ADVERSARIAL ROBUSTNESS THROUGH RANDOMIZATION

Lucas GNECCO HEREDIA

CNRS, LAMSADE - Université Paris Dauphine - PSL

November 22, 2023

TABLE OF CONTENTS

1	Problem setting
2	Examples from the literature
3	Robustness of randomized classifiers
4	Randomization can improve robustness: The Matching Penny Gap
5	Diverse Ensembles

TABLE OF CONTENTS

1	Problem setting
2	Examples from the literature
3	Robustness of randomized classifiers
4	Randomization can improve robustness: The Matching Penny Gap
5	Diverse Ensembles

PROBLEM SETTING: ADVERSARIAL CLASSIFICATION

▶ Data perturbing adversary with budget ϵ can transport any x to $x' \in B_{\epsilon}(x) = \{x' \in \mathcal{X} \mid d(x, x') \leq \epsilon\}$ to induce an error.

Goal Find $h : \mathcal{X} \to \mathcal{Y}$ within some family \mathcal{H} with the lowest **adversarial** risk (highest **ro-bust** accuracy)

$$\mathcal{R}_{\epsilon}(h) = \mathbb{E}_{(x,y)\sim\rho} \left[\sup_{x'\in B_{\epsilon}(x)} \ell^{0-1}((x',y),h) \right]$$

VISUALIZATION (ADVERSARIAL CLASSIFICATION)

RANDOMIZED CLASSIFIERS IN THE LITERATURE

Many previous works have proposed *stochastic* or *randomized* models as a way to improve robustness to adversarial attacks.

RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a **randomized classifier** is not a label, but a *probability distribution* over labels.

RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a **randomized classifier** is not a label, but a *probability distribution* over labels.

Randomized: **h** : X → Δ^K.
Deterministic: h : X → {1,...,K} ≈ {e₁,...,e_K} ⊂ Δ^K.

RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the **input** or **model**.

Input noise injection [HRF19; Pin+19; Yu+21]

$$x \rightarrow \text{ sample noise } \eta \sim \mu \quad \rightarrow h(x + \eta)$$

▶ Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

$$x \rightarrow \text{[sample model } h \sim \mu \text{]} \rightarrow h(x)$$

RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the **input** or **model**.

Input noise injection [HRF19; Pin+19; Yu+21]

$$x \rightarrow \text{[sample noise } \eta \sim \mu \text{]} \rightarrow h(x + \eta)$$

Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

 $x \rightarrow \text{[sample model } h \sim \mu \text{]} \rightarrow h(x)$

Most methods can be though as a distribution over some family models...

TABLE OF CONTENTS

1	Problem setting
2	Examples from the literature
3	Robustness of randomized classifiers
4	Randomization can improve robustness: The Matching Penny Gap
5	Diverse Ensembles

RANDOM SELF ENSEMBLE [ECCV 2018] [LIU+18]

Basically Noise layers + Avg prediction

RANDOM SELF ENSEMBLE [ECCV 2018] [LIU+18]

6 X. Liu, M. Cheng, H. Zhang and C-J. Hsieh

Algorithm 1 Training and Testing of Random Self-Ensemble (RSE)

Training phase:

for iter = 1,2,... do Randomly sample (x_i, y_i) in dataset Randomly generate $\epsilon \sim \mathcal{N}(0, \sigma^2)$ for each noise layer. Compute $\Delta w = \nabla_w \ell(f_\epsilon(w, x_i), y_i)$ (Noisy gradient) Update weights: $w \leftarrow w - \Delta w$.

end for

Testing phase:

Given testing image x, initialize p = (0, 0, ..., 0)for j = 1, 2, ..., #Ensemble do Randomly generate $\epsilon \sim \mathcal{N}(0, \sigma^2)$ for each noise layer. Forward propagation to calculate probability output

$$p^j = f_\epsilon(w, x)$$

Update $p: p \leftarrow p + p^j$. end for

Predict the class with maximum score $\hat{y} = \arg \max_k p_k$

PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Weight or input noise injection + Adv training.

PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Noise intensity is learnable. For layer *l* and weight *i*, the noised version is

$$\tilde{v}_{l,i} = f_{PNI}(v_{l,i}) = v_{l,i} + \alpha_l \cdot \eta_{l,i}, \ \eta_{l,i} \sim \mathcal{N}(0, \sigma_l^2).$$

$$\frac{\partial \mathcal{L}}{\partial \alpha_l} = \sum_{i} \frac{\partial \mathcal{L}}{\partial f_{PNI}(v_{l,i})} \underbrace{\frac{\partial f_{PNI}(v_{l,i})}{\partial \alpha_l}}_{\eta_{l,i}}$$

ACTIVATION PRUNING [ICLR 2018] [DHI+18]

Algorithm 1 Stochastic Activation Pruning (SAP)

- 1: Input: input datum x, neural network with n layers, with i^{th} layer having weight matrix W^i , non-linearity ϕ^i and number of samples to be drawn r^i .
- 2: $h^0 \leftarrow x$

6:

7:

8:

9:

 10°

11:

12:

13:

3: for each layer *i* do

 $S \leftarrow \{\}$

repeat r^i times

 $S \leftarrow S \cup \{s\}$

for each $j \notin S$ do

 $(h^i)_i \leftarrow 0$

for each $j \in S$ do

 $(h^i)_j \leftarrow \frac{(h^i)_j}{1 - (1 - p^i_i)^{r^i}}$

4:
$$h^{i} \leftarrow \phi^{i}(W^{i}h^{i-1})$$

5: $p_{j}^{i} \leftarrow \frac{|(h^{i})_{j}|}{\sum_{k=1}^{a^{i}} |(h^{i})_{k}|}, \forall j \in \{1, \dots, a^{i}\}$

Draw $s \sim \text{categorical}(p^i)$

 \triangleright activation vector for layer *i* with dimension a^i \triangleright activations normalized on to the simplex

 \triangleright set of indices not to be pruned \triangleright the activations have r^i chances of being kept \triangleright draw an index to be kept \triangleright add index s to the keep set

 \triangleright prune the activations not in S

 \triangleright scale up the activations in S

14: return
$$h^n$$

OTHER APPROACHES

- Random resize and padding [Xie+17]
- Stochastic Local-Winner-Takes-All [PCT21; Pan+21]
- Simple and Effective Stochastic Neural Networks [Yu+21]

OBFUSCATED GRADIENTS

Many (if not all) of the methods do not provide *real* robustness. They just make it harder to find an attack with the usual gradient methods [ACW18].

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018)	CIFAR	$0.031(\ell_{\infty})$	0%*
Ma et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	5%
Guo et al. (2018)	ImageNet	$0.005 (\ell_2)$	0%*
Dhillon et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%
Xie et al. (2018)	ImageNet	$0.031 \ (\ell_{\infty})$	0%*
Song et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	9%*
Samangouei et al.	MNIST	$0.005 (\ell_2)$	55% **
(2018)			
Madry et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	47%
Na et al. (2018)	CIFAR	$0.015(\ell_\infty)$	15%

ON ADAPTIVE ATTACKS TO ADVERSARIAL EXAMPLE DEFENSES [TRA+20]

On Adaptive Attacks to Adversarial Example Defenses

Florian Tramèr* Stanford University tramer@cs.stanford.edu Nicholas Carlini* Google nicholas@carlini.com

Wieland Brendel* University of Tübingen wieland.brendel@uni-tuebingen.de Aleksander Mądry MIT madry@mit.edu

TABLE OF CONTENTS

1	Problem setting
2	Examples from the literature
3	Robustness of randomized classifiers
4	Randomization can improve robustness: The Matching Penny Gap
5	Diverse Ensembles

Suppose that the randomness of the model can be described by some distribution μ over a family of classifiers \mathcal{H} .

$$x \to | \text{sample model } h \sim \mu | \to h(x)$$

Deterministic	Randomized
$\mathcal{R}(h) = \mathbb{E}_{x,y}[\ell(h,x,y)]$	$\mathcal{R}(\mathbf{h}_{\mu}) = \mathbb{E}_{x,y}\mathbb{E}_{h\sim\mu}[\ell(h,x,y)]$
$\mathcal{R}_{\epsilon}(h) = \mathbb{E}_{x,y}[\sup_{x' \in B_{\epsilon}(x)} \ell(h, x', y)]$	$\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) = \mathbb{E}_{x,y} \left[\ \sup_{\mathbf{x}' \in \mathcal{B}_{\epsilon}(\mathbf{x})} \ \mathbb{E}_{h \sim \mu}[\ell(h, \mathbf{x}', y)] ight]$

