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Abstract—Finding small sets of interesting patterns is an
important challenge in pattern mining. In this paper, we argue
that several well-known approaches that address this challenge
are based on performing pairwise comparisons between patterns.
Examples include finding closed patterns, free patterns, relevant
subgroups and skyline patterns. Although progress has been
made on each of these individual problems, a generic approach
for solving these problems (and more) is still lacking. This paper
tackles this challenge. It proposes a novel, generic approach for
handling pattern mining problems that involve pairwise compar-
isons between patterns. Our key contributions are the following.
First, we propose a novel algebra for programming pattern
mining problems. This algebra extends relational algebras in
a novel way towards pattern mining. It allows for the generic
combination of constraints on individual patterns with dominance
relations between patterns. Second, we introduce a modified
generic constraint satisfaction system to evaluate these algebraic
expressions. Experiments show that this generic approach can
indeed effectively identify patterns expressed in the algebra.

I. INTRODUCTION

Pattern mining constitutes a well established class of tasks
in data mining. The most well-known task is frequent itemset
mining, which consists in finding all sets of items that have a
high support in a given transactional database. Unfortunately,
basic frequent itemset mining is not very useful. The number
of frequent itemsets is huge in many databases, even when
using high support thresholds.

A large body of work has sought to solve this pattern
explosion by mining for patterns under constraints. Constraint-
based pattern mining is concerned with finding all patterns π
in a pattern language L that satisfy some constraint ϕ [1]:

Th(L,D, ϕ) = {X ∈ L |ϕ(X,D) is true}. (1)

The constraint ϕ is typically a conjunction of multiple con-
straints that can be defined on the pattern X or the data D.
Given that ϕ is evaluated on patterns individually, ϕ is often
called a local constraint [2]. Constraints usually come from
domain-specific insights or are provided by the user to remove
uninteresting patterns.

For example, one may require that the size of a pattern
is smaller than some threshold, or that it does (not) contain
certain items. One can also require that patterns have a high
utility [3], that they satisfy syntactical constraints [4], or that
they individually score well with respect to a given statistical
test [5].

Numerous approaches to pattern mining have been devel-
oped to effectively find the patterns adhering to a set of local
constraints.

The benefit of a constraint-based framework is twofold.
First, users can combine existing constraints to formulate new
problems according to their needs. Second, researchers can
identify classes of constraints with similar properties and focus
their attention on devising generic pruning strategies for these
classes of constraints [6]. In particular, recent work has shown
that constraint programming provides a generic framework to
capture many pattern mining settings [7].

However the constraint-based pattern mining framework has
limitations: several types of mining tasks cannot be formulated
using constraints over individual patterns.

Let us consider the problem of relevant pattern mining [8]
(or subgroup discovery [9]) as an example. This is a pattern
mining task in a supervised setting where two databases
are given (referred to as “positive” and “negative”). Mining
relevant patterns consists in finding patterns that discriminate
the positive dataset (D+) from the negative one (D−). A
pattern P1 that occurs in positive examples T+

1 and negative
examples T−1 can be considered irrelevant in this setting if
there is another pattern P2 that occurs in positive examples
T+
2 and negative examples T−2 , for which:

T+
1 ⊆ T

+
2 and T−2 ⊂ T

−
1 .

Since P2 discriminates the two datasets better than P1, we
would like to specify that P2 is a better solution than P1 and
that P1 is a solution only if P2 is not. Clearly, local constraints
are inadequate for this purpose because they consider patterns
individually.

Relevant pattern mining is not an isolated case. Many
other pattern mining settings can not be formalized adequately
using conjunctions of constraints. Bonchi and Lucchese [10]
have shown that combinations of closedness and monotonic
constraints such as the max-cost constraint can lead to am-
biguous problem definitions in the constraint-based mining
framework. Moreover, Crémilleux et al. [2] highlighted the
need to use global constraints on patterns (i.e. constraints
whose satisfaction depends on more than one pattern) to
address problems such as finding condensed representations
of patterns or top-k sets of patterns.

The main insight of this paper is that these settings can
be formulated using a combination of constraints and domi-
nance relations. Dominance relations are pairwise preferences
between patterns. They can be used to express the idea that
a pattern P1 is preferred over another pattern P2, or, in our
terminology, that P1 dominates P2.



Building on this observation we introduce a unified algebra
that can express both constraints and dominance relations.
A key component of this framework is the dominance alge-
bra, which allows to compose pairwise dominance relations
into complex pre-orders among the patterns. We will show
that many settings in the pattern mining literature can be
formulated elegantly using compositions of constraints and
dominance relations. Here, we do not only consider relevant
subgroups, but also maximal patterns [11], closed [12] and
free patterns [13] with any type of local constraint, sky
patterns [14], dominated patterns in PN spaces [15], as well
as new settings.

Another important contribution of this paper is that we
demonstrate that this framework does not only provide a
uniform approach to formulate these tasks, but also leads
to a generic and effective method to search for solutions.
Indeed, both local constraints and dominance relations can
be used in a generic way to prune the search space. The
expressions in this algebra can be evaluated effectively using a
modified version of a constraint programming system [7]. Our
experiments demonstrate that the resulting system exploits the
dominance relations effectively and performs better than naive
approaches, and in several cases, even better than specialized
algorithms.

