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Abstract. Several workflow management systems and scripting lan-
guages have adopted provenance tracking, yet many researchers choose
to manually capture or instrument their processing scripts to write prove-
nance information to files. The Next Generation Sequencing (NGS) project
we are associated with is tracking provenance in such manner. The NGS
project is a collaboration between multiple groups at different sites,
where each group is collecting and processing samples using an agreed-
upon workflow. The workflow contains many stages with varying degrees
of complexity. Over time workflow stages are modified, but data sam-
ples are only comparable when processed with identical versions of the
workflow. However, for various reasons (including the distributed nature
of the collaboration) it is not always clear which samples have been pro-
cessed with which version of the workflow. In this paper, we introduce
new techniques for clustering provenance datasets and attempt to dis-
cover the ones that are likely to be generated by same workflow. Based on
the clustering result, users can identify similar provenance and would be
able to categorize them into different clusters for debugging and zoom-
in/zoom-out viewing.

Keywords: Workflow Provenance · Clustering · Document Classifica-
tion · Structural Features · K-Means

1 Introduction

Workflow management systems and scripting languages are increasingly being
instrumented to capture provenance, however many scientists choose not to use
these tools. Instead, they manually capture or instrument their processing scripts
to write a certain amount of provenance information to files (e.g. spreadsheets)
and use this to enable verifiability and reproducibility. This is the case in the
Next Generation Sequencing (NGS) project we are associated with, which is a
collaboration between multiple groups at different sites. As sequencing samples
are collected within a group, they are processed using an agreed-upon workflow.
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The workflow contains many stages with varying degrees of complexity. Over
time workflow stages are modified, e.g. by updating software packages, updating
reference libraries or simply changing parameter values. Data samples are only
comparable when processed with identical versions of the workflow, however
for various reasons (including the distributed nature of the collaboration) it is
not always clear which samples have been processed with which version of the
workflow. The goal of this work is to determine which samples were processed by
which version of the workflow by clustering the collected provenance information.

In this paper, we introduce new techniques for clustering provenance datasets
and attempt to discover the ones that are likely to be generated by same work-
flow. Based on the clustering result, users are able to identify similar provenance,
and would be able to categorize them into different subsections for debugging
and zoom-in/zoom-out viewing. Our approach takes as input a set of prove-
nance datasets (modeled as PROV-DM graphs), computes abstracted prove-
nance graphs, extracts textual and structural features from each graph, and uses
these features to cluster provenance graphs into groups; each group indicates a
similar workflow template. We have tested our approach using two datasets, a
realistic gene-sequencing dataset and a synthetic dataset, as discussed in Sec-
tion 4. To enable testing the clustering accuracy, our real dataset was manually
labeled by human experts, and for our synthetic dataset we attached a label to
each provenance graph that indicates the workflow that was used to generate
them. In practice, we assume that no labels are attached.

The remainder of this paper is organized as follows. We introduce the motiva-
tion for this problem within next generation sequencing and discuss related work
in Section 2. In Section 3, we introduce our provenance clustering framework and
discuss our data model. In Section 4 we present our preliminary experimental
results, and we conclude and discuss future work in Section 5.

2 Background

We start by introducing our running example and then discuss related work, in
particular, techniques related to clustering workflow templates and their prove-
nance.

2.1 Next Generation Gene Sequencing (NGS)

Sequencing is a technique used to decipher the nucleotide code in a strand of
DNA or RNA. Next generation sequencing (NGS) is a high-throughput method
of sequencing that has revolutionized genomic research over the past ten years.
NGS experiments contain complex experimental procedures with extensive pro-
cessing of the data after the actual sequencing event. Post-sequencing analysis
workflows typically have many stages involving different programs, scripts, and
reference libraries.

While the post-sequencing workflow is largely automated, due to the mul-
titude of diverse programs and files used in the workflow there are many ways
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things can go wrong due to both human and computer errors. The programs and
reference libraries used in the workflow are also under active development, and
incorporating updates can be problematic. It is therefore critically important
to be able to identify when either erroneous programs or reference libraries are
used as these errors can have direct effects on downstream, high-level analyses.
It is also important to be able to recover from unexpected or unidentified loss
of provenance data. Hence it is necessary to be able to identify which pipeline
was used to process a given sample which might be missing provenance data.
Our provenance clustering approach can help with identifying workflow execu-
tions with erroneous or missing provenance as such provenance graphs would
not be placed in the same cluster as those with correct and complete provenance
information.

