
Using Provenance to Efficiently Propagate
SPARQL Updates on RDF Source Graphs

Iman Naja� and Nicholas Gibbins

Electronics and Computer Science, University of Southampton, UK
{i.naja, nmg}@ecs.soton.ac.uk

Abstract. To promote sharing on the Semantic Web, information is
published in machine-readable structured graphs expressed in RDF or
OWL. This allows information consumers to create graphs using other
source graphs. Information, however, is dynamic and when a source graph
changes, graphs based on it need to be updated as well to preserve their
integrity. To avoid regenerating a graph after one of its source graphs
changes, since that approach can be expensive, we rely on its provenance
to reduce the resources needed to reflect changes to its source graph. Ac-
cordingly, we expand the W3C PROV standard and present RGPROV,
a vocabulary for RDF graph creation and update. RGPROV allows us to
understand the dependencies a graph has on its source graphs and facil-
itates the propagation of the SPARQL updates applied to those source
graphs through it. Additionally, we present a model that implements a
modified DRed algorithm which makes use of RGPROV to enable par-
tial modifications to be made on the RDF graph, thus reflecting the
SPARQL updates on the source graph efficiently, without having to keep
track of the provenance of each triple. Hence, only SPARQL updates are
communicated, the need for complete re-derivation is done away with,
and provenance is kept at the graph level making it better scalable.

Keywords: provenance, PROV, RDF, SPARQL Update

1 Introduction

The Semantic Web promotes the publishing, understanding, discovery, integra-
tion, and re-use of information, with recent years seeing a boost in the pub-
lication, inter-linkage, and consumption of large amounts of public datasets.
Knowledge is presented in machine-understandable formats, namely RDF [1]
and OWL [2] graphs, which provide well-defined meanings and support rules
for reasoning, and is queried and updated using SPARQL [3]. Graphs may be
manually created or automatically formed by combining information from other
graphs, and automated reasoning may be performed on them.

However, this is not without challenge, as knowledge is neither static nor
complete and its expansion and change is inevitable. Thus, in systems having
graphs which relied on other source graphs when created, changes to those source



graphs need to be incorporated and reflected so as to keep such graphs up-to-
date. Typically, systems recreate those graphs from scratch and reason anew
on them. This may be expensive, and sometimes impractical to re-obtain the
data used and to re-reason with it. Alternatively, a system may contain its own
reasoner which takes responsibility for re-reasoning, like in [4].

Another challenge arises in the fact that the Semantic Web is an open envi-
ronment where ‘anyone can say anything about anything’. This begets the need
for means to appraise the trustworthiness, reliability, and reputation of data in
graphs to be consumed; and such assessments are intrinsically linked to knowing
their provenance. Provenance describes the history of a datum or thing, and
which activities, entities, and people were involved in how they came to be [5].
It has proven to be useful in numerous domains, as developers, researchers, and
users have been utilising it to establish trust, understanding, transparency, at-
tribution and accountability for outputs of intelligent systems. Moreover, the
recent community-driven work to achieve an open provenance vision resulted in
the PROV data model [6], a W3C recommendation.

While PROV facilitates interoperable provenance modelling, it is generic; a
more specialised vocabulary better serves to track and express the provenance
specific to RDF graphs, relating their creation and detailing and facilitating
their modification. Accordingly, we expand PROV and present RGPROV, a
vocabulary which models the classes and properties involved in an RDF graph’s
creation and update. It allows the specific capture of the provenance of an RDF
graph created using other graphs and understanding its dependencies on them. It
also expedites the propagation of SPARQL updates applied to its source graphs
without wide scale insertions or deletions and then complete re-derivation, thus
promoting the capture of the provenance of the update precisely and efficiently,
without resorting to tracking the provenance of individual triples.

The contributions of this paper are fourfold. i) Our main contribution is
the RGPROV vocabulary, a specialisation of PROV-O which models the classes
and properties involved in an RDF graph’s creation and the SPARQL updates
applied on it. ii) A partial re-derivation algorithm, based on DRed [7], which
makes use of RGPROV to propagate all or some of the SPARQL updates ap-
plied on source graphs. iii) A model which implements both RGPROV and the
partial re-derivation algorithm and iv) A quantitative evaluation of our model
demonstrating that less resources are needed to achieve the same results.