Deterministic	Randomized
$\mathcal{R}(h) = \mathbb{E}_{x,y}[\ell(h,x,y)]$	$\mathcal{R}(\mathbf{h}_{\mu}) = \mathbb{E}_{x,y}\mathbb{E}_{h\sim\mu}[\ell(h,x,y)]$
$\mathcal{R}_{\epsilon}(h) = \mathbb{E}_{x,y}[\sup_{x' \in B_{\epsilon}(x)} \ell(h, x', y)]$	$\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) = \mathbb{E}_{x,y} \left[\ \sup_{x' \in B_{\epsilon}(x)} \ \mathbb{E}_{h \sim \mu}[\ell(h, x', y)] ight]$

We will focus on the case of the 0-1 loss

 $\ell^{0\text{-}1}(h, x, y) = \mathbbm{1}\left[h(x) \neq y\right]$

Deterministic	Randomized
$\mathcal{R}(h) = \mathbb{E}_{x,y}[\ell(h,x,y)]$	$\mathcal{R}(\mathbf{h}_{\mu}) = \mathbb{E}_{x,y}\mathbb{E}_{h\sim\mu}[\ell(h,x,y)]$
$\mathcal{R}_{\epsilon}(h) = \mathbb{E}_{x,y}[\sup_{x' \in B_{\epsilon}(x)} \ell(h, x', y)]$	$\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) = \mathbb{E}_{x,y} \left[\ \sup_{\mathbf{x}' \in B_{\epsilon}(\mathbf{x})} \ \mathbb{E}_{h \sim \mu}[\ell(h, \mathbf{x}', y)] ight]$

We will focus on the case of the 0-1 loss

 $\ell^{0-1}(h, x, y) = \mathbb{1}[h(x) \neq y]$

We can ask ourselves:

- How to attack $\mathbb{E}_{h \sim \mu}[\ell(h, x, y)]$???
- Do we get something better if we randomize?

TOY EXAMPLE

Suppose we have two classifiers available, and focus on the point (x_0, y_0) . What can we say about the risk of the mixture of f_1, f_2 ?

MATCHING PENNIES GAME

The *Matching pennies* game is a simple example with only **mixed** Nash equilibrium.

MATCHING PENNIES GAME

The *Matching pennies* game is a simple example with only **mixed** Nash equilibrium.

Instead of choosing an action, choose a distribution over actions *i.e. Toss the coin instead of choosing a side.*

MATCHING PENNIES GAME

The *Matching pennies* game is a simple example with only **mixed** Nash equilibrium.

Instead of choosing an action, choose a distribution over actions *i.e. Toss the coin instead of choosing a side.*

The *matching pennies* game shows mixed strategies can be strictly better.

TOY EXAMPLE (CONT)

Mixing classifiers that are **vulnerable** but not **simultaneously vulnerable** creates a situation reminiscent of the game of *matching pennies*.

CNRS, LAMSADE, PSL

BUT ...

TABLE OF CONTENTS

1	Problem setting
2	Examples from the literature
3	Robustness of randomized classifiers
4	Randomization can improve robustness: The Matching Penny Gap
5	Diverse Ensembles

RANDOMIZATION CAN IMPROVE ROBUSTNESS: The Matching Penny Gap

Note that by Jensen's inequality,

 $\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) \leq \mathbb{E}_{h \sim \mu} \left[\mathcal{R}_{\epsilon}(h) \right]$

RANDOMIZATION CAN IMPROVE ROBUSTNESS: The Matching Penny Gap

Note that by Jensen's inequality,

$$\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) \leq \mathbb{E}_{h \sim \mu} \left[\mathcal{R}_{\epsilon}(h)
ight]$$

In other words, the adversarial risk of a mixture of classifiers is **at most** the average adversarial risk.

RANDOMIZATION CAN IMPROVE ROBUSTNESS: The Matching Penny Gap

Note that by Jensen's inequality,

$$\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) \leq \mathbb{E}_{h \sim \mu} \left[\mathcal{R}_{\epsilon}(h)
ight]$$

In other words, the adversarial risk of a mixture of classifiers is **at most** the average adversarial risk.

