
Where Provenance in Database Storage
Alexander Rasin
DePaul University
Chicago, IL, USA

arasin@cdm.depaul.edu

Tanu Malik
DePaul University
Chicago, IL, USA

tanu@cdm.depaul.edu

James Wagner
DePaul University
Chicago, IL, USA

jwagne32@cdm.depaul.edu

Caleb Kim
DePaul University
Chicago, IL, USA

hkim85@mail.depaul.edu

Abstract
Where provenance is a relationship between a data item and
the location from which this data was copied. In a DBMS,
a typical use of where provenance is in establishing a copy-
by-address relationship between the output of a query and
the particular data value(s) that originated it. Normal DBMS
operations create a variety of auxiliary copies of the data
(e.g., indexes, MVs, cached copies). These copies exist over
time with relationships that evolve continuously – A) in-
dexes maintain the copy with a reference to the origin value,
B) MVs maintain the copy without a reference to the source
table, C) cached copies are created once and are never main-
tained. A query may be answered from any of these aux-
iliary copies; however, this where provenance is not com-
puted or maintained. In this paper, we describe sources from
which forensic analysis of storage can derive where prove-
nance of table data. We also argue that this computed where
provenance can be useful (and perhaps necessary) for accu-
rate forensic reports and evidence from maliciously altered
databases or validation of corrupted DBMS storage.

Keywords Where Provenance, Database Forensics, DBMS
Tampering Detection, DBMS Internals
ACM Reference Format:
Alexander Rasin, Tanu Malik, James Wagner, and Caleb Kim. 2018.
Where Provenance in Database Storage. In Proceedings of TaPP 2018.
ACM, New York, NY, USA, 4 pages. https://doi.org/

1 Introduction
Where Provenance is defined as the addresses of the data
values that were used to evaluate the query. It is similar to
Why Provenance in tracing query inputs, but focuses on the
location of that data. In the relational model, value location is

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
TaPP 2018, July 11 - 12, 2018, London, UK
© 2018 Copyright held by the owner/author(s).

defined as the row (tuple) and the value’s location within that
row. We propose to extend this concept to support database
forensic analysis by computing where provenance based on
the physical address of data copies in DBMS storage.

Database Management Systems (DBMSes) generate a mul-
titude of data copies as part of their normal operation. For
example, a materialized view (MV) stores the pre-computed
results of a query drawn from the data tables in order to im-
prove query performance. An index contains a copy of values
from the indexed column(s) combined with a pointer back
to the source table in order to speed up record access. Many
other copies of data are created by DBMS engine actions such
as caching, log entries, or internal storage defragmentation.
These and other internal copies of data can be extracted

from DBMS storage with the help of database carving (briefly
described in Section 2) and used for evidence of database
tampering or storage corruption. Such findings must be sup-
ported by a forensic analysis framework that integrateswhere
provenance to formalize storage analysis and offer provable
results. Recent work by Wagner et al. [2] relied on ad-hoc
case analysis (e.g., if the index value does not match the value
in table record, report this as a likely indication of tampering)
to report malicious activity. Such reports currently require
significant effort from forensic analysts – we describe two
recent cases that would greatly benefit from integration of
where provenance into the process of forensic analysis:
Example 1 A consultant from Mandiant/FireEye (a major
forensic consultant firm) was working on a case involving
a hard drive captured from the suspect. Through manual
inspection of drive image, he came to suspect that the drive
contained a PostgreSQL database that was uninstalled by the
owner. Reconstructing raw data was the first step – but if the
case went to court, the analyst could usewhere provenance to
prove that the reconstructed data report is accurate. Some of
the forensic artifacts aremore reliable than others, depending
on how they were extracted.
Example 2 A forensic analyst fromRoyal CanadianMounted
Police was investigating a financial fraud case. One of the
sources of evidence was a snapshot of RAM from suspect’s
computer that contained a MySQL database (the snapshot
of the hard drive was never recovered in this case). While

https://doi.org/

TaPP 2018, July 11 - 12, 2018, London, UK Alexander Rasin, Tanu Malik, James Wagner, and Caleb Kim

RAM can contain data from DBMS tables, all of the in-RAM
values are copies of the original tables. In order to establish
MySQL data contents from RAM snapshot with a measure
of confidence, a where provenance derivation could be used.

In addition to these examples, there are other security and
audit applications of where provenance that we outline in
Section 3. Fully deriving and continuously tracking where
provenance remains a goal for future work. In this paper, we
describe the categories of data copies created within all major
DBMSes. We focus on the causal relationship between the
tables and auxiliary structures in DBMS storage, describing
copies in the context of active data (Section 4), accessible
data (Section 5), and abandoned data (Section 6).

