
Capturing Provenance for Runtime Data Analysis in 

Computational Science and Engineering Applications 

Vítor Silva
1

, Renan Souza
1,2

, Jose Camata
1,3

, Daniel de Oliveira
4

,  

Patrick Valduriez
5

, Alvaro L.G.A. Coutinho
1

, Marta Mattoso
1 1

 

 

Abstract. Capturing provenance data for runtime analysis has several challenges in 

high performance computational science engineering applications. The main issues 

are avoiding significant overhead in data capture, loading and runtime query support; 

and coupling provenance capture mechanisms with applications built with highly 

efficient numerical libraries, and visualization frameworks targeted to high perfor-

mance environments. This work presents DfA-prov, an approach to capture prove-

nance data and domain data aiming at high performance applications. 

Keywords: Provenance; User Steering; Computational Science and Engineering; HPC. 

1 Introduction 

Computational Science and Engineering (CSE) applications are based on computa-

tional models that solve problems typically requiring High Performance Computing 

(HPC) [1]. CSE applications are not tied to a particular domain. They can be found in 

biology, chemistry, geology, several engineering areas, etc. They have the exploratory 

nature of scientific applications but have to deal with large-scale executions, which 

last for a long time even when using HPC. The software ecosystem for developing 

these applications involves much more than writing scripts or invoking a chain of 

legacy scientific codes. Computational scientists develop their simulation codes based 

on complex mathematical modeling that results in invoking components of CSE 

frameworks and libraries. For example, components are invoked to provide for: (i) 

support for PDE discretization methods like libMesh, FEniCS, MOOSE, deal.II, 

GREENS, OpenFOAM; (ii) algorithms for solving numerical problems with parallel 

computations, like PETSc, LAPACK, SLEPc; (iii) runtime visualizations, like Para-

View Catalyst, VisIt, SENSEI; (iv) parallel graph partitioning, like ParMetis, Scotch; 

and (v) I/O data management like ADIOS.  

As a result, a typical CSE software code works like a script, in the sense that to 

code the underlying mathematical modeling it requires invoking functions, compo-

nents, or APIs from these libraries or frameworks. Fig 1 shows a fragment of the FEn-

iCS Python code for solving the Cahn-Hilliard equation, a mathematical model from 

material science. The Cahn-Hilliard equation leads to a prototype of a transient non-

linear multi-physics code.  Several parameters have to be set to invoke these highly 

efficient components, which are very difficult to preset and need monitoring for 

runtime fine-tuning. The Interoperable Design of Extreme-scale Application Software 

                                                           
1 COPPE / Federal University of Rio de Janeiro, Brazil 
2 IBM Research 
3 Federal University of Juiz de Fora, Brazil 
4 Fluminense Federal University, Brazil  
5 Inria and LIRMM, Montpellier, France 



(IDEAS) [2] is a family of projects, involving several institutions in the US, con-

cerned with the complexity of developing software for CSE applications. IDEAS aims 

at “enabling a fundamentally different attitude to creating and supporting CSE appli-

cations” with desirable features like provenance and reproducibility [3]. In fact, prov-

enance data can help in registering parameter choices. Associating them to results can 

improve both fine-tuning and data analyses at runtime. 

 
Fig 1 - FEniCS Python script for the Cahn-Hilliard equation adapted from [4]. 

Despite the several solutions available for making applications provenance-aware 

[5–7], capturing provenance data in CSE applications is still an open issue. The chal-

lenges are mainly related to performance and provenance granularity. Stamatogianna-

kis et al. [5] evaluated tradeoffs in provenance capture mechanisms. They consider 

that solutions that are easy to deploy collect provenance in a very fine grain and pre-

sent a significant overhead, while solutions that are based on function calls present 

low overhead and granularity is controlled by the code instrumentation. The disad-

vantage of inserting function calls is the need to have access to the code. This is not 

an issue in CSE applications as very often the code to be instrumented (Fig1) is writ-

ten by the computational scientist, who can assist in inserting the calls.  

In CSE applications, the mechanism for provenance capture has to be deployed in 

an HPC environment and preferably manage provenance data, asynchronously, in 

computing nodes separate from the application. This separation avoids resource com-

petition, particularly in the memory hierarchy data space. Since CSE data are very 

large, provenance capture cannot be in fine grain. Capturing provenance at the operat-

ing system or file level is not an option. CSE applications, like the one in Fig. 1, are 

written in languages, like Python and C/C++, which are mapped to the CSE software 

ecosystem, therefore solutions that are language specific are a limitation. HPC Scien-

tific Workflow Management Systems (SWMS) would be a natural solution for CSE. 

