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Abstract. Provenance Network Analytics is a method of analyzing provenance 
that assesses a collection of provenance graphs by training a machine learning 
algorithm to make predictions about the characteristics of data artifacts based on 
their provenance graph metrics. The shape of a provenance graph can vary ac-
cording the modelling approach chosen by data analysts, and this is likely to af-
fect the accuracy of machine learning algorithms, so we propose a framework for 
capturing provenance using semantic web technologies to allow use of multiple 
provenance models at runtime in order to test their effects. 
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1 Introduction 

Provenance data describes the events, agents, resources and relationships that have led 
to the creation of a piece of data or thing and as such is naturally expressed as a graph. 
Provenance is used in a range of application domains, e.g. geospatial [1]–[3] and sci-
entific experimentation [4]–[6]. Some of these applications generate large and complex 
graphs resulting in a volume of data that is beyond the scope of inspection and query. 
While some strategies exist [7]–[9] to simplify their representation for human usability, 
these techniques are typically made for an individual inspecting a single provenance 
graph to judge fitness for use of a specific artefact. 

Provenance Network Analytics (PNA) is an approach proposed by Huynh et al [10], 
[11], which instead attempts to help users assess fitness for use for an artefact by as-
sessing a collection of provenance graphs. In their work, they use a set of provenance 
specific network metrics [12] adapted from network theory [13]. These are used to sum-
marize a dependency subgraph graph as a feature vector to train machine learning al-
gorithms to predict characteristics of the data artefact for which the provenance has 
been expressed.  

This technique is used in [10] to assess the quality of a map feature from CollabMap, 
a crowdsourced mapping initiative used for disaster relief planning. Using feature vec-
tors from these provenance graphs, the authors trained a machine learning algorithm to 
predict user trust ratings with 95% accuracy. They have also tested this in other appli-
cations; identifying message types in a disaster response simulation game and identify-
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ing owners of PROV-N documents, achieving a high degree of classification accuracy 
across these domains [11].  

However, in [11] the authors note that the model chosen for the provenance could 
impact the quality of the ultimate machine learning model produced. We replicated this 
in [14], using PROV graphs generated from Open Street Map (OSM) history data, ob-
taining only 54% accuracy when attempting to predict the incidence of fix-me tags left 
by users to indicate issues with the data describing a map feature.  

Fig. 1. Comparison of techniques between various approaches for machine learning over prove-
nance graphs, and the ultimate accuracy, from [14] 

 OSM [14] Huynh et al [10] 
Analysis goal Predict prevalence of fix-me tags  Predict user trust ratings 
Graph structure 6 relationships,3 vertex types 3 relationships, 4 vertex types 
Feature Vector MFD, #vertices, #edges, diameter MFD, #vertices, #edges, diameter 
ML Technique used decision tree classifier decision tree classifier 
Target Attributes fix-me tag  Trusted/uncertain rating 
Target flags ratio 50:50 50:50 
Most Relevant metrics diameter #vertices, #edges 
Data sets Two geographic sets containing 

30265 and 97393 features, ad-
justed to 298 and 1604  

Three sets divided by data type: 5175 
buildings, 4911 evacuation routes and 
3043 route sets 

Accuracy of results 54% 95% 

The inability to replicate the classifier accuracy of [10] in [14] could have any number 
of reasons. While it could be argued that provenance is not useful for making predic-
tions about the characteristics of data, the results obtained from the work by Huynh et 
al [10], [11] are sufficient to discount this. Alternatively, the specific characteristic (i.e. 
the fix-me tag) cannot be predicted by the provenance analytics method. While we can-
not discount this entirely, it seems unlikely, as this characteristic is analogous to a user 
trust rating. Another possibility is that there are errors in the way the machine learning 
algorithms were used. This is of course possible and will be investigated further during 
this project. However, there are two important factors which bear deeper investigation:  

• The network metrics chosen. It is apparent from the previous Provenance Network 
Analytics work [11] that these metrics have an impact on the machine learning ac-
curacy and that this varies depending on the type of feature from which the prove-
nance is derived. 

• The shape of the extracted subgraphs, defined by the way the provenance is modelled 
and expressed by analysts. Huynh et al [11] found that the results from one of the 
applications they studied, although still useful, were significantly poorer than the 
other two applications. From visual inspection they noted that the shape of these 
graphs was quite distinctive and so parameterized their capture method to vary the 
shape of the graph. Doing so effected the classification accuracy.  

