniques and to design infrastructure solutions. Previous at-
tempts to address this requirement have tried to use existing applications
as a source; either by collecting data from provenance-enabled applica-
tions or by building tools that can extract provenance from the logs of
other applications. However, provenance sourced this way can be one-
sided, exhibiting only certain patterns, or exhibit correlations or trends
present only at the time of collection, and so may be of limited use in
other contexts. A better approach is to use a simulator that conforms
to explicitly specified domain constraints, and generate provenance data
synthetically, replicating the patterns, rules and trends present within
the target domain; we describe such a constraint-based simulator here.
At the heart of our approach are templates - abstract, reusable prove-
nance patterns within a domain that may be instantiated by concrete
substitutions. Domain constraints are configurable and solved using a
Constraint Satisfaction Problem solver to produce viable substitutions.
Workflows are represented by sequences of templates using probabilistic
automata. The simulator is fully integrated within our template-based
provenance server architecture, and we illustrate its use in the context
of a clinical trials software infrastructure.

1 Motivations and approach

A key requirement for the progression and adoption of provenance research is the
availability of realistic provenance datasets. Such data is necessary to support
the prototyping of new techniques or tools for provenance capture, analysis and
visualisation. Thus far the community has tackled this requirement by using
existing applications as data sources. One such effort is the ProvBench series of
challenges [3, 2] that built up a corpus from the output of a diverse selection of
provenance-enabled applications, such as those used in scientific workflows and
file systems.

Provenance sourced from a particular application is inherently tied to that
domain, which can be limiting. Firstly, it may be one-sided and exhibit only cer-
tain patterns. For example, the Wikipedia corpus of the Reconstruction Chal-
lenge [4] focuses only on document revisions and not on delegation of author



responsibilities. In reality data is often produced through processes involving
multiple applications, such as security layers, content and collaboration man-
agement systems, local tools, and remote services. Focusing on a single element
makes it difficult to obtain a full description of the provenance of data.

Secondly, the provenance data may exhibit trends and correlations that exist
in the domain environment only at the time of collection. For example, the file
system corpus [9] contains data traces taken from applications that are run only
with a fixed default workload configuration. This only captures reality partially,
as the applications experience changing workloads over time.

An alternative approach is to use a simulator and generate provenance syn-
thetically. Synthetic data generation has been investigated in the context of re-
lational databases [11, 10] and graphs [17], but not as thoroughly in the context
of provenance. In order for synthetic data to be useful for a particular domain,
it needs to be valid (observe the allowed structure of the domain), and realistic
(observe the data correlations present with in the domain). However it is im-
portant to note that true realism is only achievable by sampling distributions
derived from real-world data, which is sometimes not possible.

In this paper we describe a simulator that is configurable to a particular do-
main and generates such data. Validity is achieved using provenance templates,
an emerging approach for provenance recording and management, which rep-
resent abstract, reusable provenance fragments that may be instantiated using
concrete data. Realism is approximated by providing the simulator with a set of
constraints that represent the data correlations and trends of the target domain.
Value sets for certain constraints are generated by sampling statistical distribu-
tions and we delegate the task of constraint solving to a Constraint Satisfaction
Problem (CSP) solver.

Single templates are not however sufficient to generate meaningful traces.
We therefore introduce the concept of processes to represent possible workflows.
A process is a defined as a probabilistic finite automaton, in which each state
is associated with a template. The simulator generates a path through the au-
tomaton that is used to produce a sequence of templates to be instantiated. The
simulator is fully incorporated within our template-based provenance server.

2 Provenance templates

A provenance template [5] is a abstract fragment of a provenance document,
that may be instantiated using concrete substitutions for variables contained
with the template. Variables are of two kinds; identifier variables inhabiting the
var namespace which are placeholders for node or relation identifiers, and value
variables under vvar, which can be used in the place of an attribute value. A
provenance template is itself a valid provenance document and as such allows
nodes to be semantically annotated, allowing the inclusion of domain-specific
information. Concrete provenance fragments are generated by an algorithm that
accepts as input a template and a substitution comprised of a set of variable-
value bindings, and replaces variables for values in a copy of the template.



The template approach does not prescribe how one produces bindings, as
this might differ across applications. This insulation from the application layer
makes templates a suitable mechanism to represent the combined provenance of
multiple applications.