Outline: Section 2 presents related work. §3 provides the running example
used throughout. §4 presents RGPROV. §5 describes our model and presents the
partial re-derivation algorithms. §6 describes the implementation of our system
and presents the results. Finally, §7 presents our conclusions and future work.

2 Related Work

The Delete and Rederive (DRed) algorithm [7] deletes the base data and all the
data that was derived from it, then re-inserts the subset of the derived data that
can be re-derived using other still present base data. RDFox [4] initially materi-



alises queries and its reasoner implements an incremental maintenance algorithm
based on DRed, but without making use of provenance. Elseways, [9] presents an
initial model, where they aim to have versioned data and functions which would
use provenance to detect changes between data versions, select processes that
require re-computation, and decide between complete or partial re-computation.
[10] extends their work on provenance semirings in [11] to support update ex-
change, schema mapping, and trust evaluation and to also extend the DRed
algorithm. When a deletion occurs, they utilise provenance to flag and delete tu-
ples which are no longer derivable. Similarly, [12] extends [13]’s work and utilises
colours to represent triple sources, although they consider inferred quadruples
independent of their sources. Before a quadruple is deleted, all the quadruples
that can be inferred from it are inserted first. Then, all the quadruples that would
entail it are deleted along with the quadruple itself. Further, [14] extends both
[13] and [11]’s work by also using quadruples. Their quadruples’ fourth elements
are named graphs and quadruples’ provenance is maintained in separate tuples
with an id element linking to them. They, however, do not consider deletions;
their algorithm describes how to insert quadruples and record their provenance.
The aforementioned works track provenance on the triple level, an approach we
avoided because of scalability concerns since tracking each triple’s provenance
using PROV would result in a graph having the size of its provenance graph sub-
stantially larger than it1. Instead, using RGPROV we track provenance on the
graph level. [15] presents work similar to ours that tracks dynamic provenance
of collections using a specialisation of PROV, upd, which allows them to capture
SPARQL queries and updates performed on raw data in a dataset. Their work
only considers updates and ignores the other operations that may affect a graph
or its provenance, namely fetching, set theoretic operations, and re-entailment.

3 Running Example

We assume there are four systems A, B, C, and D, as shown in Fig. 1, each hav-
ing ownership of some RDF graphs and maintaining their provenance. We focus
on system C and explain our notations whilst identifying activities performed
on graphs. A graph GX,n belongs to system X, differentiated from other graphs
by the subset n, and PX,n is its provenance graph.
(1 ) Graph retrieval: the activity of fetching a graph and its provenance from an
external system and saving their copies internally. When copied to system C,
GX,n’s name becomes Gcopy(X,n) in C. Similarly PX,n’s name becomes Pcopy(X,n).
To reflect the activity of copying, Pcopy(X,n) is updated and becomes P ∗

copy(X,n).

(2 ) Set theoretic operations: An intermediary graph GopC,m is produced by ap-
plying one of Union, Merging, Intersection, and Difference. We currently ignore
blank nodes, and subsequently Merging. (3 ) Entailment: In C, the entailed graph

1 If each triple’s provenance consists of only triple prov:wasDerivedFrom

sourceTriple, a graph’s provenance graph would be a little larger than it. Even
adding provenance information about only the activity and agent that produced a
triple would result in the graph’s provenance graph being at minimum triple its size.



Fig. 1. Example of distributed graph usage.

GC,m is produced from GopC,m by running it through a reasoner. Entailment
operations depend on which entailment regime is implemented, namely: RDF,
RDFS, Datatype, OWL 2 RDF-Based Semantics, OWL 2 Direct Semantics, or
RIF. We use RDFS Entailment [8] in our system.
An example of GC,3’s production is shown in Fig. 2. Throughout the identified
activities, C produces and updates the provenance PC,3 of GC,3. Note that the
aforementioned list of operations to create a graph is not exhaustive; other oper-
ations, including the use of join, CONSTRUCT, OPTIONAL, etc., are beyond
the scope of this paper and may be addressed in some future work.
(4 ) SPARQL updates: If a system, say B, performs a SPARQL update Upop(B,2)

on GB,2 resulting in it becoming the new graph GB′,2, then C should know
about this update and subsequently needs to update GC,3, or whichever parts of
it should be affected, thus resulting in the more accurate and up-to-date GC′,3.
SPARQL updates are Insert, Delete, Delete/Insert, Load, and Clear. We only
focus on Insert and Delete as the latter three can be seen as combinations or
special cases of the former. The standard approach is to retrieve a copy of GB′,2