Can we do better than the best classifier $h \in \mathcal{H}$ *?*

RANDOMIZATION CAN IMPROVE ROBUSTNESS: THE MATCHING PENNY GAP

Definition 4.1 (Matching penny gap)

The matching penny gap of \mathbf{h}_{μ} *at* (*x*, *y*) *is:*

$$\pi_{\mathbf{h}_{\mu}}(x,y) = \underbrace{\mu(\mathcal{H}_{vb}(x,y))}_{ind.\ vul} - \underbrace{\mu^{\max}(x,y)}_{simult.\ vul}$$

where

$$\begin{array}{ll} \mathcal{H}_{vb}(x,y) &= \{h \in \mathcal{H}_b : \exists x'_h \in B_\epsilon(x) \text{ such that } h(x'_h) \neq y\}, \\ \mathfrak{H}_{svb}(x,y) &= \{\mathcal{H}' \subseteq \mathcal{H}_b : \exists x' \in B_\epsilon(x) \text{ such that } \forall h \in \mathcal{H}', h(x') \neq y\}, \\ \mu^{\max}(x,y) &= \sup_{\mathcal{H}' \in \mathfrak{H}_{svb}(x,y)} \mu(\mathcal{H}'). \end{array}$$
 individually vulnerable max simultaneously vulnerable max sin vulnerable max simultaneously vulnera

If $\pi_{\mathbf{h}_{\mu}}(x, y) > 0$, we say that \mathbf{h}_{μ} is in matching penny configuration at (x, y).

TOY EXAMPLE

 $\begin{aligned} \mathcal{H}_{b} &= \{f_{1}, f_{2}\}, & \mu = \left(\frac{1}{2}, \frac{1}{2}\right) \\ \mathcal{H}_{vb}(x_{0}, y) &= \{f_{1}, f_{2}\} & \Longrightarrow & \mu(\mathcal{H}_{vb}(x_{0}, y)) = 1 \\ \mathfrak{H}_{svb}(x_{0}, y) &= \{\{f_{1}\}, \{f_{2}\}\} & \Longrightarrow & \mu^{\max}(x_{0}, y) = \frac{1}{2} \\ \therefore & \pi_{\mathbf{h}_{\mu}}(x_{0}, y) = 1 - \frac{1}{2} = \frac{1}{2} \end{aligned}$

Figure. Let us $\pi_{\mathbf{h}_{\mu}}$ at the point (x_0, y) for this toy example. Both f_1, f_2 correctly predict the class *y* for x_0 in the white area, but they are fooled in the orange and blue areas, respectively.

Two vulnerable classifiers can be mixed to obtain $\frac{1}{2}$ expected adversarial risk !

MAIN RESULT

Theorem 1

For a probabilistic classifier $\mathbf{h}_{\mu} : \mathcal{X} \to \mathcal{P}(\mathcal{Y})$ constructed from a BHS \mathcal{H}_{b} using any $\mu \in \mathcal{P}(\mathcal{H}_{b})$,

$$\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) = \mathbb{E}_{h \sim \mu} \left[\mathcal{R}_{\epsilon}(h) \right] - \mathbb{E}_{(x,y) \sim \rho} [\pi_{\mathbf{h}_{\mu}}(x,y)].$$
(1)

This theorem shows the link between the risk of a mixture \mathbf{h}_{μ} and the average risk. The gap is exactly the expected *matching penny gap*.

WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

For $\mu \in \mathcal{P}(\mathcal{H}_b)$, $\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) < \inf_{h \in \mathcal{H}_b} \mathcal{R}_{\epsilon}(h)$ if and only if the following condition holds.

$$\mathbb{E}_{(x,y)\sim\rho}[\pi_{\mathbf{h}_{\mu}}(x,y)] > \mathbb{E}_{h\sim\mu}[\mathcal{R}_{\epsilon}(h)] - \inf_{h\in\mathcal{H}_{h}}\mathcal{R}_{\epsilon}(h)$$

WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

For $\mu \in \mathcal{P}(\mathcal{H}_b)$, $\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) < \inf_{h \in \mathcal{H}_b} \mathcal{R}_{\epsilon}(h)$ if and only if the following condition holds.

$$\mathbb{E}_{(x,y)\sim\rho}[\pi_{\mathbf{h}_{\mu}}(x,y)] > \mathbb{E}_{h\sim\mu}[\mathcal{R}_{\epsilon}(h)] - \inf_{h\in\mathcal{H}_{b}}\mathcal{R}_{\epsilon}(h)$$

Randomized classifiers are better if their expected matching penny gap is high.

WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

For $\mu \in \mathcal{P}(\mathcal{H}_b)$, $\mathcal{R}_{\epsilon}(\mathbf{h}_{\mu}) < \inf_{h \in \mathcal{H}_b} \mathcal{R}_{\epsilon}(h)$ if and only if the following condition holds.

$$\mathbb{E}_{(x,y)\sim\rho}[\pi_{\mathbf{h}_{\mu}}(x,y)] > \boxed{\mathbb{E}_{h\sim\mu}[\mathcal{R}_{\epsilon}(h)] - \inf_{h\in\mathcal{H}_{b}}\mathcal{R}_{\epsilon}(h)}$$

- ▶ Randomized classifiers are better if their expected matching penny gap is high.
- ▶ RHS tells us that the individual $h \in H_b$ should have similar robustness.

TABLE OF CONTENTS

5	Diverse Ensembles
4	Randomization can improve robustness: The Matching Penny Gap
3	Robustness of randomized classifiers
2	Examples from the literature
1	Problem setting

DETERMINISTIC ENSEMBLES

Ensembles have been used widely for all learning tasks.

Intuitively, diversity has been considered a key component for performance [KW03; Kun14].

DETERMINISTIC ENSEMBLES

Ensembles have been used widely for all learning tasks. Intuitively, diversity has been considered a key component for performance [KW03; Kun14].

In the adversarial attacks literature, there has also been a few efforts to build **diverse ensembles** as a robust alternative.

COMBINING CLASSIFIERS

Deterministic ensembles and mixtures of classifiers are similar, but **not equal**. Here, $f : \mathcal{X} \to \Delta^K$ (probits), and $\tilde{f}(x)$ denotes $\arg \max_k f(x) \in \{e_1, \dots, e_K\}$.

 $^{^1\}mbox{Here}$ we are comparing with the combining methods used in the ensemble methods we are going to see next. CNRS, LAMSADE, PSL

COMBINING CLASSIFIERS

Deterministic ensembles and mixtures of classifiers are similar, but **not equal**. Here, $f : \mathcal{X} \to \Delta^K$ (probits), and $\tilde{f}(x)$ denotes $\arg \max_k f(x) \in \{e_1, \dots, e_K\}$.

Ensembles ¹	Mixtures
$f(x) = \arg \max_k \left(\sum_i w_i f_i(x)\right)_k$	$\sum_i w_i \tilde{f}_i(x)$
$\ell^{0-1}(f, x, y) = \mathbb{1}\left[\arg \max_k \left(\sum_i w_i f_i(x) \right)_k \neq y \right]$	$\ell^{0-1}(f,x,y) = 1 - \left(\sum_i w_i \widetilde{f}_i(x)\right)_y$

What is the attacker trying to optimize in each case ?

 $^{^1\}mbox{Here}$ we are comparing with the combining methods used in the ensemble methods we are going to see next. CNRS, LAMSADE, PSL

COMBINING CLASSIFIERS - TOY EXAMPLE

Classes are [car, plane, boat]. Correct class is car

GAL [KQ19]

GAL, for *Gradient Alignment Loss*, minimizes the *coherence* of the gradients of the models.

$$coherence(\{\nabla_x J_i\}_{i=1}^m) = \max_{a \neq b} CS(\nabla_x J_a, \nabla_x J_b)$$

To do so, it minimizes a proxy

$$GAL = \log\left(\sum_{a < b} \exp(CS(\nabla_x J_a, \nabla_x J_b))\right)$$

GAL [KQ19]

Improving Adversarial Robustness of Ensembles with Diversity Training

GAL [KQ19]

Improving Adversarial Robustness of Ensembles with Diversity Training

ADP [PAN+19]

ADP, for *Adaptive Diversity Promoting regularizer*, operates on the probits and not on gradients.

$$ADP_{\alpha,\beta}(x,y) = \alpha \cdot \underbrace{\mathcal{H}(\mathcal{F})}_{entropy} + \beta \cdot \underbrace{\log(\mathbb{ED})}_{alignment}$$

ADP [PAN+19]

Figure 1. Illustration of the ensemble diversity. **Baseline:** Individually training each member of the ensemble. **ADP:** Simultaneously training all the members of the ensemble with the ADP regularizer. The left part of each panel is the normalized non-maximal predictions.

