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PROBLEM SETTING: ADVERSARIAL CLASSIFICATION

▶ Data perturbing adversary with budget ϵ can transport any x to
x′ ∈ Bϵ(x) = {x′ ∈ X | d(x, x′) ≤ ϵ} to induce an error.

Goal Find h : X → Y within some family H
with the lowest adversarial risk (highest ro-
bust accuracy)

Rϵ(h) = E(x,y)∼ρ

[
sup

x′∈Bϵ(x)
ℓ0-1((x′, y), h)

]
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VISUALIZATION (ADVERSARIAL CLASSIFICATION)
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RANDOMIZED CLASSIFIERS IN THE LITERATURE

Many previous works have proposed stochastic or randomized models as a way to improve
robustness to adversarial attacks.
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RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a randomized classifier is not a label, but a probability distribution
over labels.

▶ Randomized: h : X → ∆K.
▶ Deterministic: h : X → {1, . . . ,K} ∼= {e1, . . . , eK} ⊂ ∆K.
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RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the input or
model.

▶ Input noise injection [HRF19; Pin+19; Yu+21]

x → sample noise η ∼ µ → h(x + η)

▶ Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

x → sample model h ∼ µ → h(x)

Most methods can be though as a distribution over some family models...
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RANDOM SELF ENSEMBLE [ECCV 2018] [LIU+18]

Basically Noise layers + Avg prediction
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RANDOM SELF ENSEMBLE [ECCV 2018] [LIU+18]
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PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Weight or input noise injection + Adv training.
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PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Noise intensity is learnable. For layer l and weight i, the noised version is

ṽl,i = fPNI(vl,i) = vl,i + αl · ηl,i, ηl,i ∼ N (0, σ2
l ).

∂L
∂αl

=
∑

i

∂L
∂fPNI(vl,i)

∂fPNI(vl,i)

∂αl︸ ︷︷ ︸
ηl,i
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ACTIVATION PRUNING [ICLR 2018] [DHI+18]
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OTHER APPROACHES

▶ Random resize and padding [Xie+17]
▶ Stochastic Local-Winner-Takes-All [PCT21; Pan+21]
▶ Simple and Effective Stochastic Neural Networks [Yu+21]
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OBFUSCATED GRADIENTS

Many (if not all) of the methods do not provide real robustness. They just make it harder to
find an attack with the usual gradient methods [ACW18].
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ON ADAPTIVE ATTACKS TO ADVERSARIAL EXAMPLE

DEFENSES [TRA+20]
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EXPECTED RISK

Suppose that the randomness of the model can be described by some distribution µ over a
family of classifiers H.

x → sample model h ∼ µ → h(x)
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EXPECTED RISK

Deterministic Randomized

R(h) = Ex,y[ℓ(h, x, y)] R(hµ) = Ex,yEh∼µ[ℓ(h, x, y)]

Rϵ(h) = Ex,y[ supx′∈Bϵ(x) ℓ(h, x′, y)] Rϵ(hµ) = Ex,y
[
supx′∈Bϵ(x) Eh∼µ[ℓ(h, x′, y)]

]

We will focus on the case of the 0-1 loss

ℓ0-1(h, x, y) = 1 [h(x) ̸= y]

We can ask ourselves:

▶ How to attack Eh∼µ[ℓ(h, x, y)] ???
▶ Do we get something better if we randomize?
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TOY EXAMPLE

Suppose we have two classifiers available, and focus on the point (x0, y0).
What can we say about the risk of the mixture of f1, f2 ?
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MATCHING PENNIES GAME

The Matching pennies game is a simple example
with only mixed Nash equilibrium.

Instead of choosing an action, choose a
distribution over actions i.e. Toss the coin instead of
choosing a side.

The matching pennies game shows mixed
strategies can be strictly better.
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TOY EXAMPLE (CONT)

Mixing classifiers that are vulnerable but not simultaneously vulnerable creates a
situation reminiscent of the game of matching pennies.
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BUT ...
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Note that by Jensen’s inequality,

Rϵ(hµ) ≤ Eh∼µ [Rϵ(h)]

In other words, the adversarial risk of a mixture of classifiers is at most the average
adversarial risk.