2 Background and Related Work
All relational databases store data in page units of fixed size –
even logs are often stored in system tables. Pages in all major
relational databases (known for IBMDB2, SQL Server, Oracle,
PostgreSQL, MySQL, Apache Derby, MariaDB, and Firebird)
follow the same basic layout structure. Pages are broken
down into page header (relevant page metadata such as page
ID or page type), row directory (pointers to individual rows
in the body of the page), and page body (containing the pay-
load with actual row data). The work in [3] described how
this layout can be generally parameterized, reconstructed
and even automatically learned by loading synthetic data
and observing page storage behavior. Database page carving
(implemented as DBCarver [4]) is a method based on this
analysis that reconstructs database file contents without re-
lying on the file system or DBMS. Page carving is similar
to traditional file carving [1] in that data, including deleted
data, is reconstructed from disk images or RAM snapshots
without using a live system. As database carving approach
does not rely on the DBMS itself, it is also capable of extract-
ing the non-queryable data values, which include: a) index
values and pointers, b) deleted records, including partially
overwritten records, c) cache contents, including pages and
intermediate query results, d) audit logs.

3 Motivating Where Provenance in
Database Management Systems

A forensic analysts will seek to discover and prove what is or
was previously stored in the database tables, or to determine
what actions user may have undertaken within the DBMS.
While traditional provenance explains query output by in-
vestigating the data sources and the computation process
of the query, in forensic cases the target of analysis is the
data table itself. For each additional data copy (index, MV,
RAM), where provenance of that copy will serve as support
and evidence for contents of the original table.
Figure 1 represents the overall flow of data copying that

occurs inside a DBMS engine. After user data is loaded into
tables (data loading process can create extra copies in RAM

DBMS tables

 DBMS Disk Storage

Indexes
and MVs

Audit log

 DBMS RAM Buffer

Cached pages Intermediate
& output
results

WAL log

Figure 1. The causality flow of data copying in a DBMS.

or logs, depending on DBMS settings), every access to these
tables will cause more copying. A SQL command is initially
copied into the audit log; after the query is logged, it proceeds
to access (or modify) the tables. Table access affects several
parts of DBMS storage: modifications propagate into WAL,
both read andwrite access caches pages in RAM (additionally
copied in RAM as intermediate results), and all auxiliary
structures are modified and cached in a similar manner.

The goal of this paper is to describe the copies that occur
along the flow arrows in Figure 1. Computing where prove-
nance (not available in DBMSes) would also require reversing
the arrows by extrapolating the connection back to the table.
For example, a record found in a cached page is evidence
of a tuple having been present (at some point) in a source
table. The location of the cached record is known, but where
provenance also needs the link between that copy and the
original table record. Note that the original table record may
already be deleted (deleted values could be restored) or even
erased (cannot be restored) in which case where provenance
offers evidence for the source data that ceased to exist.
The second application for where provenance is tracing

back the arrow between audit log and data tables. The idea
is that each forensic artifact (e.g., a deleted row) must have
been caused by some SQL command. User commands (in
Figure 1) recorded in audit log cause changes to data tables.
Therefore, if we find a storage artifact (e.g., a deleted row)
that does not link back to an audit log entry (a delete or an
update), this could be interpreted as a sign of log tampering.

4 Actively Maintained Data Copies
The first category of in-DBMS copies we consider are the
values which the DBMS not only copies but also continuously
maintained during its normal operations.

4.1 Index over Table Values
An index is a structure containing value-pointer pairs used
for faster data look up; thus, each index entry already con-
tains a pointer to the value(s) in the source table. Moreover,

TaPP 2018, July 11 - 12, 2018, London, UK

in response to updates the DBMS will automatically update
the pointer (we discuss deletes in Section 6).

4.2 MV Values
Materialized views are a computed query results which are
stored and maintained by the DBMS over time. After a user
updates one of the source tables from which MV is derived,
the DBMS will (eventualy) propagate the change into the MV.
The refresh behavior of the MV is dependent on both the
DBMS and its settings. There are three types of MV refresh
options: 1) a custom refresh function, 2) refresh on each
transaction commit, 3) refresh on demand.

4.3 Index over MV Values
Indexes created over MVs behave like indexes over tables.
From where provenance perspective, as our goal is to gen-
erate evidence regarding the contents of the original table,
an MV index is 2 steps away from the source table. That is,
an MV index refers to where it was copied from – however,
the MV itself is also a copy of the original table. To compute
where provenance, a connection from an MV index to the
MV needs to be established, after which the MV to table
connection (as in Section 4.2) needs to be traced as well.