However, conflicts among the parallel execution control of the workflow engine and 

the CSE libraries prevent using SWMS in CSE software.       

dataflow_tag = "fenics-df"
t1 = Task(1, dataflow_tag, "MeshCreation")
t1.add_dataset(DataSet("iMeshCreation", [Element([96, 96])]))
# Create mesh
mesh = UnitSquareMesh(96, 96)
t1.add_dataset(DataSet("oMeshCreation", 

[Element([mesh.num_vertices(), mesh.num_cells()])]))
t1.end()

t2 = Task(2, dataflow_tag, "FunctionSpace", dependency=t1)
t2.add_dataset(DataSet("iFunctionSpace", [Element(["Lagrange", 1])]))
# Define function spaces
V = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
ME = FunctionSpace(mesh, V*V)
t2.add_dataset(DataSet("oFunctionSpace", [Element([ME.dim()])]))
t2.end()

# parts of code were omitted
# (...)

t3 = Task(3, dataflow_tag, "NewtonSolver", dependency=t2)
t3.add_dataset(DataSet("iNewtonSolver", 

[Element(["lu", "incremental", 1e-6])]))
# Define Newton solver
solver = NewtonSolver()
solver.parameters["linear_solver"]         = "gmres"
solver.parameters["convergence_criterion"] = "incremental"
solver.parameters["relative_tolerance"]    = 1e-6
t3.add_dataset(DataSet("oNewtonSolver", 

[Element(["gmres", "incremental", 1e-6])]))
t3.end() 
# continue in next frame

Labels:
Black    → Python native code
Red → FEniCS invocation
Green  → DfAnalyzer invocation
Purple → VTK invocation

# Output file
file = File("output.pvd", "compressed")

# Step in time
t = 0.0; T = 50*dt; i =0
prev = t3
while (t < T):

t += dt; i += 1
current = Task(int(t3._id)+i ,dataflow_tag,"TimeStep", dependency=prev)
current.add_dataset(DataSet("iTimeStep", [Element([t,dt])]))
# Solver execution
u0.vector()[:] = u.vector()
iter_count, converged_flag = solver.solve(problem, u.vector())
current.add_dataset(DataSet("oTimeStep",

[Element([converged_flag,iter_count,solver.residual()])]))
current.end()

twrite = Task(int(current._id)+1, dataflow_tag, "Visualization"+iter_count, 
dependency=current)

twrite.add_dataset(DataSet("iVisualization", [Element(["output.pvd"])]))
# Visualization
file << (u.split()[0], t)
# Raw data extraction
extracted_data = Extractor(ExtractorCartridge.PROGRAM, "output.pvd")
twrite.add_dataset(DataSet("oVisualization", [Element(extracted_data[i-1])]))
twrite.end()



This work presents DfA-prov, an approach that follows the PrIMe methodology 

[8] to make CSE applications provenance-aware and to provide runtime data analysis. 

DfA-prov is language agnostic and does not present the limitations of capture mecha-

nisms that compete with the computing nodes that execute the CSE application. DfA-

prov adopts DfAnalyzer [9] as provenance-aware components to be invoked by the 

CSE applications. It works in the same way computational scientists invoke the CSE 

and visualization libraries. Provenance data is captured by directly accessing input 

data and parameters of the CSE function calls using in-situ and in-transit approaches. 

To address the limitation of having coarse-grain provenance, DfA-prov provides func-

tion calls that access raw data from files. In a previous work [10], we used DfAnalyz-

er tightly coupled to a CSE application observing negligible overhead (less than 1%) 

in its provenance capture, while providing rich data analytics at runtime. These results 

encouraged us to propose DfA-prov as a standalone library with a corresponding 

methodology to help on the adoption of provenance capture in CSE applications.  

2 DfA-prov making CSE applications provenance-aware  

DfA-prov follows the PrIMe methodology [8] to address CSE challenges for prove-

nance capture. After applying the methodology, DfA-prov generates a provenance 

database, W3C PROV-compliant, enriched with domain data to be queried at runtime 

or after the CSE application execution. DfA-prov is based on two main components 

from DfAnalyzer, the provenance data capture and the raw data extractor.  

PrIMe defines three phases. The first phase is an analysis step that identifies ques-

tions related to provenance for data analysis. More specifically, Phase 1 identifies 

data items and data transformations (or processing steps), all to be modeled using a 

data representation. Phase 2 iteratively analyzes the application structure to identify 

actors and interactions that provide the data items and data transformations to be reg-

istered as provenance data. Phase 3 aims at adapting the application to capture prove-

nance data. We adapted these phases to match CSE application requirements.  