Figure 1 gives an example of a template from the domain of health infor-
matics. It outlines the provenance trace that is to be collected from the use of
diagnostic support tool for the management of potential secondary stroke. An
initial assessment is performed by a clinician at a GP practice. The assessment
uses the available clinical guidelines and the patient’s health record and pro-
duces a stroke prevention plan for that patient. The patient’s progress with the
plan is checked in a follow-up assessment and a revised plan is produced. The
template illustrates the use of both identifier variables such as that for the entity
var:record, and value variables, such as vvar:riskLevel given as the value of
the attribute ex:priority.

var:revisedPlan

var:followUp

var:clinician

var:preventionPlan

var:assess

ex:guideline1 var:recordex:practice1

wasGeneratedBy

used

wasGeneratedBy

used used

wasAssociatedWith

wasAssociatedWith

actedOnBehalfOf

prov:type=ex#PatientRecord
ex:strokeCategory=‘vvar:category’

prov:type=ex#RiskAssessment
startTime=‘vvar:startTime’
endTime=‘vvar:endTime’

prov:type=ex#StrokeRisk
ex:priority=‘vvar:riskLevel’

Fig. 1. Provenance template for stroke risk assessment

We require one extension to the published template model [5]. Nodes or rela-
tions using value variables must also be annotated with an attribute pgt:vvarTypes
that contains a map from the names of the value variables present to their in-
tended value type. The template model also provides the ability to define iterable
sub-graphs within templates; we do not consider this functionality in this paper.

2.1 Variable domains

Our first contribution is to introduce the concept of domains for template vari-
ables. Let VT denote the set of variables occurring in the template T . For each



variable x ∈ VT , we may specify a set of values Dx specifying the values that
may be used in bindings for x. If x is an identifier variable each element of the
domain must be of type prov:QUALIFIED_NAME, and if it is a value variable the
domain of each value must be of the type specified in the variable type map for
that node or relation.

3 Domain-specific constraints for templates

We now focus on constraints that ensure our simulated traces are not only valid,
but also realistic. Application domains are often associated with restrictions or
trends beyond those encoded in the data schema of an application. For instance,
clinical guidelines contain rules restricting the ordering of events within a pro-
cess, e.g. a patient follow-up assessment should occur between 30 and 90 days
following the initial assessment. As another example, consider the extensive use
of medical ontologies describing medical conditions and interventions - when
multiple entities from ontologies are brought together in a particular context,
their co-occurrence may require co-ordination (e.g. no pregnancy events in male
patients).

We model such restrictions with constraints over the variables occurring
within a template. We currently support the following kinds of constraints.

3.1 Constraint types

We now formalise the types of constraints supported in our simulations. Note
that, for simplicity, we avoid the use of formal medical terminologies and ontolo-
gies.

Relation constraints Relation constraints are formed from Boolean compar-
isons between binary arithmetic expressions involving the variables occurring in
a template and numeric constants. They can be used to model domain-specific
event ordering requirements. An example for the stroke assessment template
would be as follows:

(preventionP lan.endT ime− preventionP lan.startT ime) > 30

Value-dependency Constraints Value-dependency constraints are conditional
expressions that enforce a dependency between the possible values that two dif-
ferent variables may assume. A constraint of this type is constructed from set
membership tests between the value val(z) of a variable z and a subset of the
values in the domain of that variable, Vz ⊂ Dz, such that:

if val(x) ∈ Vx then val(y) ∈ Vy



Relations between domain-specific semantic attributes can be represented
using value-dependency constraints. For example, stating that in our simulations
diagnosis of diabetes should be followed by either a diet or insulin treatment or
both, would be expressed as:

if val(diagnosisKind) ∈ {Type1Diabetes, Type2Diabetes}
then val(treatmentKind) ∈ {CardioProtectiveDiet, InsulinTreatment}

Distribution Constraints Distribution constraints specify how domain values
are picked for certain variables. They are configurations represented as triples of
the form 〈x, k, Fx〉 where x ∈ VT , and k ∈ { uniform, exponential, pie } denotes
a distribution kind, and the set Fx represents the frequency of the occurrence of
each possible domain value for the variable x. Each f ∈ Fx is a pair 〈d, p〉, such
that d ∈ Dx, where Dx denotes the domain of x, and a probability p ∈ R.

We use frequency sets derived from discrete probability distributions and
currently support three types of distribution: uniform distributions in which
each domain value has equal probability, pie distributions in which each domain
value has an associated probability, and the Zipf power law distribution.