4.4 Cached Pages
When a page is modified, a “dirty” copy is created in RAM
to hold pending data changes. Additional changes to the
same page will be applied in RAM (assuming transactional
restrictions are not violated). Thus, the entire dirty page is
an automatically maintained data structure while it remains
active in RAM and before it is flushed to disk.

5 Accessible Data Copies
In this section we discuss the middle-ground copies that
are not kept current by the DBMS (i.e., can differ from the
original value after having been copied) but are explicitly
queryable by the user. Such data items include old MV values,
audit and WAL logs – intuitively, these are user-accessible
copies of data that can become “outdated” reflecting a previ-
ous value that has since changed.
In most DBMSes, an MVs may refresh with some delay

(see Section 4.2). If the refresh is not immediate, the old pre-
update or pre-delete values will persist in the MVs for a pe-
riod of time and can be linked back to the source table in the
same way as in Section 4.2. These data copies are ephemeral
as the MV will eventually be refreshed. Note that once a
table delete is propagated into the MV, it remains a source
of evidence but stops being queryable (i.e., after MV refresh
such value transitions from accessible to abandoned).
Audit and WAL logs are typically represented as system

tables (although in some DBMSes, such as PostgreSQL or
MySQL, they are merely text files) and can be explicitly
queried by users with sufficient privileges. In an audit log,

the entire text of the SQL query is stored – which includes
the operation in question, and some of the affected values.
For insert operation the entire row would normally be avail-
able; for an update operation the WHERE clause and the new
copy of the new values (SET clause) is available; finally, for
delete operations only the WHERE clause is available. In a
WAL log, every modified value is stored for maintaining
ACID properties of transaction. Each available copy of the
logs can be traced back to the original record in the table,
unless the affected values have since changed.

6 Abandoned Data Copies
In this section, we consider a multitude of value copies that
remain physically in storage (disk or RAM), but are no longer
accessible by users. These copies are the richest source of
provenance because all DBMS operations generate aban-
doned data copies; however, they are also the most volatile
because they can be overwritten without notice.

6.1 Deleted Table Values
When a record is deleted from a DBMS table, the values are
not erased; rather, the value is flagged as deleted within the
page. An update operation may be performed in-place or
translated into a physical delete (acting as a regular delete)
followed by an insert of the updated row.

Deleted values can serve as evidence of records that previ-
ously existed in the table, but will eventually be overwritten
by other data. The survival duration of deleted records in
storage is based on the DBMS and its settings. For example,
Oracle offers a percent utilized threshold which deter-
mines when in-page storage is reclaimed by incoming inserts.
In contrast, MySQL is much more aggressive about reclaim-
ing de-allocated page space.

6.2 Deleted MV Values
AnMV follows a pattern similar to that of table storage. Both
deletes and updates are propagated from original table and
applied to the MV. The difference between the MVs and ta-
bles is in the refresh policies – as discussed in Section 4.2,
MV update propagation lags behind tables and thus offers a
different timeline of events. Moreover, a deleted value that
was purged (overwritten or rebuilt) from the table may still
remain in the MV. We note that refresh settings of MV dis-
cussed in Section 4.2 do not have any effect on purging or
overwriting deleted values stored in the MV. The deletion of
the row is the action that is eventually propagated into the
MV; once the row is deleted in the MV, it would follow the
rules of deleted table values in Section 6.1.

6.3 Deleted Index Values
A deleted index value behaves differently from all other
structures. Although theoretically indexes follow the B-Tree

TaPP 2018, July 11 - 12, 2018, London, UK Alexander Rasin, Tanu Malik, James Wagner, and Caleb Kim

maintenance protocols, in practice all DBMSES [3] are im-
plemented to leave the deleted values in the index storage.
This saves on the maintenance cost (the B-Tree does not
need to shrink and re-balance), but introduces the extra cost
through increased B-Tree size. The decision on whether an
index entry has been deleted can only be made by checking
the row to which the index points (which, if still present in
the storage, would be explicitly flagged as “deleted”).
Deleted index entries serve as evidence of values that

previously existed in the table or MV. Index values have
perhaps the longest lifespan of all abandoned data because
hey are not free listed in the traditional sense.

6.4 Cached Values
Nearly every access to a DBMS structurewill generate cached
pages in RAM. There are only two exceptions to that rule:
1) a query access that reads “too many” (subject to DBMS
internal caching policies) pages will avoid caching pages,
and 2) a “direct” data load in some DBMSes (e.g., in Oracle)
will leave no trace of the loaded data in RAM.