The paper is organized as follows: Section II gives an
overview of several well-known pattern mining settings and
the basic principles of dominance programming; Section III
introduces the unified algebra to describe constraints and dom-
inance relations. Section IV provides examples of problems
expressed in the dominance algebra. Section V describes a
method for evaluating expressions in this algebra based on
constraint programming technology. Section VI evaluates the
approach experimentally.

II. DOMINANCE RELATIONS IN ITEMSET MINING

In this section, we introduce several well-known itemset
mining settings, and demonstrate how the principle of domi-
nance programming can be used to formulate these settings.

The itemset mining problem can be defined as follows. Let
I = {1, . . . , n} be a set of items and T = {1, . . . ,m} a set
of transaction identifiers. A dataset is a set D ⊆ I × T . The
cover of an itemset is defined as:

coverD(X) = {t ∈ T : ∀i ∈ X, (i, t) ∈ D} (2)

and contains the identifiers of transactions in which all items
of X occur.

Frequent itemset mining consists in enumerating all the
subsets X of I whose cover is larger than a user defined
minimum frequency threshold θ:

Thfi = Th(I,D, p) = {X ⊆ I | |coverD(X)| ≥ θ}. (3)

A key observation in this paper is that many settings are
cumbersome to formulate with constraints only, but are more
easily described with combinations of constraints and domi-
nance relations. This includes maximal, closed and free itemset
mining, relevant subgroup discovery and sky patterns. We

will first introduce these problems, where at this moment we
closely follow the notation used in the papers that introduced
these settings.

a) Maximal Itemset Mining: Maximal frequent itemsets
are maximal in that there exists no larger itemset that is still
frequent:

{X ⊆ I | |coverD(X)| ≥ θ∧
@Y ⊃ X : coverD(Y ) ≥ θ} (4)

Here, Y dominates X iff Y ⊃ X∧coverD(Y ) ≥ θ. Observe
that coverD(Y ) ≥ θ can be computed independent of X and
is hence a local constraint. To mine maximal patterns, we can
simply introduce a dominance relation between two patterns
X and Y stating that Y dominates X iff Y ⊃ X; we are
interested in those patterns that are not dominated within the
set of all itemsets that are frequent.

b) Closed Frequent Itemset Mining: This setting was
introduced by Pasquier et al. [12]. It can be formalized as
the problem of finding

{X ⊆ I | |coverD(X)| ≥ θ∧ (5)
@Y ⊆ I : Y ⊃ X ∧ coverD(Y ) = coverD(X)}

Hence Y dominates X iff Y ⊃ X ∧ coverD(Y ) =
coverD(X). In this case, if a solution is not dominated by
any other, it is a closed itemset.

c) Free Itemset Mining: Free itemsets are the minimal
generators of the closed frequent itemsets [13]. The difference
with closed itemsets is that we now prefer the smallest subsets
among patterns that cover the same transactions. The domi-
nance relation is: Y dominates X iff Y ⊂ X ∧ coverD(Y ) =
coverD(X).

d) Relevant Subgroup Discovery: This example was al-
ready mentioned informally in the introduction. The term
subgroup discovery or discriminative itemset mining [16] is
often used when each transaction in the database has an asso-
ciated label, for example positive or negative. The complete
definition of relevant subgroup discovery (of which the one in
the introduction is a special case) is the following:

{X ⊆ I | |coverD+(X)| ≥ θ∧ 6 ∃Y ⊆ I :

coverD+(Y ) ⊇ coverD+(X)∧
coverD−(Y ) ⊆ coverD−(X)∧
(coverD(X) = coverD(Y )→ Y ⊃ X)} (6)

The last condition states that if two patterns cover exactly the
same set of transactions, the one with the largest set of items
is preferred.

The dominance relation here is that Y dominates X
iff coverD+(Y ) ⊇ coverD+(X) ∧ coverD−(Y ) ⊆
coverD−(X) ∧ (coverD(X) = coverD(Y )→ Y ⊃ X).

e) Sky Patterns: A last example are the recently intro-
duced sky patterns [14]. The problem of mining sky patterns is
similar to that of finding the Pareto-optimal front for a multi-
objective optimization problem. More formally, let m1(I) and
m2(I) be two measures that can be calculated for any itemset



I . For example, m1 measures the size of the itemset and m2

measures its frequency. The problem of finding all sky patterns
given m1 and m2 can be formalized as:

{X ⊆ I | |coverD(X)| ≥ 1∧ (7)
@Y ⊆ I : |coverD(X)| ≥ 1∧

((m1(Y ) > m1(X) ∧m2(Y ) ≥ m2(X))∨
(m1(Y ) ≥ m1(X) ∧m2(Y ) > m2(X)))}

Here |coverD(X)| ≥ 1 is a local constraint; the dominance
relation is that Y dominates X iff ((m1(Y ) > m1(X) ∧
m2(Y ) ≥ m2(X))∨ (m1(Y ) ≥ m1(X)∧m2(Y ) > m2(X)).

The above examples provide the intuition that a dominance
relation captures a wide range of non-local constraints and
pattern mining tasks. The problem of how to specify them in
a simple general framework is addressed next.

