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PROBLEM SETTING: ADVERSARIAL CLASSIFICATION

» Data perturbing adversary with budget € can transport any x to
x' € B(x) ={x' € X |d(x,x') < ¢} to induce an error.

h(z) =panda >, Goal Findh: X — Y within some family H
v Y with the lowest adversarial risk (highest ro-
. : bust accuracy)

Re(h) = E(x,y)w [ sup eo-l((x/’y)vh)]

x'€Be(x)
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VISUALIZATION (ADVERSARIAL CLASSIFICATION)
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RANDOMIZED CLASSIFIERS IN THE LITERATURE

Many previous works have proposed stochastic or randomized models as a way to improve
robustness to adversarial attacks.

MITIGATING ADVERSARIAL EFFECTS THROUGH RAN-
DOMIZATION

Feb 2018

Stochastic Local

STOCHASTIC ACTIVATION PRUNING FOR
ROBUST ADVERSARIAL DEFENSE

ResNets Ensemble via the Feynman-Kac Formalism
-al and Robust Aq
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RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a randomized classifier is not a label, but a probability distribution
over labels.
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RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a randomized classifier is not a label, but a probability distribution
over labels.

» Randomized: h:X — AK
» Deterministic: h: X — {1,...,K} = {ey,...,ex} C AK
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RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the input or

model.

» Input noise injection [HRF19; Pin+19; Yu+21]

X —

sample noise n ~

— h(x +n)

» Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

X —
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RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the input or
model.

» Input noise injection [HRF19; Pin+19; Yu+21]

x — |sample noise n ~ pu| — h(x+n)

» Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

x — |sample model i ~ p| — h(x)

Most methods can be though as a distribution over some family models...
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RANDOM SELF ENSEMBLE [ECCV 2018] [L1U+18]

Basically Noise layers + Avg prediction

RSE for Robust Neural Networks 5
noise layer
conv layer
Fin# ﬁ Fout = Fijp +€

batch norm e~ N(0,02)
activation noise layer
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RANDOM SELF ENSEMBLE [ECCV 2018] [L1U+18]

6 X. Liu, M. Cheng, H. Zhang and C-J. Hsieh

Algorithm 1 Training and Testing of Random Self-Ensemble (RSE)

Training phase:

for iter=1,2,... do
Randomly sample (z;,y:) in dataset
Randomly generate e~N(0, 02) for each noise layer.
Compute Aw = Vo, £(fe(w, z;),y;) (Noisy gradient)
Update weights: w + w — Aw.

end for

Testing phase:

Given testing image z, initialize p = (0,0, ...,0)

for j =1,2,...,#Ensemble do
Randomly generate e ~AN(0, 02) for each noise layer.
Forward propagation to calculate probability output

pj = ff(wax)
Update p: p < p+p°.

end for
Predict the class with maximum score §§ = arg max,, px
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PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Weight or input noise injection + Adv training.

Clean Weight w,

e

85 010 -0.44 -0.B7

5 -0.78 BIEISSNUEE .

z 001 015 -0.09 0.22

Hi501

I

3y 20 1o 0 1oy 20, 3o
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Noisy Weight w,

-1.17 pUSa -0.13  -1.03

7 ..-n 89 -0.62

2 -1.12 pRS -0.11 -1.31

0.16 JENEEN 0.05 -0.05
6 -0 0.55 0.35.

Additive Weight Noise

138 -0.01 -0.13 -0.14 0.15

-0.05 [0.21 -0.05.

0.34 -002 -0.28 -0.05 -0.07
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PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Noise intensity is learnable. For layer | and weight i, the noised version is

01 = foni(v1) = o1 + - gy i~ N0, o7).

oL _ Z oL Ofpni(vi)
Oy ; afPNI(Ul,i) 0oy

i
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ACTIVATION PRUNING [ICLR 2018] [DHI+18]

Algorithm 1 Stochastic Activation Pruning (SAP)

1: Input: input datum z, neural network with n layers, with i* layer having weight matrix W?,

non-linearity ¢ and number of samples to be drawn 7.

