Provenance for Entity Resolution

Sarah Oppold and Melanie Herschel

IPVS, University of Stuttgart, Universitatsstr. 38, 70569 Stuttgart, Germany
{firstname.lastname}@ipvs.uni-stuttgart.de

Abstract. Data provenance can support the understanding and debug-
ging of complex data processing pipelines, which are for instance com-
mon in data integration scenarios. One task in data integration is entity
resolution (ER), i.e., the identification of multiple representations of a
same real world entity. This paper focuses of provenance modeling and
capture for typical ER tasks. While our definition of ER provenance is
independent of the actual language or technology used to define an ER
task, the method we implement as a proof of concept instruments ER
rules specified in HIL, a high-level data integration language.

Keywords: Data provenance - entity resolution - data integration.

1 DMotivation

Entity resolution (ER) refers to the problem of identifying duplicates, i.e., mul-
tiple representations of or references to a same real-world entity within or across
data sources [1]. While numerous different solutions exist, they typically follow
the same steps, building a generic ER pipeline.

Provenance may facilitate the understanding and debugging of data process-
ing pipelines. While several provenance types exist for various applications [5],
to the best of our knowledge, no solution has been tailored to ER. Here, deter-
mining which input data led to a duplicate is not very informative (the data
provenance equals the duplicates). Instead, it is more relevant to see how these
data affect ER processing. We therefore define a provenance model for ER.

One means to collect ER provenance is to instrument the original program
defining ER by modifying it to return, in addition to the ER result, the corre-
sponding provenance. We opt for this solution for two reasons: (i) the modified
program can run on the same system as the original program, leveraging any op-
timizations implemented and (ii) the returned provenance is in the same format
as the original output data, facilitating further processing.

In summary, we present a model for provenance describing how data was
processed during ER. This model is independent of the actual language or pro-
cessing engine used to specify and run ER. Indeed, we first abstract ER tasks
to algebraic operators to then define provenance on this abstract representation
(Sec. 2). In Sec. 3, we discuss how to capture provenance conforming to the
abstract model by instrumenting ER rules specified in HIL, a data integration
language developed at IBM [2]. We conclude the paper in Sec. 4 with a summary
and an outlook on further research questions.

2 S. Oppold et al.

Generic ER operator tree
[Translation T,

TranslationT, Provenance
Definition

ER script ER Provenance

Translation T, g

Instrumentation for Provenance Capture

Fig. 1. Overview of the general approach

2 Provenance model for abstract ER pipelines

Fig. 1 summarizes our general approach. While many different formalisms to
specify ER exist, they typically map to a generic model consisting of algebraic
operators. This model forms the basis to define general ER provenance. Concep-
tually, ER provenance capture can then be achieved by first translating an ER
script to the abstract model, to then execute provenance capture defined over
this abstract model. This however would entail significant overhead, both in run-
time and system complexity compared to running ER alone. A more lightweight
solution that we pursue is the instrumentation of ER scripts such that both ER
and ER provenance capture run on the original data processing system.

ER tasks typically divide into a pipeline consisting of several common steps
(e.g., see [1]). The input comprises two datasets A and B (it is possible that A
= B). The output are partitions of pairs of entity descriptions (e.g., tuples in
relational data) in A x B such that all entity descriptions in a partition refer
to the same entity while no two partitions share entity descriptions referring to
the same entity. Considering all pairs in A x B is computationally prohibitive,
so blocking prunes pairs from further processing. During pairwise classification,
the remaining pairs are compared, e.g., using similarity measures or domain-
knowledge to ultimately decide whether or not the pair is a duplicate. Finally,
post-processing views the classifications as a graph where vertices represent en-
tity descriptions and edges connect duplicates. It partitions the graph, handling
conflicting classifications (e.g., a,b and b, ¢ duplicates, but a,c non-duplicates)
and enforcing additional constraints (e.g., on cardinalities [2]).

Fig. 2(a) shows a sample ER rule specified in HIL [2]. The syntax is not
important, we use the rule to illustrate the different steps of ER. Here, persons in
one source are matched with customers from another source. To avoid comparing
all persons with all customers, blocking requires them to have the same ZIP code.
Then, persons with same ZIP code are classified as duplicates if they match at
least one of two rules (labeled matchl and match2). Finally, a constraint requires
that a person can match at most one customer and vice versa. This is enforced
during post-processing by pruning pairwise matches violating the constraint.

The ER steps described above are common to many different ER solutions,
which we can thus map to an abstract representation. We have defined an ab-
stract description of ER pipelines using operators of the Nested Relational Alge-