Note that, in our implementation, any variables that have an associated rela-
tion or value-dependency constraint cannot also have a distribution constraint.

3.2 Solving constraints

We make use of a Constraint Satisfaction Problem (CSP) solver [16] to solve the
constraints given for a template. CSP solvers operate on problems of the form
〈V, D,C〉, where V is a set of variables, D is a set of domains for variables and
C is a set of constraints. They use optimised search algorithms to find solutions
to a given problem. A solution is a set of variable-value assignments, which
ideally should be consistent and complete. A solution is consistent if it does not
violate any of the constraints, and it is complete if it contains assignments for
all variables.

We use the CSP solver in its most basic configuration; that is, where all
constraints and variables are mandatory and a consistent and complete solution
is sought. We create a problem with only integer variables. Each constraint type
identified in the section 3.1 can be mapped to a CSP constraint types as follows.

Binary CSP constraints are those involving two variables. Relation con-
straints with complex arithmetic expressions can be mapped to Binary CSP
constraints through use of intermediary variables. Reified CSP constraints are
those that involve constraints combined with logical operators. We use this mech-
anism to implement value-dependency constraints. Global CSP constraints are
a portfolio of constraints that capture commonly encountered constraint pat-
terns, and are defined over an arbitrary number of variables. Specifically, we use
the Global Cardinality Constraint (gcc), which allows us to set the (min-max)
number of times a value can be assigned to a set of variables.



4 Processes and Simulation

In order to produce simulated provenance traces, we first need to specify the
processes involved, and map them onto templates.

4.1 Processes

Processes represent simple workflows constructed from the instantiation of se-
quences of templates, modelled as probabilistic finite automata, with each au-
tomata state associated with a template. When generating a trace the simulator
first takes a possible path through the automata and outputs the respective se-
quence of transitions. This information is then used to determine a sequence of
templates to be instantiated for that trace. The initial and terminal states of an
automaton are not associated with a state and the initial state is chosen from
a probability vector. Transition probabilities for each state sum to unity. An
example is shown in Figure 2.

When template instances are merged into the provenance document being
constructed, any values given in bindings for variable identifiers that already ex-
ist in the document are reused and, if not present, are freshly created. This pro-
cess by which nodes within template instances are grafted upon existing nodes
is what enables larger documents to be constructed from the fragment docu-
ments created from the instantiation of templates. For more information on the
document construction process and how it is carried out within the provenance
server, see [7].

Whilst merging allows the natural building of complex documents under
normal operation the simulator requires that graft points between the templates
of a process be explicitly marked in order to control the way in which template
instances are joined. This is achieved in the following way. Each transition of
a process may be annotated with pairs of identifier variables called anchors.
The lefthand-side of each pair is a variable from the preceding template and
the righthand-side a variable from the subsequent template. Under simulation
the righthand-side must be instantiated with the same value as the left, thus
ensuring that a graft is created.

We also introduce the practice that a partial substitution may be associated
with a given process state. This substitution will be pre-applied to the template
of that state before the remaining bindings are generated. This allows more
generic templates to be defined which may be reused in similar but distinct
contexts.

Figure 2 shows an example automaton describing the data workflow for a
randomised clinical trial application. The eligibility check, consent gathering
and randomisation states are each associated with a distinct template, whilst
the Patient Reported Outcome Measure (PROM) and Clinician Reported Out-
come Measure (CROM) states (representing the completion of form-based as-
sessments) make use of the same single template, pre-applied with a partial
substitution specifying whether the form is to be completed by the patient or
clinician.



Fig. 2. Automaton for randomised clinical trial workflow

4.2 Simulation

To produce a simulated provenance trace, the simulator operates in conjunction
with the provenance server. After reading the configuration, the given variable
domains are mapped to integer values and stored for use by the CSP solver. The
process configuration is then used to construct the described automaton, and
the template used in each state is read from the provenance server database and
stored. The variables for each template and any associated constraints are then
mapped to their counterparts in the CSP solver, and any required distribution
constraint value domains generated.

For each requested trace, the automaton is first used to generate a path, giv-
ing a sequence of templates to be instantiated. Then for each template in order,
bindings for its variables are generated. If a distribution constraint exists for a
variable, a sample is taken and together with any relation or value-dependency
constraints upon the same variable, submitted to the CSP solver to be solved.
If no constraint is present, a value is selected at random from the domain of the
variable, or in the case that no domain is specified, a value of the correct type
is generated at random.