2: pY

3: for each layer i do

4:

P

9:
10:
11:

12:
13:

h* — ' (W'h' 1) > activation vector for layer i with dimension o'
Pl % Vje{l,...,a'} B> activations normalized on to the simplex
k=1 L
S« {} > set of indices not to be pruned
repeat r* times . > the activations have r* chances of being kept
Draw s ~ categorical(p®) > draw an index to be kept
S« Su{s} > add index s to the keep set
for each j ¢ S do
(h'); + 0 > prune the activations not in S
for each j € S do
(h'); + ﬁf— B> scale up the activations in S

—(1-p})™

14: return h"

CNRS, LAMSADE, PSL
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OTHER APPROACHES

» Random resize and padding [Xie+17]
» Stochastic Local-Winner-Takes-All [PCT21; Pan+21]
» Simple and Effective Stochastic Neural Networks [Yu+21]
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OBFUSCATED GRADIENTS

Many (if not all) of the methods do not provide real robustness. They just make it harder to
tind an attack with the usual gradient methods [ACW18].

Defense Dataset Distance Accuracy
Buckman et al. (2018) CIFAR 0.031 (/) 0%
Ma et al. (2018) CIFAR 0.031 ({0) 5%
Guo et al. (2018) ImageNet  0.005 (¢2) 0%
Dhillon et al. (2018) CIFAR 0.031 ({=o) 0%

Xie et al. (2018) ImageNet 0.031 (/o) 0%
Song et al. (2018) CIFAR 0.031 ({s0) 9%
Samangouei et al. MNIST 0.005 (f2)  55%xx
(2018)

Madry et al. (2018) CIFAR 0.031 (loo) 47%
Na et al. (2018) CIFAR 0.015 (loe)  15%
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ON ADAPTIVE ATTACKS TO ADVERSARIAL EXAMPLE
DEFENSES [TRA+20]

On Adaptive Attacks
to Adversarial Example Defenses

Florian Tramer* Nicholas Carlini*
Stanford University Google
tramer@cs.stanford.edu nicholas@carlini.com
Wieland Brendel* Aleksander Madry
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wieland.brendel@uni-tuebingen.de madry@mit.edu
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EXPECTED RISK

Suppose that the randomness of the model can be described by some distribution y over a
family of classifiers H.

x — |sample model h ~ | — h(x)
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EXPECTED RISK

Deterministic Randomized
R(h) = Eyy[l(h,x,y)] R(h,) = EEpp[l(h,x,y)]
Re(h) = Exyl SUPy B, (x) U(h,x',y)] Re(hy) =Ey,y [ SUDy B, (x) EhNu[E(h,x’,y)H
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EXPECTED RISK

Deterministic Randomized
R(h) = Eyy[l(h,x,y)] R(h,) = EEpp[l(h,x,y)]
Re(h) = Exyl SUPy B, (x) U(h,x',y)] Re(hy) =Ey,y [ SUDy B, (x) EhNu[E(h,x’,y)H

We will focus on the case of the 0-1 loss

N (h,x,y) = 1 [h(x) # Y]
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EXPECTED RISK

Deterministic Randomized
R(h) = Eyy[l(h,x,y)] R(h,) = EEpp[l(h,x,y)]
Re(h) = Exyl SUPy B, (x) U(h,x',y)] Re(hy) =Ey,y [ SUDy B, (x) EhNu[E(h,x’,y)H

We will focus on the case of the 0-1 loss

N (h,x,y) = 1 [h(x) # Y]

We can ask ourselves:

» How to attack E;.,[¢(h, x,y)] 22?
» Do we get something better if we randomize?
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TOY EXAMPLE

Suppose we have two classifiers available, and focus on the point (xo, o).