and GA,1 - if not internally stored, reapply Gop on them, and re-entailing to
produce GC′,3. This becomes impractical in large systems for two reasons: 1) it
is computationally expensive to re-entail a sizeable graph from scratch when-
ever there is an update, and 2) it requires additional storage, communication
overhead, or both since the source graphs either need to be stored or re-fetched
whenever a change occurs. Thus, we identify the need for a more efficient way
to reflect updates and produce GC′,3. Our approach considers both the set the-
oretic operation which created GopC,3 and the nature of Upop(B,2). This allows
us to retrieve only the update UpB,2 applied to GB,2 instead of retrieving all
of GB′,2 and to identify whether Gcopy(A,1) is required, whether all or part of
UpB,2 needs to be propagated, and which parts of GC,3 need to be re-derived.

4 The RGPROV Vocabulary

RGPROV extends PROV-O and has the namespace prefix rgprov. Although we
only use it for RDF graphs, we intend it to be used for OWL graphs as well.



Fig. 2. Production of GC,3 from GA,1 and GB,2.

Fig. 3. RGPROV components for graph retrieval.

In accordance with PROV, we recognize that RDF and PROV graphs are
entities. To differentiate them from other types of entities, we introduce the class
Graph, a subclass of prov:Entity, that contains only entities which are graphs.
The actions that retrieve, produce, or update a Graph are activities, initiated
by agents. We extend these concepts and any necessary properties as follows.
Vocabulary for Graph Retrieval We require stricter terms than
prov:hadPrimarySource and prov:wasQuotedFrom to represent copying a graph
as-is from its sources. Based on the description in §3, we show them in Fig. 3.
We see no need to create additional vocabulary for provenance production and
updating because provenance graphs are members of Graph, hence RGPROV’s
terms can be adequately applied to them.
Vocabulary for Graph Operations: We introduce the class GraphOperation,
a subclass of prov:Activity, that encompasses operations performed on a graph.
Vocabulary for Set theoretic Operations: Because there is a need to keep track of
which graph operation produced a graph, we introduce terms for set theoretic
operations, based on the description in §3, and show them in Fig. 4.
Vocabulary for Entailment Operations: To describe entailment operations, we
introduce the following, based on the description in §3, and depict a selection of
them in Fig. 5:
1) Entailment, a subclass of GraphOperation, with subclasses representing par-
ticular entailment regimes.
3) Reasoner, a subclass of prov:SoftwareAgent that represent a reasoner, with
subclasses representing reasoners performing particular entailment regimes.
3) wasEntailedFrom, a subproperty of prov:wasDerivedFrom, has domain Graph,
has range Graph.
Vocabulary for Updates: First, we introduce UpdateGraph, a subclass of Graph
that represents the graphs whose triples are to be inserted or deleted. We argue
for this because a graph that is stored in and being used by a system should be



Fig. 4. RGPROV components for set theoretic graph operations.

differentiated from one whose entire purpose is containing triples to be inserted or
deleted in the former type of graph. Additionally, since we differentiate the types
of updates performed on a graph, we require stricter terms than prov:Revision
and prov:wasRevisionOf. Thus we introduces terms for graph updates based on
the description in §3, and show them in Fig. 6.

RGPROV is published on https://archive.org/download/rgprov/rgprov.

owl and https://archive.org/download/rgprov/rgprovTurtle.owl.

5 The Model and Algorithms

5.1 System Architecture

We designed a system, shown in Fig. 7, comprising seven components, of which
we implemented four. (1 ) Operator, the main component, responsible for con-
trolling and invoking the operations performed on the graphs in the system.
As the central component, it invokes and communicates with the other compo-
nents. (2 ) Provenance Handler, responsible for creating, querying, and updating
provenance graphs. (3 ) SPARQL Server and Graph Store, which we have not
implemented but used the third party Jena Fuseki Server2. (4 ) Reasoner, which
we have also not implemented but used the third party Jena3. Jena is responsi-
ble for performing the set theoretic and entailment operations on all graphs. (5 )
Update Producer, handles any updates applied on graph GC,3 for any outside
system that uses it. (6 ) Cache, used to store copies of retrieved graphs or updates
and any other temporary graphs as needed. Finally, (7 ) REST client, handles

2 Fuseki2 is available on https://jena.apache.org/documentation/fuseki2/
3 All Jena binary distributions are available on http://archive.apache.org/dist/

jena/binaries/



Fig. 5. Some RGPROV components for entailment operations.