Provenance for Entity Resolution 3

Tp o
. [P.pid, C.cid]
CREATE LINK PersonLink AS ”'| :
SELECT [pid: P.pid, cid: C.cid] O (count(G(P.pid) =1) A i) Operator level granularity:
FROM Person P, Customer C (count(G(C.cid) =1) [block: P.Zip = C.zip,
BLOCK P ON PAZip, CON C.Zip | matches: levensthein(P.name, C.fullname)<2 AND P.dob =
MATCH USING Olevensthein(P.name, C.fullnamej<2AND ~ C.dobV P.ssn = C.ssn,
match1: Ievensthein(F"name, P,dob:c.dobl\/Pssn:c.ssn cardinality: (count(G(P.pid) = 1) A (count(G(C.cid) = 1)]
C.fullname)<2 Op zip = C.zip i) Predicate level granularity:
— T [block: P.Zip = C.zip,
'AND P_'dOb C.dob, X matches: {[levensthein(P.name, C.fullname)<2 AND P.dob =
match2: P.ssn=C.ssn N C.dob], [P.ssn = Cussn]},
CARDINALITY P.pid 1:1 C.cid; Person P Customer C cardinality: {[count(G(P.pid) = 1], [count(G(C.cid) = 1]}]
(a) HIL ER rule (b) Operator tree (c) ER provenance schema
INSERT INTO
PersonLink_Matches_ProvLink INSERT INTO
SELECT [entity: [pid: L.pid, cid: L.cid], PersonLink_Matches_ProvLink
match_prov:[name: match1, condition: SELECT [entity: [pid: L.pid, cid: L.cid],
levensthein(P.name, C.fullname)<2 AND match_prov:[name: match2, condition: INSERT INTO PersonLink_Matches_Prov!
P.dob = C.dob] P.ssn, C.ssn] [i.entity]
FROM PersonLinkL, Person P, Customer C FROM PersonLinkL, Person P, Customer C SELECT [match_prov: i.match_prov]
WHERE L.pid = P.pid AND L.cid = C.cid; WHERE L.pid = P.pid AND L.cid = C.cid; FROM PersonLink_Matches_ProvLinki;

(d) Provenance capture using HIL EP rules

Fig. 2. Running example

bra for Bags (NRAB) [3]. Indeed, we want to cover ER both on flat relational and
nested data and cannot assume that data is free of exact duplicates. Fig. 2(b)
illustrates the operator tree for the HIL script shown in Fig. 2(a). For HIL, we
have defined a full set of inference rules to map any HIL ER script to an operator
tree, similarly to our previous work where we compile PigLatin to NRAB [4]. We
cannot cover the details here, but highlight a few principles based on the exam-
ple. First, we form all pairs of entity descriptions using the Cartesian product x.
Blocking prunes pairs and can thus be modeled using a selection ¢. The matching
performs pairwise classification that returns only those pairs that satisfy either
of the match conditions, resulting in a selection operator with a complex predi-
cate in DNF. Finally, the constraint of the 1:1 cardinality requires both grouping
G and selection based on the size of groups. The ER rules in HIL return pairs
of duplicates, which translates to the final projection 7.

Given ER pipelines defined by trees of NRAB operators with clear seman-
tics, data provenance (i.e., why- and how-provenance) [5] is a candidate choice
for ER provenance. However, it focuses on data flow, which is not informa-
tive for ER, as the provenance of a duplicate pair simply consists of the pair
members. Instead, we propose to capture the control flow of the pipeline. More
specifically, we record, at each processing stage, the results of function calls,
comparisons etc. in addition to data valuations. For efficiency and understand-
ability reasons, we define two granularities of ER provenance: (i) the granularity
of operators and (ii) the granularity of individual predicates in the operator
parameters. Fig. 2(c) shows the schema of the provenance at these two granular-
ities for our running example. An example instance of the second granularity is
[70569 = 70569, {[1 < 2,5/29/60 = 6/29/60], 123-45-678 = 123-45-678},1 = 1].
This evaluates to [true, {[true, false],true},true], clearly indicating that the
duplicate was found based on match2 only, as unequal dates let matchl fail.

4 S. Oppold et al.

3 Implementing provenance capture for HIL ER rules

As motivated previously, we opt for program instrumentation to capture prove-
nance for ER. As a proof of concept, we have formalized and implemented the
instrumentation of HIL scripts [2] that allow the specification of ER rules, il-
lustrated in Fig. 2(a). Our implementation supports the full set of HIL ER rule
clauses (not all are illustrated here). Given a HIL script with an ER rule, we
generate additional entity population (EP) rules. These rules are an integral
part of the HIL language and will, when executed, produce the provenance con-
forming to our general ER provenance. Fig. 2(d) shows EP rules generated for
the sample HIL ER rule of Fig. 2(a). Capturing the necessary provenance using
HIL constructs requires several intermediate steps, the final provenance being
stored in the result labeled PersonLink_Matches_Prov. A detailed discussion
is out of the scope of this paper, but the example showcases the complexity of
instrumenting HIL for provenance capture.

4 Conclusion and outlook

This paper presented a framework for defining and capturing provenance for
typical ER pipelines. We showed how ER pipelines consisting of several com-
mon steps map to trees of algebraic operators. We then defined ER provenance
over this abstract ER representation, thus providing a language-independent
provenance model. To capture ER provenance in practice, we showed how to in-
strument a particular language to specify ER, namely HIL ER rules to capture
ER provenance conforming to our model.

In the future, we plan to extend provenance capture to further data inte-
gration tasks from both a language-independent and a HIL specific perspective.
Further important issues for making provenance capture practical and relevant
for users are runtime optimizations and provenance visualization, exploration,
and querying.

Acknowledgements. The authors thank the German Research Foundation
(DFG) for financial support within project D03 of SFB/ Transregio 161. This
research was also partly funded by an IBM Faculty Award.

References

1. P. Christen. Data Matching: Concepts and Techniques for Record Linkage, En-
tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer (2012).

2. M. A. Hernandez, G. Koutrika, R. Krishnamurthy, L. Popa, R. Wisnesky. HIL: a
high-level scripting language for entity integration. EDBT (2013).

3. S. Grumbach, T. Milo. Towards Tractable Algebras for Bags. PODS (1993).

4. J. Camacho-Rodriguez, D. Colazzo, M. Herschel, I. Manolescu, S. Roy Chowdhury.
Reuse-based Optimization for Pig Latin. CIKM (2016).

5. M. Herschel, R. Diestelkdmper, H. B. Lahmar. A survey on provenance: What for?
What form? What from? VLDB Journal (2017).

