Architecture
for Template-driven Provenance Recording

Elliot Fairweather, Pinar Alper, Talya Porat, and Vasa Curcin

King’s College London
elliot.fairweather@kcl.ac.uk

Abstract. Provenance templates define abstract patterns of provenance
data and have been shown to be useful when implementing support for
provenance capture in existing software tools. Their strength is in ex-
posing only the relevant provenance capture actions through a service
interface, whilst hiding the complexities associated with managing the
provenance data. We present an architecture for the creation and man-
agement of libraries of provenance documents constructed using tem-
plates.

Introduction

Provenance templates define abstract patterns of provenance data and have been
shown to be useful when implementing support for provenance capture in ex-
isting software tools. Their strength is in exposing only the relevant provenance
capture actions through a service interface, whilst hiding the complexities asso-
ciated with managing the provenance data. We expand upon the formal model
presented earlier in [1] by refining the methods by which provenance fragments
generated by such templates are combined and integrated into an overall prove-
nance document, and present an architecture for the creation and management
of libraries of such documents constructed using templates.

Methodology

A provenance template [1] is a abstract fragment of a provenance document,
that may be instantiated using concrete substitutions for variables contained
with the template. Variables are of two kinds; identifier variables inhabiting the
var namespace which are placeholders for node or relation identifiers, and value
variables under vvar, which can be used in the place of an attribute value. A
provenance template is itself a valid provenance document and as such allows
nodes to be semantically annotated, allowing the inclusion of domain-specific
information. Concrete provenance fragments are generated by an algorithm that
accepts as input a template and substitution comprised of a set of variable-
value bindings, and replaces variables for values in a copy of the template. We
now present a system for constructing and managing PROV documents using
templates.



Document types We distinguish three types of document, target documents,
template documents and fragment documents. A target document is the doc-
ument under construction. A system may manage the construction of multiple
target documents at any given point. A template document describes a pattern
representing a domain action to be replicated within a specific target document.
A template document is registered to one particular target document. Call this
target document the parent document of the template document. A fragment
document is a document to be later merged into a target document, usually con-
structed by the instantiation of a template belonging to that document. A frag-
ment document is also associated with a single target document, again referred
to as its parent. Fragment documents perform a critical role in the document
construction.

Metadata All documents are given a unique identifier and annotated with their
type. This is stored separately as metadata and used to index documents in the
management system. This metadata also includes which templates and fragments
are associated to a target document and namespace data for each document.
Metadata can be viewed as consisting of and represented by attribute-value
pairs that belong to a document.

Namespace management A data document is created empty with a default
namespace. Further namespaces may be added at any point. Except for the ivar,
vvar and pgt namespaces, a template document may only include namespaces
included in its parent document. A fragment document includes the fragment
namespace used for auditing purposes and during the instantiation process.
When a new fragment document is created it also inherits the namespaces of
its parent document. New namespaces may not be added to fragment docu-
ments. This means that qualified names contained in substitutions given during
instantiation must fall within the namespaces of the target document.

Fragment generation When a template is instantiated the graph generated is
represented as a new fragment document. The generation of new fragments from
templates may proceed in two ways, either simultaneously as a single step by
applying a complete substitution, or incrementally, by first applying an initial
substitution and then later applying zone substitutions. In both cases, it must
be checked that the number of iterations of each zone falls within the bounds
of that zone for the final instantiation to be valid. Simultaneous generation is
defined algorithmically in Figure 6 of [1]. Incremental instantiation, however, in
contrast to the description given there, is now considered to proceed in such a
way that the fragment being generated is always connected. Entry and exit edges
of zones are generated at the application of each zone substitution. In the case of
serial zones, this requires that entry edges of the zone be repositioned upon each
instantiation. Fragment documents are annotated with attribute-value pairs in
the fragment namespace, as part of the mechanics of incremental instantiation
but also for the purposes of auditing and analysis of the construction of the
target document.