These bindings are then submitted to the provenance server as a substitution,
which constructs a new instance of the respective template and stores it in
the database. Following the first instantiated template of a process the most
recent bindings are stored and any values generated for anchored variables in
the following transition reused.

5 Implementation and architecture

The architecture of the simulator component and the template server are given
in Figure 3. The simulated process is represented by an XML configuration com-
prising the templates required, associated value domains for template variables,
domain constraints, and transitions between process states. The configuration is
passed to the simulator via the provenance server and template definitions are



Fig. 3. Architecture of the simulator (left) and server (right)

read from the server database. We use the Choco 4.0 solver [15] for CSP solving
and the Apache Commons Mathematics library for distribution sampling.

Provenance documents are modelled as graphs in a formalism-agnostic way
by the server’s Model component. Interoperability with PROV is provided us-
ing ProvToolbox. The Model component provides templates, substitutions and
the instantiation algorithm by which new provenance fragments are generated.
The Document Management component controls and executes the operations
outlined in the document building workflow such as the creation of new tar-
get documents, namespace management, the registering of templates, and the
generation and merging of new fragment documents. Storage of data in the sys-
tem is abstracted by a persistence layer component to enable the use of different
database technologies - at present Neo4J and OrientDB graph databases are sup-
ported, as is a relational SQL format. The management API may be accessed
directly via a RESTful web interface. Analysis of target documents may be per-
formed either at the database level, or otherwise by exporting target documents
or fragments and using existing PROV tools.

The clients invoke the simulator via the management API by providing a
configuration file, a target document and a number of iterations to be executed.

6 Evaluation

Following our initial work on decision support systems, we are now focusing on
simulating clinical trial traces. Clinical trials have become increasingly reliant
on contextual data sources that complement the data obtained directly from
the patients, e.g. Electronic Health Record (EHR) systems are used to identify
eligible patients and feed part of the required trial data into Electronic Case
Report Forms (eCRFs). Tractability of such system is of essence in order to
understand, evaluate and potentially improve the trial design. This requires the
minute study details, e.g. eligibility criteria encodings, how they were applied
to individual patients who presented to the clinician, data extracted from the
EHR systems, data collected through eCRFs and the analysis performed on the
collected data. Assembling the trace of the entire process requires provenance to



be captured from the Clinical Trial Management System, EHR system and the
patient/clinician data collection tools.

The overall goal is to use that provenance to demonstrate compliance of
the software tasks executed during clinical trials with regulations such as US’s
21 CFR Part 11 and Good Clinical Practice (GCP) standards. Techniques to
validate the clinical trial provenance data against such standards need to be
developed initially on simulated data and validated themselves before being at-
tempted on real trial data, making it essential that synthetic data is structurally
identical to real provenance traces.

The trials we are observing are based on the TRANSFoRm clinical trial
infrastructure [6]. The key steps involve: 1) flagging up the patients eligible for
the trial to the clinician by checking their EHR in the background; 2) obtaining
patient consent; 3) randomising them into one arm of the trial; and 4) fill in
a series of forms. Figure 4 shows the four templates used in this context. Our
initial set of constraints states that:

– Forms must be completed between the start and end date of the trial:
vvar:formCompletionDate>= var:formStartDate, vvar:formCompletionDate
<= var:formEndDate

– We want an equal proportion of male and female participants: vvar:patientSex
is a uniform distribution

– Ages should be uniform across age band values ‘18-30’, ‘31-50’, ‘51-70’, ‘70+’:
vvar:patientAge is a pie distribution over the four categories defined.

With these constraints and templates in place, we run the simulation. Fig-
ure 5 shows an image from the Neo4j visualisation tool of a document built from
five iterations of the RCT process, together with the original templates (yellow
nodes) and the document metadata and indexing (green). The main subgraph
shows the simulated trace under construction, with entities depicted in blue,
activities in pink and agents in red. The trace can now be used to define various
checks as required by the trial and have them validated and ready for the real
data, once the trial starts.