Fig. 6. RGPROV components for update operations.

the communications between the different systems. We have not implemented
it, as it does not pertain to the demonstrating the application of the RGPROV
vocabulary nor does it affect the evaluation of the system. Components have
been implemented in Java.

Note that unless they have been marked as inferred triples, all triples in
the source graphs are treated as ground triples in the system. Then, after it is
produced, graph GC,3 is split into and stored as two graphs. The first consists
of the ground triples and the second consists of the inferred triples produced
by our systems’ reasoner. This separation proves beneficial when re-deriving to
minimise over-deletions and re-insertions.

5.2 Update Propagation Per Set Theoretic Operations

We now analyse how the combination of the set theoretic operation and the kind
of update influence what part of the triples in the update graph UpB,2 inserted



Fig. 7. System design.

into or deleted from GB,2 are to be propagated into graph GC,3 and how. Note
that inserting triples which already exist in a graph has no effect, nor does delet-
ing triples which do not exist.
Union GC,3 = Gcopy(A,1) ∪Gcopy(B,2).
Insert : equivalent to inserting into GC,3 the triples in UpB,2. Gcopy(A,1) is not
needed and the only new entity needed is UpB,2.
Delete: equivalent to deleting from GC,3 the triples in UpB,2\Gcopy(A,1). Gcopy(A,1)

is needed along with UpB,2.
Intersection GC,3 = Gcopy(A,1) ∩Gcopy(B,2).
Insert : equivalent to inserting into GC,3 the triples in UpB,2∩Gcopy(A,1). Gcopy(A,1)

is needed along with UpB,2.
Delete: equivalent to deleting from GC,3 the triples in UpB,2. Gcopy(A,1) is not
needed and the only new entity needed is UpB,2.
Difference Case 1 GC,3 = Gcopy(A,1) \Gcopy(B,2).
Insert : equivalent to deleting from GC,3 the triples in UpB,2. Gcopy(A,1) is not
needed and the only new entity needed is UpB,2.
Delete: equivalent to inserting into GC,3 the triples in UpB,2∩Gcopy(A,1). Gcopy(A,1)

is needed along with UpB,2.
Difference Case 2 GC,3 = Gcopy(B,2) \Gcopy(A,1).
Insert : equivalent to inserting into GC,3 the triples in UpB,2\Gcopy(A,1). Gcopy(A,1)

is needed along with UpB,2.
Delete: equivalent to deleting from GC,3 the triples in UpB,2. Gcopy(A,1) is not
needed and the only new entity needed is UpB,2.

5.3 Partial Re-derivation Algorithms

The Operator queries PC,3 for the set theoretic operation that produced GC,3,
checks the update type, and cross-references that pair with the list in §5.2
to decide whether all the update graph Upcopy(B,2) or a subset of it, namely
SubsUpcopy(B,2)

, is to be applied to GC,3. Before propagating the update, it re-
moves the triples already present in the inferred portion of GC,3, so as to avoid
over-insertions/over-deletions and re-insertions. Finally, it applies the update as
follows.

If the update is an insert, the Operator creates an Insert statement and sends
it to Fuseki to be loaded into GC,3. It then requests the graphs resulting from



Algorithm 1 Apply Insert Update

Function: describe : graph x triple → graph
Function: entail : graph → graph

procedure applyInsertUpdate(graph, triplesTBI)
described← φ
graph← graph ∪ triplesTBI
for each triple in triplesTBI do

described← described ∪ describe(graph, triple)

graph← graph ∪ entail(described)

the Describe of those triples. The SPARQL Describe of a triple ‘describes’ it by
returning a graph containing all those triples that are connected to it, i.e., all the
triples which have as a subject any of the IRIs of the described triple’s subject,
predicate, or object. The union of the triples to be inserted and their descriptions
constitute the entirety of information that is needed for re-derivation. This union
is then forwarded to the reasoner, Jena, for inference. When the entailed graph
resulting from reasoning on this union is returned, the Operator creates another
Insert statement containing those inferred triples to be added by Fuseki thus
resulting in GC′,3. The aforementioned is shown in Algorithm 1.