Cached pages that are being modified (dirty pages) will
be maintained while the cached copy is active – the new
changes will be applied to active dirty pages in memory.
Eventually, modified cached pages are flushed to disk and
become free-listed (i.e., discarded). Cached pages that result
from read-only (e.g., SELECT) access will eventually become
discarded as well subject to DBMS caching policies or due
to page contents changing (making it outdated).

6.5 Discarded Pages
Discarded pages are pages that have been free-listed and may
be overwritten by other pages, similarly to a deleted row that
may be reclaimed by new inserts. Defragmenting operations
(e.g., VACUUM, REBUILD) leave behind old page copies on disk
because they often create a new structure and then discard
the old one. The specific pages left behind depends on a
particular DBMS. Some of the pages may be discarded into
Operating System custody – for example, dropping a table in
PostgreSQL deletes the file corresponding to that structure.

7 Forensic Evidence in Where Provenance
Once where provenance of data copies is computed, it will
be unified into a report describing 1) the data values con-
tained within the target of the investigation, 2) the relative
confidence in each reported value, and 3) an extrapolated
timeline information for each data value.
The target of the investigation can be either user data

tables or WAL log – due to space limitations we only discuss
the former. For data tables, Part-#1 would include every value
and every record for which some evidence of existence (at
any time) was identified. This will include data from primary
evidence sources (data tables), secondary evidence sources
(cached table pages, indexes, MVs), tertiary evidence sources

(indexes over MVs, cached index pages), and so on. In cases
like Example 2 in Section 1 (only RAM data is available), the
entire report will be based on secondary evidence or lower.
A reported value may derive from conflicting facts (e.g.,

on-disk table page and in-RAM cached page disagreeing on
what the value was). Part-#2 would therefore seek to unify
multiple reports about each value. A value with multiple
agreeing sources would have higher confidence; a value with
disagreeing or lower tier (e.g., tertiary) sources would have
a relatively low confidence. Most importantly, confidence
report should include reasons for how it was derived.

Finally, Part-#3 would further annotate all reported values
with known timeline information. Evidence of each reported
value will be associated with the time range during which it
(likely) existed. For example, audit logs may help determine
the exact time when the value was created and subsequently
deleted. Alternatively, a deleted record in a page would indi-
cate that the values were deleted in the past, but the time of
the deletion could only be approximated.

8 Conclusion
DBMS storage is a rich source of data copies created during
normal operations and accessible through forensic analysis
techniques. These copies can serve as evidence of database
state or proof of data tampering or log tampering. Where
provenance is the mechanism that can create a formal analyt-
ical framework to explain and quantify accuracy and of the
forensic evidence reliability drawn from storage analysis.
A report of all known data augmented with confidence

rating and timeline knowledge will no doubt greatly help
forensic and security analysts in their job. Copies of the data
are available – but these copies lack the connection to their
source; in order to reason about the evidence they offer, copy
flow in DBMS storage must be reverse engineered.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1656268.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author and
do not necessarily reflect the views of the National Science
Foundation.
References
[1] Golden G Richard III and Vassil Roussev. 2005. Scalpel: A Frugal, High

Performance File Carver.. In DFRWS. Citeseer.
[2] James Wagner, Alexander Rasin, Boris Glavic, Karen Heart, Jacob Furst,

Lucas Bressan, and Jonathan Grier. 2017. Carving database storage
to detect and trace security breaches. Digital Investigation 22 (2017),
S127–S136.

[3] James Wagner, Alexander Rasin, and Jonathan Grier. 2016. Database
image content explorer: Carving data that does not officially exist.
Digital Investigation 18 (2016), S97–S107.

[4] James Wagner, Alexander Rasin, Tanu Malik, Karen Hart, Hugo Jehle,
and Jonathan Grier. 2017. Database Forensic Analysis with DBCarver..
In CIDR.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Motivating Where Provenance in Database Management Systems
	4 Actively Maintained Data Copies
	4.1 Index over Table Values
	4.2 MV Values
	4.3 Index over MV Values
	4.4 Cached Pages

	5 Accessible Data Copies
	6 Abandoned Data Copies
	6.1 Deleted Table Values
	6.2 Deleted MV Values
	6.3 Deleted Index Values
	6.4 Cached Values
	6.5 Discarded Pages

	7 Forensic Evidence in Where Provenance
	8 Conclusion
	Acknowledgments
	References