III. AN ALGEBRA FOR DOMINANCE PROGRAMMING

The proposed algebra will allow us to specify both the
local constraints and the dominance relations of the above
problems in a concise way. The algebra consists of two parts:
a constraint algebra, which will be used to express local
constraints, and a dominance algebra, which will be used to
express the dominance relations; the main novelty in our work
is the use of an algebra to combine constraints with dominance
relations, and the use of an algebra to specify dominance
relations.

A. A Constraint Algebra for Local Constraints

Our approach combines ideas from database theory with
ideas from constraint programming. Central is the idea that a
local pattern mining problem can be seen as a constraint satis-
faction problem (CSP) [7], where each pattern corresponds to a
solution of the CSP. More formally, a CSP P = (V,D, C) [17]
is specified by
• a finite set of variables V;
• an initial domain D, which maps every variable v ∈ V

to a finite set of values D(v);
• a finite set of constraints C.

Solving a CSP corresponds to finding an assignment to the
variables in V from their domain D(v) such that all constraints
in C are satisfied.

We can represent itemset mining problems with local
constraints as constraint satisfaction problems, following the
methodology of De Raedt et al. [7]. As an example consider
the problem of frequent itemset mining. The problem of
frequent itemset mining can be represented by means of two
sets of variables:
• I = {i1, . . . , in}, which represent the items;
• T = {t1, . . . , tm}, which represent the transactions.

Hence, V = I ∪T . All variables v ∈ V have a binary domain:
D(v) = {0, 1}. Finally, we impose the following constraints
between these variables:
• coverage, stating that a transaction is covered (Equation

2) iff it contains all items in the itemset represented
by the item variables. The constraint that should be

i1 i2
t1 1 1
t2 0 1
t3 0 1

(a) a small database

i1 i2 t1 t2 t3
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
...

...
...

...
...

1 1 1 1 1

(b) all potential assignments for
the variables

⇒
i1 i2 t1 t2 t3 represented itemset
0 0 1 1 1 ∅
0 1 1 1 1 {2}

(c) all assignments satisfying the coverage and the minimum
support constraint with θ = 2.

Fig. 1. Illustration of the potential solutions selected by a minimum support
constraint for a given database.

satisfied between the variables in I and T is hence:
coverD(I, T ) ≡ (∀tj ∈ T : tj = 1 ↔ (∀ik ∈ I :
(ik = 1→ (j, k) ∈ D));

• minimum frequency, stating that the sum of the
transaction variables exceeds a given threshold θ:
support(T , θ) ≡

∑
tj∈T tj ≥ θ.

One way of looking at this, is that from all potential assign-
ments to the variables in V , the constraints select a subset.
This is illustrated in Figure 1.

We can observe a similarity between database querying and
constraint satisfaction at this point. If we would have a table
with all potential assignments to all variables (hence, we would
materialize the table in Figure 1(b), where each column of the
table corresponds to a variable in the CSP), we could find the
solutions to the itemset mining problem by only selecting those
rows (assignments) from the table that satisfy the constraints.
Our algebra exploits this observation, allowing the reuse of
concepts of relational algebra to formalize mining problems.

Expressions in our algebra for specifying constraint satis-
faction problems are defined as follows.

Definition 1 (Constraint Algebra). Expressions in the con-
straint algebra are inductively defined as follows.
• (generator) let a and b be integers, then {a, . . . , b} is

an expression in our algebra; it defines a table with
a single column of length |{a, . . . , b}| where each row
corresponds to a different value from {a, . . . , b}

• (product) let E1 and E2 be expressions in our algebra,
then E1 × E2 is an expression in our algebra; let T1
and T2 be the tables represented by E1 and E2, then
E1 × E2 defines the table {(v1, . . . , vn, u1, . . . , um) |
(v1, . . . vn) ∈ T1, (u1, . . . , um) ∈ T2}

• (power) let E be an expression in our algebra and let n
be an integer, then En is an expression in our algebra;
let T be the table represented by E, then En represents
the table T × T × · · · × T , where the product is taken
n− 1 times

• (renaming) let E be an expression in our algebra and V
an identifier, then λV (E) is an expression; let T be the
table represented by E, then λV (E) represents the table
T in which all columns have been renamed with names



V [1]...V [n], where n is the number of columns in T . If
n = 1, the name is assumed to be V ; V will be referred
to as a variable name

• (selection) let E be an expression in our algebra and
let c be a constraint, then σϕ(E) is an expression in
our algebra as well; let T be the table represented by
expression E, then σϕ(E) represents the table with all
rows in T that satisfy constraint ϕ.

Note that we made a deliberate choice to use a notation
which is close that of relational algebra. As an example, we
can formalize the problem of frequent itemset mining with the
following expression.

Efi ≡ σsupport(T,θ)
(
σcover(I,T )(λI({0, 1}n)× λT ({0, 1}m))

)
The expression reads as follows:
1) The generator (λI({0, 1}n) × λT ({0, 1}m)) conceptu-

ally describes all the tuples (i1, . . . , in, t1, . . . , tm) in
In × Tm. Each tuple represents an itemset and a set of
transaction identifiers.