2.2 Related Work

There has been work on clustering workflow and provenance graphs using ma-
chine learning techniques such as K-Means and hierarchical clustering [4, 11].
Because the accuracy of clustering relies heavily on the effectiveness of extracted
features, it is crucial to identify an indicative set of features for workflows and
provenance graphs. For workflow templates, clustering is more straightforward
as module identifiers can be used to determine the identity of workflow modules
and group workflows with similar modules. Santos et al. [11] developed two tech-
niques for clustering workflow templates. In the first technique, they represent
workflow graphs using one-hot encoding,1 whereas in the second they use Max-
imum Common Induced Subgraphs. 2 Jung et al. [4] use both of these ideas in
a two-phase clustering scheme. Since these papers treat workflow nodes as the
smallest identifiable and labeled unit, their approaches can only be applied to
workflows.

Another related line of work is process mining from log files. Lu et al. [5]
studied detecting varying behaviors among executions of processes in the field of
business analysis. There has been also work on subgraph mining. Garijo et al. [3]
developed an approach that combines exact and inexact graph mining methods
to identify the most common sub-graphs in a corpus of workflows.

Unlike workflow clustering, clustering provenance graphs imposes several
challenges. Provenance graphs only capture workflow execution information,
which makes it very difficult to infer information about the original workflow
modules. Additionally, each workflow run may produce somewhat different prove-
nance graphs due to different agents, timing or process id information. In [5],
the minimum unit in each execution is labeled atomic event, while the label is
not obtainable in our setting. Chen et al. [1] represented provenance graphs as
temporal data, which are built from the execution order of the original workflow.
They also introduce clustering methods that use temporal and connectivity in-
formation, such as the number of incoming edges of a particular type. However,

1 One-hot encoding is a process in which categorical data is converted into a bit vector.
2 An induced subgraph is a subset of nodes along with the edges connecting them in

original graph.
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most of their features were manually selected. Further, the features contain con-
nectivity information, which can only be used for a specific application domain.
Clustering provenance graphs requires a set of indicative and domain-agnostic
features that allow for clustering provenances regardless of their application do-
main.

Graph edit distance (GED) has been studied in previous graph matching
work [2, 13]. GED is a metric used to quantify the distance between a pair of
graphs by counting the minimum number of edge/node operations (insert, delete
or update) required to transform one graph into the other. Computing the GED
between two graphs is know to be NP-Hard [13]; it has also been shown to
be hard to approximate (APX-Hard) [12]. Thus, in this paper, we use other
similarity metrics as we discuss in the next section.

3 Clustering Workflow Provenance

In this section, we introduce our provenance clustering framework and data
model.

3.1 Provenance Clustering Framework

As shown in Figure 1, our provenance clustering framework consists of four
processes: Compute APG Graphs, Extract Textual Features, Extract Structural
Features, and Cluster APG Graphs. First, Compute APG Graphs builds Ab-
stract Provenance Graphs (APGs) from each provenance graph. Then, Extract
Textual and Structural Feature processes extract text and structural vectors,
which will be used by the clustering algorithm. Next, Cluster APG Graphs uses
these feature vectors to approximate similarity between APG graphs and cluster
them accordingly. We discuss the details of our framework processes below.
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Fig. 1. Graph Clustering Framework

3.2 Data Model: Abstract Provenance Graphs

Provenance data is typically modeled as a graph G = (V,E), where V denotes
the set of workflow modules and E denotes the direction of data flow between
modules. Specifically, we use the PROV-DM [7] as our data model, but the
approach we propose is general and applicable to other formats. PROV graphs
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Fig. 2. Example of an Prov Graph and its Abstract Activity Graph

are very large and complex in structure. They store information about agents,
entities and activities involved in a workflow execution. To improve clustering
performance and accuracy, we summarize PROV graphs by removing certain
types of provenance data, such as agents and entities, that are not useful for
clustering provenance based on the workflow template.