Merging and grafting When instantiation is finished, if the fragment document
meets the iteration bound constraints for each zone the fragment is merged into
the target document. This may result in the grafting of nodes. If the identifier
of a node in a fragment pre-exists in the target document then that nodes is
reused and a graft is created, joining the fragment and target documents. If the
identifier of a fragment node does not exist in the target document a new node
is created in the target. The merging process also adds additional attributes
for the purpose of auditing. The validity of the target document is checked
against the standard constraints of the PROV model following the merging of
a fragment document. This is because the occurrence of grafting can lead to
potential violations. If constraints are not met the merge is rolled back and the
fragment removed from the target document.

Workflow We now proceed to give a detailed account of the workflow of the
system. In a typical scenario, in order to construct a new document, a user
would interact with the system in the following way.

1. Create a new target document A
2. Add necessary extra namespaces to target A
3. Register templates with target A
4. Create a new fragment document @ belonging to target A
(a) — by instantiating a template document with a complete substitution
— 1. by instantiating a template document T with an initial substi-
tution
ii. and then adding iterations to fragment @ by instantiating zones
of the template T" with zone substitutions
— by importing a standard PROV document
(b) Merge fragment @ into target A
5. Analyse and export target A or fragments of target A

Architecture

We now discuss the architecture of the proposed system with reference to the
implementation of the first author. The overall structure of the architecture can
be seen in Figure 1. The core of the system is the model component. Provenance
documents are represented as graphs in which vertices and edges are typed and
annotated with key-value pairs. The graph itself may also have key-value prop-
erties. Serialisation and deserialisation to PROV data formats is accomplished
using the parsers provided by ProvToolbox library. Substitutions also form part
of the model and parsers to both a proposed PROV-N format and JSON are
given in the implementation. The template instantiation algorithm by which
new fragment documents are generated from templates and substitutions is also
defined within the model component. Storage of data in the system is abstracted
by a persistence component to enable the use of different database technologies.
By default, a Neo4j graph database is used but a relational database, SPARQL-
enabled or alternative graph database could be used either instead or concur-
rently. The system is accessed via the document management component. This



Provenance Server

Document
RESTful API — Management — Model

OrientDB Database

Neo4j Database Persistence Simulator

SQL Database

i

Fig. 1. Architecture

controls and executes operations outlined in the workflow, such as the creation
of new target documents, namespace management, the registering of templates,
and the generation and merging of new fragment documents. Fragment gener-
ation is achieved through interaction with the model component. Operations
requiring the import, export or update of document data and metadata are
supported via the persistence component. Access to the document management
interface is provided via a RESTful web service. Documents and substitutions
are passed to and from the server encoded as JSON and analysis is conducted by
querying the underlying database. The specifics of a higher-level query interface
for the system, agnostic to to a particular storage solution, is an area of ongoing
research.

Conclusions and Future Work

This poster presented an architecture for capturing provenance data using tem-
plates. The design is intentionally generic, allowing a similar approach to be
applied to any software architecture where it is preferable to capture provenance
by mirroring actions from the main software system, rather than embedding it
into a shared middleware. Ultimately, our goal is to facilitate the development
of provenance back-ends and minimise the overheads involved in integrating
provenance capture and utilisation into operational workflows. We have proto-
typed our architecture based on a decision aid software tool for communicating
the risk of recurrent stroke to patients, that is being developed within the stroke
theme of the Collaborative Leadership in Applied Healthcare Research and Care
(CLAHRC) programme in South London. A key challenge for implementing
provenance solutions is how to extract benefit from the captured data, and so,
as the next step, we plan to devise user interface solutions for provenance report-
ing from decision support scenarios and utilise our group’s previous experience
in the area [2] to conduct a full quantitative and qualitative evaluation.



References

[1] V. Curcin et al. Templates as a method for implementing data provenance in
decision support systems. Journal of Biomedical Informatics, 65:1-21, 1 2017.
[2] O. Kostopoulou et al. Diagnostic accuracy of GPs when using an early-intervention

decision support system: a high-fidelity simulation. British Journal of General
Practice, 2017.