2) The inner select operator (σcover(I,T )(. . .)) selects only
the tuples in which a value ti = 1 iff the transaction ti
covers the itemset (i1, . . . , in). These are all the tuples
that represent itemsets and their corresponding cover.

3) The outer select operator (σsupport(T,θ)(. . .)) selects
only the tuples in which the number of tis equal to
1 is greater than θ. In other words, all the tuples that
represent frequent itemsets and their cover.

The selection operator in our algebra can in principle use
all constraints available in traditional constraint programming
systems [17]. Indeed, one can see that expressions in the
constraint algebra correspond closely to the basic elements of
a CSP: the λ operator essentially introduces variables, while
the σ operator introduces constraints between these variables.
Consequently, an expression in the constraint algebra could
rather straightforwardly be evaluated using generic constraint
programming systems, as was shown in [18].

B. A Dominance Algebra for Programming Pre-orders

We will now discuss how the dominance relationship intro-
duced in Section II can be formalized in an extension of the
constraint algebra. The main idea is to express the domina-
tion relations as pairwise preferences between assignments to
variables. The main theoretical tool is that of preorders.

Definition 2. Let P be a set and let R be a binary relation
over elements in P , i.e. R ⊆ P × P ; then R is a preorder if:
• (transitivity) if xRy and yRz, then xRz;
• (reflexivity) for all x ∈ P : xRx.

Here xRy is a shorthand for (x, y) ∈ R.

In our case, the set P will be a set of solutions to a CSP, i.e.
P is the set of all rows in a table T defined by an expression
E in the constraint algebra.

For a given preorder, we can now define the dominance
operator in our algebra:

Definition 3 (Dominance Operator). Let E be an expression
in the constraint algebra and let T be the table represented by
the expression E. Furthermore, let R be a preorder over the
elements in T . Then σR(E) represents the following table:

σR(T ) = {~x ∈ T | ∀~y ∈ T : ~yR~x→ ~xR~y}

i.e., the set of all rows that are not strictly dominated ac-
cording to the preorder, that is, they are only dominated by
equivalent solutions.

As an example, consider T = {a, b, c, d} and R =
{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d)}. According to
the dominance relation R, a and b are equivalent (because
(a, b) and (b, a) are both in R) but incomparable to either c
or d. Moreover, d is dominated (but not equivalent) to c. We
thus have σR(T ) = {a, b, c}.

The main remaining question is now how to specify the
preorder R. Clearly an extensional definition of R is not
practical when the number of tuples is large; therefore we
introduce an algebra for programming preorders.

Definition 4 (Preorder Algebra). Expressions E in the pre-
order algebra, for a table T with column names V , are
inductively obtained as follows:
• let v be a variable (column) in V , then (≥v), (≤v) and

=v are expressions in the preorder algebra. They define
preorders

(≥v) ≡ {(~x, ~y) | ~x, ~y ∈ T, xv ≥ yv}

and
(≤v) ≡ {(~x, ~y) | ~x, ~y ∈ T, xv ≤ yv};

finally,

(=v) ≡ {(~x, ~y) | ~x, ~y ∈ T, xv = yv};

here xv and yv denote the values of variable v in tuple
~x and ~y, respectively; note that the values each variable
v can take are assumed to be ordered;

• let E1 and E2 be expressions in the preorder algebra,
then E1∧E2 is an expression in the preorder algebra as
well; let R1 and R2 be the preorders identified by these
expressions, then E1 ∧ E2 defines a preorder

(~x, ~y) ∈ R1 ∧R2 ⇔ (~x, ~y) ∈ R1 ∧ (~x, ~y) ∈ R2.

Let us consider the example of maximal frequent itemset
mining to illustrate this algebra. Remember from Section II
that the problem can be formalized as follows:

{X ⊆ I | |coverD(X)| ≥ θ∧ (8)
@Y ⊃ X : coverD(Y ) ≥ θ} (9)

with the following dominance relation: Y dominates X iff
Y ⊇ X . In our tabular representation of potential solutions,
this means that a row ~x representing one pattern, dominates
another row ~y representing another pattern, iff for each column
v representing an item, the inequality xv ≥ yv holds. We can
formalize this preorder by this expression:

∧i∈I(≥i),



where I is the set of columns corresponding to item variables.
To obtain the maximal frequent itemset mining problem, we

can now formulate this dominance relation in our algebra, and
apply it to the expression representing all frequent itemsets
(Efi): σ∧i∈I(≥i) (Efi) . In total we now have the following
expression:

σ∧i∈I(≥i)(σsupport(T,θ)(

σcover(I,T )(λI({0, 1}n)× λT ({0, 1}m))))

For example, in Figure 1 the final set of patterns determined
by this expression would consist of a single row (0,1, 1, 1, 0)
as it dominates the row (0,0, 1, 1, 1) (I variables indicated in
bold).

We believe that this closely corresponds to the intuition
most researchers have about this problem: among all frequent
itemsets, we are interested in finding only those that are
maximal.

IV. EXAMPLES OF DOMINANCE PROGRAMMING

We now show how the examples in Section II, as well as
others, can be expressed in the algebra.