If the update is a delete, then the Operator first gets, from Fuseki, the graphs
resulting from the Describe of the triples to be deleted. It then loops over each
triple to be deleted and examines its predicate. If the predicate is an rdf:type or
has super-properties (i.e. it is a sub-property of another property), then it adds,
to the list of the triples to be deleted, the triples with the same subject and
any objects that relate it to the predicate. This is in accordance with the RDFS
entailment rules described in [8]. Next, the Operator sends a Delete statement
containing the updated list of triples to Fuseki, so that the latter deletes them
from GC,3, thus resulting in GopC′,3. Afterwards, the Operator requests the
Describe of all the subjects and objects that were in the deleted triples and
sends the union of the resulting graphs to Jena for reasoning. When the entailed
graph resulting from reasoning on the union is returned, the Operator sends
an Insert statement containing the inferred triples to Fuseki which inserts them
thus producing GC′,3. The aforementioned is shown in Algorithm 24.

6 Results

To test our system, we created a small RDF-Schema to represent fictional char-
acters and places, with both GA,1 and GB,2 making use of it. There are 12 classes
and 35 properties. In addition to this schema, both graphs GA,1 and GB,2 con-
tain instances of fictional characters and places. Graph GA,1 contains 275 triples,

4 Due to space restrictions, the preceding description and subsequent algorithm only
focus on rdfs 5, 7, 9, and 11. Expanding them to cover the rest is straightforward.



Algorithm 2 Apply Delete Update

Function: describe : graph x triple → graph
Function: entail : graph → graph

procedure ApplyDeleteUpdate(graph, triplesTBD)
described← φ
for each triple in triplesTBD do

described← described ∪ describe(graph, tripleTBD)

for each triple in triplesTBD do
subject = triple.Subj
t← {t ∈ described|t.Subj = triple.Subj ∧ t.Prop = t.Prop}
for each t2 in t do

if t2.P rop = rdf : type then
superClasses← {tsOAsS.Obj|tsOAsS ∈ described

∧tsOAsS.Subj = t2.Obj∧tsOAsS.Prop = rdfs : subClassOf}
for each superClass in superClasses do

infTriple← 〈t2.Subj, rdf : type, superClass〉
triplesTBD ← triplesTBD ∪ infTriple

else
superProps← {tp.Obj|tp ∈ described ∧ tp.Subj = t2.P rop

∧tp.Prop = rdfs : subPropertyOf}
for each superProp in superProps do

infTriple← 〈t2.Subj, superProp, t2.Obj〉
triplesTBD ← triplesTBD ∪ infTriple

graph← graph \ triplesTBD
. Re-derive and insert inferred triples.
subjsAndObjs← {iri|iri ∈ triplesTBD.Subjects ∪ triplesTBD.Objects}
for each iri in subjsAndObjs do

described2← described2 ∪ describe(graph, iri)

graph← graph ∪ entail(described2)

while graph GB,2 contains 265 triples. 15 triples are inserted into GB,2 and then
4 triples are deleted from it. Table 1 displays the sizes of the produced graphs.

The evaluation criteria intends to verify that there is less overhead, in terms
of the number of triples being processed, when performing the following:
1. Communication: retrieving the update is less overhead than retrieving both
source graphs.
2. Execution: propagating the update results in less triples processed during:
(a) the set theoretic operation, and (b) re-derivation.

Experimental Results There is indeed less overhead in applying our approach
as detailed below.
(a) Communication When the update is an Insert, the size of update will al-
ways be less than the size of the whole graph. Hence, there is less communication
overhead. However, when the update is a Delete, the overhead of communicat-
ing the update is acceptable unless more than half of the triples in the graph



Table 1. Size of GC,3 initially, after Insert, and after Delete.