DfA-prov requires a collaboration between the CSE application developer (named 

as user) and a PROV specialist, as expected in Phase 1. The user identifies data items 

to be tracked and how it relates to other data items along its lineage. The PROV spe-

cialist models the data transformation chain using W3C PROV-DM activities and 

entities with extensions for the domain data items, particularly data that need to be 

extracted from raw data files. The result of this phase is a UML class diagram. The 

UML classes are then mapped to a relational provenance database. The participation 

of the user in this data modeling helps on query formulations. In addition, it selective-

ly chooses only application data of interest to be registered, providing a coarse-grain 

with relevant provenance data and selected raw data. In Fig. 1, examples are: solver 

convergence, number of iterations, and residual norms. 

Provenance library calls are inserted in the CSE application as shown in Fig. 1 as 

input, output, task and output followed by an extracted data call. Similarly to PROV-

Template [6], DfA-prov has a set of RESTful services (and libraries on C++, Python, 

and Java) to help plugging the calls into the CSE applications. The invoked prove-

nance components capture data asynchronously during the CSE application execution. 

They get the data and send all insert/update requests to a columnar database system 

that runs in computing nodes different than the CSE application. As new phases with-



in DfA-prov, users configure CSE applications coupled to provenance-aware compo-

nents to specify input parameter values and the HPC environment. Then, they submit 

provenance monitoring queries like what is the average error estimate calculated in 

all iterations so far. Users can submit provenance queries using graphical interfaces 

or SQL queries based on a dataflow abstraction. Finally, the monitoring helps pa-

rameter fine tunings on the CSE application as evidenced in [10]. Real life applica-

tions are much more complex than the script in Fig. 1, involving monitoring at 

runtime on an HPC machine quantities of interest over time, metadata to visualization 

snapshots, nonlinear systems solves, mesh adaptation parameters etc. These issues can 

be seen in [10] for a particular CSE application, with examples in [11]. 

3 Conclusions 

DfA-prov is an approach for making CSE applications provenance-aware and provid-

ing runtime data analytics. DfA-prov is based on application analysis, provenance 

data modeling, and provenance-aware components to be invoked by the applications. 

In addition to well-known advantages of collecting provenance in CSE applications, 

such as reproducibility and reliability, runtime provenance augments online data ana-

lytical potential and is especially useful for CSE simulations in large-scale. Visualiza-

tion tools (e.g., ParaView Catalyst) have been coupled to DfA-prov calls to comple-

ment domain data analyses. Based on runtime data analyses, the user may dynamical-

ly adapt dataflow elements.  

Acknowledgments 

We thank Vinícius Campos for his help in DfA-prov development. The research has 

received funding from CAPES, CNPq, FAPERJ and Inria (SciDISC projects), the 

European Commission (HPC4E H2020 project), and the Brazilian Ministry of Sci-

ence, Technology, 290 Innovation and Communications. It has been performed (for P. 

Valduriez) in the context of the Computational Biology Institute.  

References 

1. Rüde, U., Willcox, K., McInnes, L.C., Sterck, H.D., Biros, G., et al.: Research and Education in Com-
putational Science and Engineering. CoRR. abs/1610.02608, (2016). 

2. IDEAS productivity, https://ideas-productivity.org. 

3. Bernholdt, D., Dubey, A., Heroux, M., Klinvex, A., McInnes, L.C.: Improving Reproducibility 
Through Better Software Practices. SIAM Conference on CSE, Atlanta, GA (2017). 

4. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., et al., Archive Of Numerical Software: The 

FEniCS Project Version 1.5. University Library Heidelberg (2015). 
5. Stamatogiannakis, M., Kazmi, H., Sharif, H., Vermeulen, R., Gehani, A., et al.: Trade-Offs in Auto-

matic Provenance Capture. In: IPAW, pp. 29–41. Springer International Publishing, Cham (2016). 

6. Moreau, L., Batlajery, B.V., Huynh, T.D., Michaelides, D., Packer, H.: A Templating System to Gen-
erate Provenance. IEEE Trans. Softw. Eng. 44, 103–121 (2018). 

7. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: noWorkflow: a tool for collecting, analyzing, and 

managing provenance from python scripts. PVLDB 10, 1841–1844 (2017). 
8. Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: A methodology for developing provenance-aware 

applications. ACM Trans. Softw. Eng. Methodol. 20, 1–42 (2011). 

9. Silva, V., De Oliveira, D., Valduriez, P., Mattoso, M.: DfAnalyzer: Runtime Dataflow Analysis of 
Scientific Applications using Provenance. In: PVLDB. Rio de Janeiro, Brazil (2018). 

10. Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho, A.L.G.A.: In situ visualization and data 
analysis for turbidity currents simulation. Comput. Geosci. 110, 23–31 (2018). 

11. DfAnalyzer tool demonstration, https://github.com/vssousa/dfanalyzer-spark.  