A. Closed Frequent Itemset Mining

The expression for this problem extends that of the frequent
itemset mining problem. In addition, we need to express that
if two itemsets cover the same set of transactions, we prefer
the larger one. We can formalize this in the preorder algebra
with the following expression: (∧t∈T (=t))∧ (∧i∈I(≥i)). The
closed frequent itemset mining problem is then expressed in
total with:

σ(∧i∈I(≥i))∧(∧t∈T (=t))(Efi)

B. Free Itemsets

From a dominance point of view, the only difference with
closed itemsets is that now subsets dominate the supersets
covering the same transactions: (∧t∈T (=t))∧(∧i∈I(≤i)). Free
frequent itemset mining can hence be expressed as:

σ(∧i∈I(≤i))∧(∧t∈T (=t))
(Efi)

C. Cost-based Itemset Mining

We now first demonstrate how additional local constraints
can be expressed in our algebra. In the next section, we
will extend this formulation with dominance relations. A
prototypical local constraint is a constraint on the cost of
an itemset, assuming every item has an individual cost [4].
Given a cost vector C = (c1, . . . , cn) that contains a cost ci
for every item i, the cost of an itemset I can be computed as
follows: cost(I) =

∑
i∈I Ci. Using our algebra, we extend the

standard frequent itemset mining expression with a variable c
and constrain it to the cost of the itemset:

Efic ≡ σc=cost(I)(Efi × λc({0, . . . , n})) (10)

D. Cost-based Itemset mining and Dominance Relations

As studied by [10], combining closed itemset mining with
cost-based itemset mining with a maximum cost can result in
different solutions depending on the interpretation: one can
either mine all closed itemsets and filter out the ones with
a too high cost (as one would do in post-processing), or
calculate the closure of all itemsets that have a cost lower than
some threshold. While the former is typically implemented in
existing systems (out of practical reasons), the latter is actually
more meaningful.

Our algebra allows to express both variants. Let σclo ≡
σ(∧t∈T (=t))∧(∧i∈I(≥i)), then the closed itemsets that are not
too costly are formalized as:

σc≤θ(σclo(Efic)); (11)

and the closure over the itemsets that are not too costly:

σclo(σc≤θ(Efic)). (12)

This demonstrates that the algebra is rich enough to cover
settings that have been problematic in the standard constraint-
based mining framework up to now and also does this in an
intuitive way.

E. Sky Patterns

We illustrate the sky pattern setting on an example by
Soulet et al. [14]. They address the problem of extracting sky
patterns with respect to the frequency and area measures. The
frequency of an itemset is the size of its cover: freq(I) =
|cover(I)|, while the area of an itemset corresponds to the
dimension of the itemset in terms of items and transactions:
area(I, T ) = |{(i, t)|i ∈ I, t ∈ T}| = |I| ∗ |T |.

We can reuse the expression for frequent itemset mining
here, with the assumption that θ = 1.

Next, as was the case for cost-based itemset mining, we add
two integers f and a representing the frequency and the area
respectively:

Ei2 ≡ σf=freq(I)(Efi × λf ({0, . . . ,m})) (13)

Ei3 ≡ σa=area(I,T )(Ei2 × λa({0, . . . , (n ∗m)})) (14)

Then mining the sky itemsets with respect to the set of
measures {frequency, area} can be formalized as follows:

σ(≥a)∧(≥f )(Ei3) (15)

F. Relevant Subgroup Discovery

The setting of relevant subgroup discovery introduced ear-
lier can be expressed using the following expression:

σ(∧t∈T+∪T− (=t))∧(∧i∈I(≥i))
(σ(∧t∈T+ (≥t))∧(∧t∈T− (≤t))(

σcover(I,T+)(λT+({0, 1}m
+

)×

σcover(I,T−)(λT−({0, 1}m
−
)×λI({0, 1}n)))))

In this expression, the inner-most dominance operator pre-
serves patterns with the same transaction set because they are
considered equivalent. The second operator ensures that among
such patterns the largest ones are preferred, as required.



G. Dominated Patterns in PN Space

Relevant subgroups dominate each other based on the posi-
tive and negative transactions covered. Instead, one could also
impose that a pattern dominates another pattern if it simply
covers more (or equal) positive transactions and less (or equal)
negative transactions. The problem is similar to that of finding
all patterns on the convex hull in PN space [15] and is related
to that of finding sky patterns.

In our algebraic notation, this can be expressed by in-
troducing integers p and q that represent the number of
positive/negative transactions covered, and imposing the above
mentioned dominance relation:

σ(≥p)∧(≤q)(σp=freq+(I)∧q=freq−(I)(

λI({0, 1}n)× λp({0, . . . ,m+})× λq({0, . . . ,m−})))

H. Novel settings

The algebra is not restricted to formulating existing prob-
lems. It provides a general yet well-founded way to express
any combination of local constraints and domination relations.

For example, one can formulate the problem of finding the
smallest maximal itemsets as follows:

σ≤s
(σ∧i∈I(≥i)(σs=|I|(Efi × λs({0, . . . , n}))))). (16)

As far as we now, there exists no algorithm capable of
addressing this simple problem.

While the above has shown how a wide range of mining
tasks can be formulated using the algebra, more than is
possible in existing constraint-based mining frameworks, we
will now explain a general way to solve problems expressed
in this algebra.