ST \Sizes Initial Entailed After Insert Entailed After Delete Entailed

Union 355 865 369 913 366 905

Intersection 185 336 186 341 185 338

Difference 1 90 109 89 108 90 108

Difference 2 71 75 94 98 91 95

are to be deleted, because the size of the update is greater than the size of the
new source graph, and it may be more preferable to retrieve GB′,2 rather than
UpB,2. As shown in the analysis of the update propagation in §5.2, in the cases
of intersection and the second difference, there is no need for Gcopy(A,1), but re-
trieving GB′,2 will force the re-retrieval of GA,1- if it is not stored in the system
- plus the generation of GC′,3 from scratch. Combined, this would cause more
overhead depending on the availability and the comparative size of GA,1. Hence,
retrieving GB′,2 would be more preferable. In the cases of union and the first
difference where Gcopy(A,1) is needed, it may be more beneficial to retrieve GB′,2

instead of UpB,2. So, it boils down to a case-by-case bases and can be alleviated
by requesting the size of the update from system B and depends on if the other
source graph is needed as well.
(b) Execution:
i. Set theoretic operations: We were not able to use Jena to count the triples
processed in set theoretic operations. However, from our analysis in §5.2, we see
that there are less triples to be checked because we are at most using the whole
update and one source graph and not the entirety of both source graphs.
ii. Re-derivation: Inserting or deleting part of the update and then re-deriving
by only taking into account the affected triples and those related to them reduces
the number of triples processed by the reasoner in our experimental example by:
53% and 77% for the Union, 78% and 83% for the Intersection, 67% and 68% for
the Difference 1, and 48% and 64% for the Difference 2. We point out that these
gains may fluctuate depending on the triples chosen for insertion and deletion.

7 Conclusion and Future Work

We examined where provenance of graphs on the Semantic Web should be
tracked, from their initial creation and through their modification, and based
on this we introduced a specialisation of the PROV ontology, RGPROV. Then,
we looked into how an update on a source graph needs to be propagated in a
graph which is based on it and applied RGPROV to do so efficiently. Finally,
we showed that our approach reduces overhead, in terms of number of processed
triples, when compared to re-creating a graph from scratch by implementing a
system which utilises algorithms to partially re-derive graphs.



There are a few directions worth exploring that extend our work. First, we
aim to test our approach using benchmark data like LUBM5 and UOBM6. Sec-
ond, our system and re-derivation algorithms can be extended to support OWL
graphs as well as RDF graphs by including OWL 2 entailment rules in the dele-
tion and re-entailment phases. Finally, they may be extended to deal with source
graphs which use different entailment regimes.

References

1. Schreiber, G., Raimond, Y.: RDF 1.1 primer. W3C note, W3C (June 2014)
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/.

2. Krötzsch, M., Patel-Schneider, P., Hitzler, P., Parsia, B., Rudolph, S.: OWL 2 web
ontology language primer (second edition). Technical report, W3C (December
2012) http://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

3. : SPARQL 1.1 overview. W3C recommendation, W3C (March 2013)
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.

4. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental Update of Datalog Ma-
terialisation: The Backward/Forward Algorithm. In: Proc. of the 29th AAAI Con-
ference on Artificial Intelligence, AAAI Press (2015) 1560–1568

5. Moreau, L., Groth, P.: PROV-overview. W3C note, W3C (April 2013)
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/.

6. Lebo, T., Sahoo, S., McGuinness, D.: PROV-o: The PROV ontology. W3C rec-
ommendation (April 2013) http://www.w3.org/TR/2013/REC-prov-o-20130430/.

7. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining Views Incrementally.
ACM SIGMOD Record 22(2) (1993) 157–166

8. Hayes, P., Patel-Schneider, P.: RDF 1.1 semantics. W3C recommendation, W3C
(February 2014) http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

9. Missier, P., Cala, J., Wijaya, E.: The data, they are a-changin’. In: 8th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 16), Washington,
D.C., USENIX Association (2016)

10. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update Exchange with
Mappings and Provenance. In: Proc. of the 33rd Int’l Conf. on Very Large Data
Bases, Vienna, Austria (2007) 675–686

11. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In: Proc. of
the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, Beijing, China, ACM (2007) 31–40

12. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring
RDF triples to capture provenance. In: Int’l Semantic Web Conf., Springer, Berlin,
Heidelberg (2009) 196–212

13. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Transactions on Database Sys-
tems 33(4) (nov 2008) 1–47

14. Avgoustaki, A., Flouris, G., Fundulaki, I., Plexousakis, D.: Provenance Manage-
ment for Evolving RDF Datasets. In: Int’l Semantic Web Conf., Springer, Cham
(2016) 575–592

15. Halpin, H., Cheney, J.: Dynamic provenance for SPARQL updates. In: The Seman-
tic Web – ISWC 2014, Cham, Springer International Publishing (2014) 425–440

5 http://swat.cse.lehigh.edu/projects/lubm/
6 https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/