OTHER METHODS

- ► GPMR [Dab+20]
- ► DVERGE [Yan+20]
- ► TRS [Yan+21]

REFERENCES I

- [ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. "Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples".
 In: International conference on machine learning. PMLR. 2018, pp. 274–283.
- [Dab+20] Ali Dabouei et al. "Exploiting joint robustness to adversarial perturbations". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 1122–1131.
- [Dhi+18] Guneet S. Dhillon et al. "Stochastic Activation Pruning for Robust Adversarial Defense". In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL: https://openreview.net/forum?id=H1uR4GZRZ.
- [DS22] Hassan Dbouk and Naresh Shanbhag. "Adversarial Vulnerability of Randomized Ensembles". In: *International Conference on Machine Learning*. PMLR. 2022, pp. 4890–4917.

REFERENCES II

- [HRF19] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. "Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 588–597.
- [KQ19] Sanjay Kariyappa and Moinuddin K. Qureshi. "Improving Adversarial Robustness of Ensembles with Diversity Training". In: *CoRR* abs/1901.09981 (2019). arXiv: 1901.09981. URL: http://arxiv.org/abs/1901.09981.
- [Kun14] Ludmila I Kuncheva. *Combining pattern classifiers: methods and algorithms*. John Wiley & Sons, 2014.
- [KW03] Ludmila I Kuncheva and Christopher J Whitaker. "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy". In: *Machine learning* 51 (2003), pp. 181–207.
- [Liu+18] Xuanqing Liu et al. "Towards robust neural networks via random self-ensemble". In: *Proceedings of the European Conference on Computer Vision* (ECCV). 2018, pp. 369–385.

REFERENCES III

- [Pan+19] Tianyu Pang et al. "Improving adversarial robustness via promoting ensemble diversity". In: International Conference on Machine Learning. PMLR. 2019, pp. 4970–4979.
- [Pan+21] Konstantinos Panousis et al. "Local competition and stochasticity for adversarial robustness in deep learning". In: *International Conference on Artificial Intelligence and Statistics*. PMLR. 2021, pp. 3862–3870.
- [PCT21] Konstantinos P Panousis, Sotirios Chatzis, and Sergios Theodoridis. "Stochastic local winner-takes-all networks enable profound adversarial robustness". In: *arXiv preprint arXiv:2112.02671* (2021).
- [Pin+19] Rafael Pinot et al. "Theoretical evidence for adversarial robustness through randomization". In: *Advances in Neural Information Processing Systems* 32 (2019).
- [Pin+20] Rafael Pinot et al. "Randomization matters how to defend against strong adversarial attacks". In: International Conference on Machine Learning. PMLR. 2020, pp. 7717–7727.
- [Tra+20] Florian Tramer et al. "On adaptive attacks to adversarial example defenses". In: *Advances in neural information processing systems* 33 (2020), pp. 1633–1645.

REFERENCES IV

- [Wic+21] Matthew Wicker et al. "Bayesian inference with certifiable adversarial robustness". In: *International Conference on Artificial Intelligence and Statistics*. PMLR. 2021, pp. 2431–2439.
- [Xie+17] Cihang Xie et al. "Mitigating adversarial effects through randomization". In: *arXiv preprint arXiv:1711.01991* (2017).
- [Yan+20] Huanrui Yang et al. "DVERGE: diversifying vulnerabilities for enhanced robust generation of ensembles". In: *Advances in Neural Information Processing Systems* 33 (2020), pp. 5505–5515.
- [Yan+21] Zhuolin Yang et al. "Trs: Transferability reduced ensemble via promoting gradient diversity and model smoothness". In: *Advances in Neural Information Processing Systems* 34 (2021), pp. 17642–17655.
- [Yu+21] Tianyuan Yu et al. "Simple and effective stochastic neural networks". In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021, pp. 3252–3260.