V. EVALUATING EXPRESSIONS IN THE DOMINANCE
ALGEBRA

To evaluate expressions formalized in the dominance alge-
bra, we first show that every expression can be reduced to
a normal form. Hence, it suffices to design an approach to
evaluate expressions in normal form. Building on earlier work
[18], we then propose to evaluate expressions using constraint
programming techniques. We will give a brief introduction
to constraint programming systems; then we will discuss the
modifications needed to handle the dominance algebra.

A. Normal Form

We can observe the following property on the product
operator × in our algebra.

Lemma 1. Given two dominance algebraic expressions E1

and E2, σ(E1) × E2 is equivalent to σ(E1 × E2), i.e. both
expressions define the same solution set, where σ is either
a dominance operator or a selection operator that only uses
variables present in E1.

Proof: For the selection operator this property carries over
straightforwardly from a similar property for the relational
algebras in database theory. For the dominance operator we
can prove the two directions: if (~x, ~y) ∈ σR(E1) × E2, then

Algorithm 1 Constraint-Search(Domain: D)
1: D :=Propagate(D,ϕ)
2: if constraints were violated then
3: return
4: end if
5: if ∃x ∈ V : |D(x)| > 1 then
6: x :=Select-Variable(V)
7: for all d ∈ D(x) do
8: Constraint-Search(D ∪ {x 7→ {d}})
9: end for

10: else
11: Output solution
12: end if

~x ∈ σR(E1); then all solutions (~x, ~y) with the same ~x but
different ~y must be equivalent under R, as R does not depend
on the variables in ~y. The operator σR returns all equivalent
solutions, and hence (~x, ~y) ∈ σR(E1×E2). The other direction
can be shown using similar properties.

As a consequence of this lemma, we can always rewrite an
expression in the dominance algebra in a normal form of the
following kind:

σ1(σ2(· · ·σn(λv1({1, . . . , c1})×· · ·×λvm({1, . . . , cm})) · · · ))

where σ1, . . . , σn−1 are either dominance or selection oper-
ators, and σn is a selection operator. Using Lemma 1 one
can see that any product of two expressions can always be
rewritten by pushing one of the operands of the product deeper
in the expression, unless both expressions introduce variables.

We will use constraint programming systems to process
expressions in this normal form.

B. Constraint Programming

Constraint programming (CP) systems are general sys-
tems for solving constraint satisfaction problems (CSP). Thus
these systems can be used to evaluate the constraint alge-
bra defined in Section III-A. An expression of the form
σϕ(λv1({1, . . . , c1})× · · · × λvm({1, . . . , cm})), where σϕ is
a selection operator, can easily be evaluated by a constraint
programming system by entering all defined variables and
all constraints in ϕ as constraints in the CP system. This is
possible for all the constraints studied in this paper.

Algorithm 1 gives a high-level overview of a CP system.
Essentially, a CP system is a depth-first search algorithm.
The system maintains a domain of potential values for each
variable in the CSP; D(x) denotes the possible values that a
variable x can still take. Then the CP system searches for
assignments of the variables that satisfy all the constraints
simultaneously by shrinking the domains of the variables. To
shrink the domain D(x) of a variable x, the CP system uses
two mechanisms: constraint propagation and search.

Constraint propagation takes a (partial) solution and evalu-
ates all the constraints, which are stored in a global constraint
store ϕ (line 1). Propagation can have several effects: it can
detect failure (i.e. the current partial solution can never be
extended to a full solution), it can remove a constraint from
consideration, or it can shrink the domain of variables. For



example, consider we have a constraint on three boolean
variables that states that a∨ b∨ c = 1. Given a partial solution
(1, ?, ?), propagation will detect that the constraint is satisfied
and can be removed; given a partial solution (0, 0, ?), we can
detect that c must be 1. For each constraint, a CP system
includes built-in algorithms to perform these reasoning steps.

When no more propagation is possible, the constraint solver
invokes the search procedure. The search procedure selects
an unassigned variable (line 6) according to a user-defined
heuristic (for example the variable with the smallest domain)
and assigns it with a value (line 7). The order in which
variables are selected is known as variable ordering; the order
in which values are selected is known as value ordering. The
value and variable ordering do not affect the correctness of
the algorithm, but may affect its efficiency.

After the assignment, the solving procedure is called recur-
sively (line 8).

C. Evaluating Dominance Expressions with CP

Using a constraint programming system such as the one
shown in Algorithm 1, we can employ the following straight-
forward strategy for evaluating any expression in the normal
form:

1) run a CP system to evaluate σϕ(λv1({1, . . . , c1})×· · ·×
λvm({1, . . . , cm})) and store the result set;

2) post-process the resulting set of solutions iteratively by
applying implementations of σn−1, . . . σ1 consecutively.
The implementations take a set as input and remove all
the non-dominating solutions.

While correct, this approach is not very efficient: the first
step generates the complete set of patterns satisfying the con-
straints, even if the dominance relation is likely to eliminate
most of them during the post-processing step. Maintaining
and post-processing a large number of intermediate results
is computationally expensive. In order to reduce the size of
the intermediate solution step, we combine two strategies:
(1) update the constraint satisfaction problem to eliminate
unwanted solutions from the unexplored search space and (2)
influence the value ordering in order to maximize the impact
of strategy (1).