In this paper, we introduce an approach for converting a PROV graph into
an Abstract Provenance Graph3. APG = (VAPG, EAPG) is a graph where VAPG

is a set of activity nodes and EAPG is a set of edges connecting them. We focus
on analyzing activity nodes because they contain workflow modules (programs,
scripts, software libraries, etc.) and execution information (e.g., function calls,
execution parameters, software version, etc.) that we can use to reconstruct the
modules of the original workflow template.

Because activity nodes in PROV graphs may not be directly connected, our
technique also reconstructs connections between activities. For example, two
activities could be connected via an entity node (i.e., one activity generated an
entity, which was used by another activity). Thus, when constructing an APG
graph, we connect two activities if the first activity is connected to an entity
node via “GENERATED BY” edge, and the second activity is connected to the
same entity via “USED” edge. An example of a provenance graph and its APG
is shown in Figure 2. APG nodes also contain key-value properties containing
provenance information of each activity. Listing 1 shows the properties of the
“Trim” activity shown in Figure 2.

1 {"name": "kimlab:_225f2b0c-e5bd -4a15-b606-5accc184b26f",

2 "attributes":

3 { "{.../ provDefs/trim#}remove -N": "1",

4 "{.../ provDefs/trim#}contaminants -file":
5 ".../ provDefs/trim/contaminants.fa",

6 "...":"..." }
7 }

Listing 1. Properties of the “Trim” activity shown in Figure 2

3 Linking two activities with a common entity is now supported by PROV Constraint
33
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3.3 Feature Extraction

Selecting the right feature sets is crucial to the accuracy of any clustering al-
gorithm. Our provenance clustering approach extracts indicative textual and
structural feature vectors from APG graphs, and combines these features to
calculate similarity between PROV graphs.

Textual Features. To compute text features of APG graphs, we build on
ideas from textual cluster analysis (document clustering) techniques [10]. Term
Frequency and Inverse Document Frequency (TF-IDF) is a widely used technique
in information retrieval and text mining for weighting the importance of terms
in a document [8]. We use TF-IDF to build a a textual feature vector for each
APG graph, as described below.

For each APG graph, we compute a feature vector as follows. First, we extract
properties from each activity node. Second, we extract the key part of each
key-value property (ignoring values as they change with each run). Third, for
each APG graph, we generate a feature vector by computing TF-IDF over the
extracted keys. TF-IDF can be computed by the following formula:

TF-IDF(g) = TF(g) ∗ IDF(g) (1)

TFt,g = 1 + log(ct,g) (2)

IDFt,g = log(
|g|

|gt|+ 1
) (3)

Here, ct,g is the count of occurrence of word t in graph g. |gt| is the count of all
graphs who contain word t, and |g| is the total number of graphs in the dataset.

Table 1 shows an example of the feature vector extracted from the document
shown in Listing 1:

kim bio upenn provDef trim remove-N contaminats-file . . .

Graph1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 . . .

Table 1. Text features extracted from example graph in Fig. 2

Structural Features. In data mining, spectral graph analysis [2] is often used
to analyze graph structure. Previous research [9] proposed clustering graphs by
structural patterns, where they compute the distance of graphs by finding the
sequence of edit operations, and costs are determined by the components of
leading eigenvectors of adjacency matrix. The experimental results have shown
that the algorithm is a good approximation of distance between graphs [6]. We
use this method in extracting structural features from APG graphs.

First, we represent an APG graph Gk = (Vk, Ek) by an adjacency matrix:

Ak(i, j) =

{
1 (i, j) ∈ Ek, or (j, i) ∈ Ek

0 otherwise
(4)
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where k refers to the k’th provenance graph. To ensure that feature values are
real numbers, we convert the provenance graph to be undirected.

Then we calculate the eigenvalues of the adjacency matrix and place them
in a vector by descending order.

Bk = LeadingEigenvals(Ak) = [λ1k, . . . , λ
n
k ]T (5)

Here n is the size of the adjacency matrix and λik is the eigenvalue. In spectral
analysis, this vector stands for the major structural information (spectrum, and
connectivity) of the provenance graph. Then, we compute Principle Component
Analysis (PCA) to reduce the size of the feature space and get a regularized
structural feature vector on a common vector space.

Here is an example of the structural feature extracted from an APG graph
of 5 activity nodes linked in pipeline structure.