Can we do better than the best classifier h ∈ H ?
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Definition 4.1 (Matching penny gap)

The matching penny gap of hµ at (x, y) is:

πhµ(x, y) = µ(Hvb(x, y))︸ ︷︷ ︸
ind. vul

−µmax(x, y)︸ ︷︷ ︸
simult. vul

where

Hvb(x, y) = {h ∈ Hb : ∃x′
h ∈ Bϵ(x) such that h(x′

h) ̸= y}, individually vulnerable
Hsvb(x, y) = {H′ ⊆ Hb : ∃x′ ∈ Bϵ(x) such that ∀h ∈ H′, h(x′) ̸= y}, families of sim. vulnerable
µmax(x, y) = supH′∈Hsvb(x,y) µ(H

′). max simultaneously vulnerable

If πhµ(x, y) > 0, we say that hµ is in matching penny configuration at (x, y).
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TOY EXAMPLE

Figure. Let us πhµ
at the point (x0, y) for

this toy example. Both f1, f2 correctly
predict the class y for x0 in the white
area, but they are fooled in the orange
and blue areas, respectively.

Hb = {f1, f2}, µ =
(

1
2 ,

1
2

)
Hvb(x0, y) = {f1, f2} =⇒ µ(Hvb(x0, y)) = 1

Hsvb(x0, y) = {{f1}, {f2}} =⇒ µmax(x0, y) = 1
2

∴ πhµ(x0, y) = 1 − 1
2 = 1

2

Two vulnerable classifiers can be mixed to
obtain 1

2 expected adversarial risk !
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MAIN RESULT

Theorem 1
For a probabilistic classifier hµ : X → P(Y) constructed from a BHS Hb using any µ ∈ P(Hb),

Rϵ(hµ) = Eh∼µ [Rϵ(h)]− E(x,y)∼ρ[πhµ(x, y)]. (1)

This theorem shows the link between the risk of a mixture hµ and the average risk. The gap
is exactly the expected matching penny gap.
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WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

For µ ∈ P(Hb), Rϵ(hµ) < infh∈Hb Rϵ(h) if and only if the following condition holds.

E(x,y)∼ρ[πhµ(x, y)] > Eh∼µ[Rϵ(h)]− inf
h∈Hb

Rϵ(h)

▶ Randomized classifiers are better if their expected matching penny gap is high.

▶ RHS tells us that the individual h ∈ Hb should have similar robustness.
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DETERMINISTIC ENSEMBLES

Ensembles have been used widely for all learning tasks.
Intuitively, diversity has been considered a key component for performance [KW03;
Kun14].

In the adversarial attacks literature, there has also been a few efforts to build diverse
ensembles as a robust alternative.
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COMBINING CLASSIFIERS

Deterministic ensembles and mixtures of classifiers are similar, but not equal.
Here, f : X → ∆K (probits), and f̃ (x) denotes argmaxk f (x) ∈ {e1, . . . , eK}.

Ensembles1 Mixtures

f (x) = argmaxk (
∑

i wifi(x))k

∑
i wif̃i(x)

ℓ0-1(f , x, y) = 1
[
argmaxk (

∑
i wifi(x))k ̸= y

]
ℓ0-1(f , x, y) = 1 −

(∑
i wif̃i(x)

)
y

What is the attacker trying to optimize in each case ?

1Here we are comparing with the combining methods used in the ensemble methods we are going to see next.
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COMBINING CLASSIFIERS - TOY EXAMPLE

Classes are [car, plane, boat]. Correct class is car
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GAL [KQ19]

GAL, for Gradient Alignment Loss, minimizes the coherence of the gradients of the models.

coherence({∇xJi}m
i=1) = max

a̸=b
CS(∇xJa,∇xJb)

To do so, it minimizes a proxy

GAL = log

(∑
a<b

exp(CS(∇xJa,∇xJb))

)
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GAL [KQ19]
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GAL [KQ19]
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ADP [PAN+19]

ADP, for Adaptive Diversity Promoting regularizer, operates on the probits and not on
gradients.

ADPα,β(x, y) = α · H(F)︸ ︷︷ ︸
entropy

+β · log(ED)︸ ︷︷ ︸
alignment
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ADP [PAN+19]
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OTHER METHODS

▶ GPMR [Dab+20]
▶ DVERGE [Yan+20]
▶ TRS [Yan+21]
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