The modelling of provenance is something of an art form, and characteristics of a prov-
enance graph can vary depending on the application, use-case, and analysis require-
ments. E.g. nodes can be abstracted for reasons of confidentiality and data protection 
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[15], or granularity can be varied to manage computing resources [16]. These ap-
proaches to the expression of a graph decide its topological characteristics and are likely 
to influence the effectiveness of PNA. OSM history data presents a variety of ways in 
which provenance could be extracted to create provenance graphs whose form differs 
depending on the modelling approach chosen. 
For example, Table 1 shows two structurally different graphs of provenance for the 
same OSM map artefact. The accompanying table shows some graph theoretic meas-
urements and values for MFD (maximum finite distance), a provenance specific meas-
urement used in [10], [11]. The graphs are obviously different in appearance and pro-
duce a different set of measurement values. 

Table 1. Two provenance graphs of an OSM map feature 

G1 G2 

 
 

 
 

 

Table 2. Metrics from the graphs in Table 1 

metrics G1 G2 MFD G1 G2 
Nodes 12 8 entity-entity 1 1 
Edges 27 9 entity-activity 2 2 
Components 1 1 entity-agent 3 3 
Diameter 3 5 activity-entity 0 0 
   activity-activity 0 0 
   activity-agent 2 1 
   agent-entity 0 0 
   agent-activity 0 8 
   agent-agent 1 9 

 

 
It is likely that different approaches to provenance modelling will result in variations 
in the accuracy of machine learning classifiers. To identify any effect, a framework for 
testing the PNA method using graphs built using a range of modelling approaches is 
needed. Our contributions in this work are the following: 

• We create a provenance extraction framework that allows the shape of a provenance 
graph to be changed at runtime. 

• We showcase the use of this framework on Open Street Maps, and show how an 
OSM XML history file can be parsed into a history representation that allows any 
number and shape of provenance graphs to be generated programmatically 
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2 A multi-model graph analysis framework. 

The system proposed here is related to methods of ‘scraping’ provenance from log files 
generated by an application as part of its instrumentation, such as [17], [18]. The dia-
gram in Fig. 2 shows our process, which uses OSM XML History Data, which is in 
the same format as the OSM dataset but contains the state of each map artefact at any 
stage in the its history, including timestamp, software used, external dataset derivations 
and an ID of the creator agent. Rather than scraping a specific expression of provenance 
from the data by parsing, XSLT is used to transform it into an RDF Graph. This is 
encoded using OWL and the PROV-O ontology, which are used to enrich the data set 
by entailing more triples to generate a comprehensive and universal provenance graph 
from which different PROV-DM representations can be extracted.  

The resulting RDF is added to a Triple Store created using the Apache JENA Java 
libraries. The PROV graphs for map features are obtained using SPARQL queries 
which return RDF Graphs as Apache JENA RDF model objects, which can be con-
verted to network graph representations and feature vectors using the JENA-JUNG 
Graph Analysis Library. The feature vectors will be used to train a Machine Learn-
ing classifier.  

We capture data with the PROV-DM elements that allow data enrichment by infer-
ence using the PROV-O ontology. Fig. 3 shows the attribution and derivation relation-
ships of an OSM map artefact. The relationships in bold show provenance that has been 
explicitly declared in the RDF produced by the XSLT transformation. The other rela-
tionships have been inferred by a reasoner using PROV-O. 

Fig. 2. The framework process Fig. 3. Inferred triples in Protégé  

  

We also use a qualified relations design pattern [19] for the provenance relationships, 
so that each edge is reified into an individual, linked with a qualified relation edge so 
that more triples can be inferred, creating the simpler wasAttributedTo and 
wasDerivedFrom relationship. 

Once this process is complete, PROV graphs are then extracted using different 
SPARQL queries to the same set of PROV data as seen in Fig. 4 
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Fig. 4. Two SPARQL Queries with their resultant graphs 

CONSTRUCT { 
?version prov:wasDerivedFrom ?entity. 
?entity prov:wasAttributedTo ?agent. 
} WHERE { 
?entity provanalytics:versionOf osm:254430. 
?version prov:wasDerivedFrom ?entity. 
?entity prov:wasAttributedTo ?agent 
}  

CONSTRUCT { 
?entity prov:qualifiedAttribution ?attr. 
?attr prov:entity ?entity. 
?attr prov:agent ?agent. 
?version prov:qualifiedRevision ?rev. 
?rev prov:entity ?entity. 
} WHERE{ 
?entity provanalytics:versionOf osm:254430. 
?entity prov:qualifiedAttribution ?attr. 
?attr prov:agent ?agent. 
?version prov:qualifiedRevision ?rev. 
?rev prov:entity ?entity. 
} 

 

This framework allows specification of PROV models using SPARQL. The example 
above shows two graphs produced by different SPARQL queries run over RDF data 
extracted from an OSM history file with axioms generated by a reasoner in Protégé 
[20]. Using feature vectors from results like these we train a ScikitLearn Decision Tree 
Classifier [21]. This provides a human readable output with information about the sig-
nificance of the various graph metrics in the classification process, which can be used 
to help inform the design of other PROV models which can be extracted from the data 
using SPARQL. 