The main idea is to use the inner-most dominance operator
σn−1 = σR to guide and constrain the search of the CP system.
To this end, we modify Algorithm 1 such that, instead of just
outputting a solution for post-processing (line 11), we also
update the set of constraints such that the CP system will avoid
producing any solutions dominated by the current solution. In
general, we can represent a dominance relation R as∧

v∈V
(≥v) ∧

∧
w∈W

(≤w).

For each solution D, outputted by Algorithm 1, it therefore
suffices to add the constraint∨
v∈V

(v > D(v)) ∨
∨
w∈W

(w < D(w)) ∨
∧

v∈V ∪W
(v = D(v)),

which states that the future solution is either not dominated by
D, or that it is equivalent with it (with respect to the variables
used in the dominance relation).

By employing this strategy, the CP system will avoid
generating solutions that do not satisfy the dominance relation.
However, this strategy can only discard solutions that have not
been generated yet. In order to maximize the effectiveness of
this strategy, we should therefore also take care of selecting
a search order in which solutions are produced in the most
beneficial order. In the case of a single dominance operator,
we can always derive an optimal search order for which we
can guarantee that any solution produced by the modified
Algorithm 1 satisfies the dominance relation, thus eliminating
the need for post-processing. For each variable v in the
dominance relation R, we simply assign values from smallest
to largest (in case of ≤ v) or largest to smallest (in case of
≥ v). (Note that the order in which we select the variables
is irrelevant, only the order in which we select the values for
each variable matters.)

In the general case of multiple stacked dominance operators,
it is often impossible to find such an optimal order and we need
to use post-processing. In this case, it suffices to enumerate all
solutions in reverse order and apply the same constraint update
procedure as before (but replacing the CP search algorithm by
an enumeration of the intermediate solutions).

It is also important to note that the search order can also sig-
nificantly impact the efficiency of the constraint programming
system, such that the optimal search order for the dominance
relation may not be the same as the (often unknown) opti-
mal order for solving the underlying constraint satisfaction
problem. In some cases, it may therefore be beneficial to
diverge from the optimal search order and use one that is
better suited for the underlying CSP. Examining this trade-off
is an important part of future work.

VI. EXPERIMENTS

In this section we evaluate our generic dominance pro-
gramming approach on several tasks. We have implemented
dominance programming by extending the state-of-the-art
Gecode constraint solving system [19], version 4.0.0. The im-
plementation is available on the authors’ website. The formu-
lations for the local constraints were taken from CP4IM [18].
In the following experiments, we compare with ACminer
(v1.0) [13] and Eclat as implemented by Borgelt (v4.0) [20];
LCM (v5.3) [21] and CP4IM (v3.7.3) [18]; and Aetheris
(v0.0.2) [14]. All datasets come from the UCI machine learn-
ing repository and were obtained online1. A description of the
datasets can be found in [18]. Unless mentioned otherwise, the
datasets plotted show representative results. The experiments
were run on computers running Ubuntu 12.04 with quad-core
Intel i7 processors and 16Gb of ram.

A. Closed and free itemset mining

As a baseline comparison, we compare our system with
state-of-the-art systems on the task of closed and free frequent

1http://dtai.cs.kuleuven.be/CP4IM/datasets/
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Fig. 2. Enumerating closed and free itemsets. Free itemsets mining (top),
closed itemset mining (bottom).

itemset mining. Note that we do not have the ambition to be
faster on these specific well-studied problems. Indeed, it is
not expected that a constraint programming approach is faster
on these tasks, as can be seen by comparing the runtime of
the CP-based CP4IM system with Eclat and LCM in Figure 2
(top). Furthermore, closed frequent itemsets can be enumer-
ated in polynomial delay while our system adds constraints
for every solution found. However, such optimizations do not
carry over to other settings, while our system can handle a
large number of settings in a generic way, as we will see.

Figure 2 (bottom) shows similar results for free frequent
itemset mining. Note that the general CP4IM system cannot
handle this mining task in a simple way, while ours can.

B. Combining closed and cost constraints

As explained in [10] and mentioned earlier, combining
the closedness constraint with a minimum frequency and
maximum cost constraint can be done in two different ways.
The first formulation (Equation 12) represents the naive but
algorithmically simpler interpretation, while the second for-
mulation (Equation 11) represent the more meaningful inter-
pretation of taking the closure of all itemsets with a cost lower
than some threshold.

Both can be formulated in our framework, and we report
only on the second formulation. We used a unary cost for
each item and threshold it at 10, respectively 5, percent of
the maximum size. Figure 3 (top) shows runtimes for the two
settings, while the bottom figures show the number of patterns.
The runtime of LCM represents the minimum amount of time
needed in case one would post-process all closed patterns. We
can observe that a higher threshold leads to fewer patterns
and lower runtimes, indicating the effectiveness of the search
procedure. This is most obvious for low minimum support and
cost thresholds, where the search is much more efficient than
a post-processing approach would be.