Largest Eigenvalue 2nd Largest Eig 3rd Largest Eig

Graph1 1.73 1.0 0

Table 2. Structural features extracted from an example graph

Combining Features. There are cases where two provenance graphs have
similar structure, but are generated from two different workflow templates, or
visa versa. Thus, we need to combine text features and structural features
to avoid clustering unrelated graphs together. To enable generalizability and
customizability of our approach, we allow users to assign normalization weights
as discussed below. The formula for combining textual and structural features
is as follows:

Text-Feature(g) = TFIDF(g) = [ft1,g, . . . , ftd,g]

Structural-Feature(g) = LeadEigval(g) = [xt1,g, . . . , xtm,g]

Combined-Feature(g) = [λ ∗ TFIDF,
√

1− λ2 ∗ LeadEigval]

where λ is normalization factor used to determine feature importance. It is easy
to see that if we only want to rely on textual feature, we can set λ = 1, ignoring
structural features as their normalization factor will be set to zero in Combined-
Feature. To enable combined textual and structural feature set, we can tune the

value as λ =
√∑

j xtj ,g
2/(

∑
i fti,g

2 +
∑

j xtj ,g
2) over a small subset of feature

vectors g so that both features have approximately equal contribution to the
objective function (squared distance) of K-Means (introduced later). Note that
we also need to normalize the scale of the two kinds of features to make their
average to be at the same level, in case that they are very different.
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3.4 Measuring Graph Similarity

The similarity between two graphs is measured by the distance between their
corresponding feature vectors. The closer the distance measure between a pair
of feature vectors, the more similar their corresponding graphs are. Several sim-
ilarity metrics can be used. If we naively treat the occurrence of each word in-
dependently, then the similarity between documents can be calculated based on
Euclidean Distance between corresponding points. Another metric is the Cosine-
Similarity metric, which can be used to compute the angle between a pair of
document vectors. A third similarity metric is to compute the correlation be-
tween a pair of feature vectors. In Section 4, we report the results of clustering
provenance graphs using these three similarity metrics.

Given a pair of feature vectors:

Vector(G) = Features(G) = [feature1, . . . , featurem] (6)

We can compute the similarity between a pair of APG graphs (G1, G2) as fol-
lowing, meaning that they are negatively correlated:

Similarity(G1, G2) ∝ 1/Distance(Vector(G1),Vector(G2)) (7)

3.5 Clustering Algorithm

There are several clustering algorithms, including K-Means, Hierarchical and
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). One
of the most popular clustering approaches is the K-means algorithm. K-means
groups an input set of data points into K clusters so it minimizes the intra
cluster distance. K-Means algorithm aims at minimizing the following objective
function (squared error function): J =

∑N
n=1

∑K
k=1 rnk||xn − µk||2

where ||xn − µk||2 is the distance measure between a data point xn and the
cluster center µk. In our approach, we use K-Means with Euclidean, Cosine, and
Correlation distance metrics, as we discuss in the next section.

4 Preliminary Experiments

In this section, we report the results of our preliminary evaluation on real and
synthetic provenance datasets. We ran our experiments on a machine with a 3.2
GHz Intel i7 processor and 12GB of RAM. We use Python machine learning li-
brary, scikit-learn, which includes packages for K-Means, TF-IDF, nltk.tokenize
(word tokenizer), and NumPy (scientific computing library) . We also use MAT-
LAB to test K-Means over several distance metrics, as discussed below.

4.1 Provenance Datasets

Real Datasets We compiled a dataset4 from approximately 1,300 NGS ex-
periments with extensive data provenance describing pre- and post-sequencing

4 Our dataset is available for download at https://github.com/alawinia/provClustering
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events. In particular, this dataset includes experimental samples processed by
nine different variants of a post-sequencing workflow used for the primary anal-
ysis of NGS data. The analysis workflow includes six possible stages (i.e. Blast,
FastQC, Trim, STAR, HTSeq, and Verse) with each sample being processed by
three to five of the stages.

Synthetic Datasets To test the performance of our graph clustering algorithm
with varying and complex provenance graph structures, we generated a set of
synthetic provenance graphs. We modified the structure of a random sample of
the realistic datasets we described above by inserting or deleting activities, or
adding subgraphs from other provenance graphs, generating about 866 prove-
nance graphs with three different structures.