7 Related work

Synthetic data generation has been studied in the context of databases and
graphs. Commercial database systems such as those developed by Microsoft and
IBM have associated generators, however these rely on random generation and
only cater minimally for realism. One line of research has focused on generating
test queries, data and verifying oracles for a given database schema [11], in order
to create data with appropriate test coverage. Another approach is to generate
data to be used against known query benchmarks [10] or applications [18]. The
focus here is to have data with different (realistic or experimental) distributions.
These generators cater for dependencies such as foreign keys, but do not address
constraints among other data elements.



var:checkOutcome

var:performCheck

var:clinician

var:patientRecordvar:incExcCriteria

(a) Eligibility check
var:

studyParticipantRecord

var:getPatientConsent

var:clinician var:checkOutcome

var:patient

var:
signedConsentForm

prov:type=ex#Patient
ex:patientSex=‘vvar:patientSex’
ex:patientAge=‘vvar:patientAge’

(b) Consent gathering

var:
updatedStudy
ParticipantRecord

var:randomisation

var:studyParticipantRecordrandomisation
Algorithm

(c) Randomisation

var:completedForm

var:fillForm

var:form var:
studyParticipantRecord

var:
updatedStudy
ParticipantRecord

var:fileForm

prov:type=ex#Form
ex:formType=‘vvar:formProtoType’
ex:formStartDate
    =‘vvar:formStartDate’
ex:formEndDate
    =‘vvar:formEndDate’

prov:type=ex#Form
ex:formType=‘vvar:formFilledType’
ex:formCompletionDate
    =‘vvar:formCompletionDate’

(d) Form completion

Fig. 4. Templates used in RCT scenario

Graph-based data is encountered in social networks, the internet, or the
power grid. In order to assist the development of graph analysis and visuali-
sation techniques, research has been undertaken on synthetic graph generation
[13], focusing on statistical properties, with one recent work addressing the use of
predefined patterns when generating graphs [17]. These patterns can somewhat
be likened to templates, in that they constrain the structure of the generated
graph. However, this work does not cater for constraints and allows the manip-
ulations of the generated patterns to achieve statistical properties.

Two research groups are actively studying templates with similar approaches
[14] and [5]. A detailed comparison of these is beyond the scope of this paper; but
their difference mainly lies in the instantiation procedure. In [14] instantiation
uses the Cartesian product of available bindings, whereas in [5] bindings can be
given either simultaneously or incrementally using well-defined iteration zones.



Fig. 5. Neo4j visualisation of five traces of the RCT process

To the best of our knowledge ProvGen [8] and DAGaholic [1] are the only
approaches that have studied the generation of synthetic provenance data. These
systems accept a seed graph as input, which identifies the PROV statements
allowed to be emitted by the generator, in the context of a set of additional
constraints. Constraints are restrictions that help enforce patterns or control
statistical graph properties (such as vertex degree), but do not support the
control of the domain-specific attributes of provenance elements. This highlights
an important distinction to our approach, where provenance is an information
model first, and its graph-based nature only of secondary importance. Hence
we focus on restricting domain-specific attributes to indirectly control statistical
graph properties.

Shapes Constraint Language (SHACL) [12] is a recent W3C specification for
validating RDF data. SHACL has a comprehensive set of built-in constraints
over RDF literals, such as regular expressions or integer ranges, and allows con-
straints involving complex graph patterns surrounding the focus node to be
defined as SPARQL ASK and SELECT queries, the results of which are used
to determine whether or not a constraint has been violated. We see SHACL
as a complementary foundational technology for encoding templates. Our tem-



plates can be encoded as shape graphs, and our relation constraints as SPARQL
constraints. However, SHACL has no means to represent value-dependency and
distribution constraints and, furthermore does not support variables, which, for
us are crucial abstractions for collecting and incrementally building provenance.

8 Conclusions and future work

In this paper we described a simulator for generating synthetic provenance in
a way that observes domain-specific constraints. Our approach uses templates
[5] to control and output provenance of a valid structure and three categories
of constraints mapped to and solved by a CSP solver to help model domain-
specific patterns in a realistic way. We described how workflows are modelled
as probabilistic automata, traversals of which represent sequences of templates
to be instantiated, and explained how the simulator fits within our provenance
server architecture. Finally we illustrated our system with a case study based
upon randomised clinical trials.

The implementation and testing of our simulator is ongoing. CSPs have high
computational complexity, so an important next step for us is to determine the
performance of our system for large output sizes in terms of number of variables,
and number and types of constraints.

The clinical trial use case will be fully evaluated within the REST clinical trial
(Runny Ear STudy: Immediate oral, immediate topical or delayed oral antibiotics
for acute otitis media with discharge) later in 2018, before which provenance data
will be synthesised in accordance with the design presented here, to be compared
against the data collected.
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