What can we say about the risk of the mixture of f;,f, ?
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MATCHING PENNIES GAME

The Matching pennies game is a simple example
with only mixed Nash equilibrium.

) Attacker

) Defender

wins

CNRS, LAMSADE, PSL 19 /39



MATCHING PENNIES GAME

The Matching pennies game is a simple example
with only mixed Nash equilibrium.

) Attacker
wins
Instead of choosing an action, choose a

distribution over actions i.e. Toss the coin instead of
choosing a side.

o

) Defender

wins

%)
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MATCHING PENNIES GAME

The Matching pennies game is a simple example
with only mixed Nash equilibrium.

) Attacker
wins
Instead of choosing an action, choose a

distribution over actions i.e. Toss the coin instead of
choosing a side.

o

) Defender

wins

%)

The matching pennies game shows mixed
strategies can be strictly better.
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TOY EXAMPLE (CONT)

Mixing classifiers that are vulnerable but not simultaneously vulnerable creates a
situation reminiscent of the game of matching pennies.

CNRS, LAMSADE, PSL
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BUT ...
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Note that by Jensen’s inequality,

Re(h,) <Epop [Re(h)]

CNRS, LAMSADE, PSL
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Note that by Jensen’s inequality,

Re(h,) < Ejpep [Re(h)]

In other words, the adversarial risk of a mixture of classifiers is at most the average
adversarial risk.
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Note that by Jensen’s inequality,

Re(h,) < Ejpep [Re(h)]

In other words, the adversarial risk of a mixture of classifiers is at most the average
adversarial risk.

Can we do better than the best classifier h € H ?
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:

THE MATCHING PENNY GAP

Definition 4.1 (Matching penny gap)
The matching penny gap of h, at (x,y) is

Ty, (%, Y) = p(Hap (X, ) = p (2, y)

TV VvV
ind. vul simult. vul

where

Hop(x,y) ={h € Hp: 3x; € Bc(x) such that h(x,) # y},
Dson(X,y)  ={H C Hp: 3x" € B(x) such that Vh € H' h(x) # y},
ma"(x y) = SU_er/E;Jsvb(x’y) M(H/)

)

individually vulnerable
families of sim. vulnerable

max simultaneously vulnerable

If m, (x,y) > 0, we say that h,, is in matching penny configuration at (x,y).

CNRS, LAMSADE, PSL
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TOY EXAMPLE

Figure. Let us m,, at the point (xo,y) for
this toy example. Both fi, f, correctly
predict the class y for x( in the white
area, but they are fooled in the

and blue areas, respectively.

CNRS, LAMSADE, PSL

Ho = (o) p= ()
Hov(x0,y) = {f1./2} = pw(Hw(xo,y)) =1
Nson(x0,y) = {{/i}, {2}} = " (x0,y) = 1

T, (X0, y) =1 -5 =73

Two vulnerable classifiers can be mixed to
obtain 1 expected adversarial risk !
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MAIN RESULT

Theorem 1
For a probabilistic classifier h,, : X — P(Y) constructed from a BHS H;, using any p € P(Hy),

Re(hy) = Enep [Re(h)] = B y)mp[mn, (%, Y)1- 1)

This theorem shows the link between the risk of a mixture h,, and the average risk. The gap
is exactly the expected matching penny gap.

CNRS, LAMSADE, PSL 25/ 39



WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1
For p € P(Hp), Re(h,) < infpen, Re(h) if and only if the following condition holds.

Exyyplmn, (¥, )] > Binu[Re(h)] — inf Re(h)
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WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

For p € P(Hp), Re(h,) < infpen, Re(h) if and only if the following condition holds.

E(xy)~plmh, (%, )]

> Epep [Re(h)] — hiengb Re(h)

» Randomized classifiers are better if their expected matching penny gap is high.
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WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

For € P(Hy), Re(hy,) < infrey, Re(h) if and only if the following condition holds.