4.2 Analysis over Real Datasets
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Fig. 3. Squared Error of Clustering over Real Datasets

Actual Cluster In-Cluster Recall (%) Data Count

1 92.8 111

2 98.5 199

3 89.7 215

Table 3. Matching of Clusters when k = 3 using Euclidean distance

We first report on experimental results over real datasets. In the first experi-
ment, we evaluated our clustering algorithm on combined textual and structural
features using three distance metrics (Euclidean, cosine and correlation). We
used the elbow method, a technique for determining the optimal number of clus-
ters, by analyzing the change in the sum of squared intra-cluster distance error
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(squared error) as a function of the number of clusters. The optimal number
of clusters should 1) minimize the squared error; and 2) reduce the number of
clusters to avoid overfitting.

Figure 3 shows the result of this experiment. The Euclidean distance works
best with our combined features as it assigns larger distance than the cosine
or correlation metrics. We also see that the optimal number of clusters for our
NGS dataset is 3, as three clusters reduced the error to almost zero. This results
matches the golden standard of our real (labeled) datasets. We define the in-
cluster recall to be the percentage of provenance graphs that are produced by
the same workflow template and have been clustered together. Table 3 shows
the recall of our clustering technique, which has a weighted average accuracy of
93.7%.

4.3 Analysis over Synthetic Datasets
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Fig. 4. In-cluster Squared Error over Synthetic Datasets

Cluster In-Cluster Recall (%) Data Count

1 100 95

2 100 157

3 91.0 334

4 100 95

5 100 185

Table 4. Clustering at k = 5 using combined features and Euclidean distance

We evaluated our clustering approach over the synthetic dataset using tex-
tual, structural and a combination of structural and textual features. Figure
4 plots the sum of intra-cluster squared distance of K-Means algorithm using
Euclidean distance with varying number of clusters. The results shows that the
optimal number of clusters are 3, 4 and 5 using structural, textual and combined
features, respectively. Using combined textual and structural feature vectors, we
were able to get the correct number of clusters in the synthetic dataset. Table 4
shows that the per-cluster accuracy of our approach is 96%.
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4.4 Running Time Analysis
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Fig. 5. (a) Time for clustering step vs. the number of graphs; (b) Time for feature ex-
traction step vs. the number of graphs. Note that the number of input graphs increases
exponentially, but the running time is linear.

We also test the running time of our provenance clustering approach under
large workloads. For this experiment, we developed two synthetic provenance
datasets. The first set has about 60 features and 120 words extracted from each
graph in the dataset. The second set has about 120 features and 240 words.
We evaluated the performance of feature extraction and clustering over different
number of samples. The number of samples doubles at each test.

Figure 5 (a) shows the time analysis. We can see that clustering takes less
than 2.5s, which is very reasonable. Doubling the number of features (from 60
to 120) increases the processing time by about 1.75x. As a result, we can infer
that our clustering approach is roughly linear in the size of the input.

Figure 5 (b) shows that extracting text features takes more time than cluster-
ing. When extracting a large number of text features for a large graph dataset,
feature extraction takes up to 85 seconds. However, since features are extracted
on a per-graph-basis, we can run text feature extraction for different graphs in
parallel. Meanwhile, extracting structural features is really fast, and the time is
typically less than 10s. The reason is that the structural information only con-
sists of connectivity, and that various optimization techniques can be used to
calculate eigenvalues.

5 Conclusion

This paper introduced a new approach for clustering workflow provenance, en-
abling effective management and utilization of large provenance datasets. Our
approach uses text and structural feature sets extracted from summaries of the
provenance graphs. We tested our approach on real and synthetic workloads; pre-
liminary results show an accuracy of over 93% and a running time that is linear
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to the size of the input. The textual and structural information are domain-
independent, and can be therefore used to cluster any type of provenance graph.

In future work, we plan to develop a visualization technique that uses our
provenance clustering approach to enable workflow visualizations that can zoom-
out to higher levels of abstraction. We will also explore clustering provenance
graphs based on common subgraphs. To do so, we need to implement a fine-
grained method for analyzing provenance graphs at the node- and edge-level.
We will also explore adding features from entities (such as input and output
parameters of workflow modules) and agents.
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