3 Future work 

Once this framework is completed we will create another XSLT module for use with 
Ordnance Survey history data and examine other target quality characteristics. We will 
also explore other machine learning techniques to see if classification accuracies can 
be improved and if so, whether the decision tree classifier can still be used alongside 
other algorithms to provide information about the role of the various metrics and dif-
ferent graph morphologies and what insights this might give us into the social worlds 
and processes of data creation.  

Because we are using RDF in a triple store we will be able to update our Provenance 
dataset as the OSM history is updated. This dataset could be used to produce a prove-
nance powered spatial representation of predicted data quality that updates over time. 

References 
1. P. Yue, M. Zhang, X. Guo, and Z. Tan, ‘Granularity of geospatial data provenance’, in 2014 

IEEE Geoscience and Remote Sensing Symposium, 2014, pp. 4492–4495. 
2. J. Maso, B. Pross, Y. Gil, and G. Closa, Eds., ‘Testbed 10 Provenence Engineering Report’. 

OGC, 14-Jul-2014. 



6 

3. P. Yue, J. Gong, L. Di, L. He, and Y. Wei, ‘Semantic provenance registration and discovery 
using geospatial catalogue service’, in Proceedings 2nd International Workshop on the Role 
of Semantic Web in Provenance Management, Shanghai, China, 2010, pp. 23–28. 

4. W. Oliveira, L. M. Ambrósio, R. Braga, V. Ströele, J. M. David, and F. Campos, ‘A Frame-
work for Provenance Analysis and Visualization’, Procedia Computer Science, vol. 108, pp. 
1592–1601, 2017. 

5. U. Acar, P. Buneman, and J. Cheney, ‘A graph model of data and workflow provenance’, p. 
10. 

6. S. Miles, P. Groth, M. Branco, and L. Moreau, ‘The requirements of recording and using 
provenance in e-Science experiments’, p. 15. 

7. S. Davidson et al., ‘Provenance in Scientific Workflow Systems’, p. 7, 2007. 
8. L. Moreau, ‘Aggregation by Provenance Types: A Technique for Summarising Provenance 

Graphs’, Electronic Proceedings in Theoretical Computer Science, vol. 181, pp. 129–144, 
Apr. 2015. 

9. P. Macko and M. Seltzer, ‘Provenance Map Orbiter: Interactive Exploration of Large Prov-
enance Graphs’, p. 6. 

10. T. D. Huynh, M. Ebden, M. Venanzi, S. D. Ramchurn, S. Roberts, and L. Moreau, ‘Inter-
pretation of crowdsourced activities using provenance network analysis’, in First AAAI Con-
ference on Human Computation and Crowdsourcing, 2013. 

11. T. D. Huynh, M. Ebden, J. Fischer, S. Roberts, and L. Moreau, ‘Provenance Network Ana-
lytics: An approach to data analytics using data provenance’, Data Mining and Knowledge 
Discovery, Feb. 2018. 

12. M. Ebden, T. Huynh, L. Moreau, S. Ramchurn, and S. Roberts, ‘Network analysis on prov-
enance graphs from a crowdsourcing application’, Provenance and Annotation of Data and 
Processes, pp. 168–182, 2012. 

13. M. E. J. Newman, Networks: an introduction. Oxford ; New York: Oxford University Press, 
2010. 

14. B. Roper, ‘Investigating the Role of Data Provenance in Assessing Variations in the Quality 
of Open Street Map Data’, MSc, University of Southampton, 2017. 

15. P. Missier, J. Bryans, C. Gamble, V. Curcin, and R. Danger, ‘ProvAbs: Model, Policy, and 
Tooling for Abstracting PROV Graphs’, in Provenance and Annotation of Data and Pro-
cesses, 2014, pp. 3–15. 

16. T. Pasquier et al., ‘Practical Whole-System Provenance Capture’, arXiv:1711.05296 [cs], 
pp. 405–418, 2017. 

17. T. De Nies et al., ‘Git2PROV: Exposing Version Control System Content as W3C PROV’, 
in Poster and Demo Proceedings of the 12th International Semantic Web Conference, 2013, 
vol. 1035, pp. 125–128. 

18. D. Ghoshal and B. Plale, ‘Provenance from log files: a BigData problem’, 2013, p. 290. 
19. L. Moreau and P. Groth, Provenance: An Introduction to Prov. Morgan & Claypool Pub-

lishers, 2013. 
20.  ‘protégé’. [Online]. Available: https://protege.stanford.edu/. [Accessed: 07-Apr-2018]. 
21. F. Pedregosa et al., ‘Scikit-learn: Machine learning in Python’, Journal of Machine Learning 

Research, vol. 12, no. Oct, pp. 2825–2830, 2011. 
 