E(xy)~plmh, (x,y)] >

Eju[Re(h)] =

inf
heH, Relh)

» Randomized classifiers are better if their expected matching penny gap is high.
» RHS tells us that the individual i € H;, should have similar robustness.
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DETERMINISTIC ENSEMBLES

Ensembles have been used widely for all learning tasks.
Intuitively, diversity has been considered a key component for performance [KW03;
Kun14].
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DETERMINISTIC ENSEMBLES

Ensembles have been used widely for all learning tasks.
Intuitively, diversity has been considered a key component for performance [KW03;
Kun14].

In the adversarial attacks literature, there has also been a few efforts to build diverse
ensembles as a robust alternative.
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COMBINING CLASSIFIERS

Deterministic ensembles and mixtures of classifiers are similar, but not equal.
Here, f : X — AX (probits), and f(x) denotes arg max f(x) € {ey, ..., ex}

"Here we are comparing with the combining methods used in the ensemble methods we are going to see next.
CNRS, LAMSADE, PSL



COMBINING CLASSIFIERS

Deterministic ensembles and mixtures of classifiers are similar, but not equal.
Here, f : X — AX (probits), and f(x) denotes arg max f(x) € {ey, ..., ex}

Ensembles! Mixtures

f(x) = argmax (3_; wifi(x)), > wifi(x)
éo-l(ﬂxv}/) =1 [arg maxy (Zzwlfl<x>>k # ]/} éo-l(ﬂxv}/) =1- (Zl wlfl(x>>y

What is the attacker trying to optimize in each case ?

"Here we are comparing with the combining methods used in the ensemble methods we are going to see next.
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COMBINING CLASSIFIERS - TOY EXAMPLE

Classes are [car, plane, boat]. Correct class is car

fi o 3fi+F)

car plane boat car plane boat car plane boat

CNRS, LAMSADE, PSL 29 /39



GAL [KQ19]

GAL, for Gradient Alignment Loss, minimizes the coherence of the gradients of the models.
coherence({V.Ji}i",) = max CS(ViJa, Vi)

To do so, it minimizes a proxy

GAL = log (Z exp(CS(V/, Vx]b)))

a<b

CNRS, LAMSADE, PSL



GAL [KQ19]

Improving Adversarial Robustness of Ensembles with Diversity Training

Model 1

(a) Single Model

Set of Orthogonal perturbations
spanning the space of the Input

CNRS, LAMSADE, PSL

Model 3

Model 1

Model 2

Model 3

(b) Ensemble of 3 Models

Set of orthogonal adversarial
perturbations for a model

(c) Diverse Ensemble

Adversarial Subspace of
the model/ensemble
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GAL [KQ19]

Improving Adversarial Robustness of Ensembles with Diversity Training

Aligned Gradients
(High Coherence)

(a)

I:l Set of Orthogonal perturbations
spanning the space of the Input

CNRS, LAMSADE, PSL

Model 0 Model 1

Large Shared Adversarial Subspace
(Correlated Loss Functions)

(b) Misaligned Gradients
(Low Coherence)

Set of orthogonal adversarial
perturbations for a model

Model 0 Model 1

Small Shared Adversarial Subspace
(Uncorrelated Loss Functions)

- Adversarial Subspace of

the model/ensemble
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ADP [PAN+19]

ADP, for Adaptive Diversity Promoting reqularizer, operates on the probits and not on
gradients.

ADP, 3(x,y) = a - H(F)+0 - log(ED)
—_— =

entropy alignment
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ADP [PAN+19]

Improving Adversarial Robustness via Promoting Ensemble Diversity

Baseline ADP

Figure I. lllustration of the ensemble diversity. Baseline: Individually training each member of the ensemble. ADP: Simultaneously
training all the members of the ensemble with the ADP regularizer. The left part of each panel is the normalized non-maximal predictions.
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OTHER METHODS

» GPMR [Dab+20]
» DVERGE [Yan+20]
» TRS [Yan+21]
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