C. Relevant subgroup discovery

We next compare our system on the task of relevant sub-
group discovery to the proposed approach of Garriga et al [9].
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Fig. 3. Enumerating the closed set of frequent patterns with cost constraints:
runtimes (top), number of patterns (bottom).

They propose a two-step post-processing approach [9]:
1) extract the set of all frequent closed patterns P+, on the

dataset with positive transactions;
2) post-process this set by removing every pattern X ∈ P+

that has a subset Y ⊆ X with the same cover in the
negative transactions.

Due to the lack of implementation and as advised by the
original authors, we used LCM for step one and implemented
a post processor in C++ for step 2.

Figure 4 shows the runtime (top) and number of solutions
(bottom). For most of the datasets of the UCI repository,
the number of closed-on-the-positive patterns is close to the
number of relevant subgroups (such as in the german-credit
dataset). In such cases, almost no additional pruning can be
done and the post-processing approach is the most efficient.
However, when the number of closed patterns diverges from
the number of subgroups (such as in the hepatitis dataset),
the post-processing approach has to handle an overwhelming
number of closed patterns and thus performs poorly. In con-
trast, our approach performs efficiently because it can prune
false-positive candidate patterns (i.e. candidate patterns that
have subsets in the negative transactions).

D. Sky patterns

Finally, we compare our system to the specialized sky
pattern mining system Aetheris [14]. The task is to find all
sky patterns according to the frequency and area measures, as
explained in Section IV. Following the experimental protocol
in [14], we also add a minimum support threshold to better
study the behavior of the systems.

It is worth mentioning that for this problem the branching
strategy was to select the smallest itemsets first (based on the
observations made by [18]). This branching strategy is not
optimal in the sense that it requires post-processing but is
more efficient in practice.

Figure 5 (top) shows that for decreasing minimum support
thresholds, our system is increasingly more successful in
efficiently pruning the search space compared to Aetheris. The
bottom figures show that a post-processing approach would not
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Fig. 4. Enumerating relevant subgroups: runtimes (top), number of patterns
(bottom).
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Fig. 5. Enumerating sky patterns (freq + area): runtimes (top), number of
patterns (bottom).

be feasible for low thresholds as the difference between the
number of closed patterns and sky patterns increases rapidly
(note the exponential scale). On the contrary, our system is
not impacted by the number of intermediate frequent closed
patterns and is thus able to mine datasets without the frequency
constraint (i.e. with θ = 1).

VII. RELATED WORK

The approach presented in this paper has several key fea-
tures, which have been studied individually in the past:

Constraint programming: As discussed earlier in detail,
our approach extends the work of De Raedt et al. [7], which
showed that constraint programming is an effective and generic
paradigm to address and solve constraint based itemset mining
problems.

Constraint programming has also been proposed as a solu-
tion for the problem of k-pattern set mining [22]. However,
in this work a fixed size k of the output was assumed. The
algebraic approach presented in this paper does not assume a
fixed pattern set size and is more scalable.

Within the constraint programming literature, our approach
is related to CP-Nets [23]. CP-Nets provide a generic approach

for specifying preference relations between solutions; they can
be seen as an alternative formalism for specifying dominance
relations. However, our algebra is more practical for the
specification of orders in pattern mining.

Generic pattern mining and condensed representations:
A class of well-known generic methods are those that search
for borders in version spaces under monotonic and anti-
monotonic constraints [24], [25]. Our work is different in
several ways. First, the constraints in our framework are not
necessarily monotonic or anti-monotonic. Second, we rely on
generic constraint solving technology to support this wide
range of constraints. Moreover [26], proposes an algorithm
that can address a broader range of constraints, but do not
provide a language to describe them. Our dominance algebra
represents a very different approach to problem formalization.

Most other generic approaches focus only on local con-
straints; they do not take into account relationships between
patterns and do not build on constraint satisfaction technology
[4], [6].

Multi-objective optimization: The framework that we
propose in this paper is closely related to multi-objective
optimization problems (MOOP) [27], and the identification
of Pareto optimal sets [28]. Our dominance algebra puts a
much stronger focus on expressing dominance relations and
clarifies the relationships between MOOPs and itemset mining
problems. Furthermore, our dominance algebra is explicitly
developed to support preorders over large numbers of vari-
ables. In practice, the number of variables over which a
dominance is defined in MOOPs is typically smaller.

Skyline patterns and queries: The work by Soulet et al.
on skyline patterns [14] can be seen as a direct application
of the MOOP framework to pattern mining. It assumes that
an order is defined over a small number of scoring functions
and does not support the orders that are needed to deal with
problems such as relevant pattern mining and free itemset
mining. The setup of Soulet et al. however fits nicely in the
dominance programming framework.

The methodology presented in this paper has clear relation-
ships to methodologies developed in the database community.
Dominance reporting is a problem also relevant to the database
community [29]. Skyline queries have been developed to
deal with dominance relationships in databases [30]. Our
work is different from traditional skyline queries as it deals
with pattern mining problems where a combinatorial search
is needed. Our algebraic notation closely resembles that of
Codd’s relational algebra [31], but applies this notation in a
context where combinatorial search is needed.

VIII. CONCLUSIONS

In this paper, we have observed that dominance relations
can be found in many pattern mining settings. Building on
this observation, we have proposed an algebra that combines
constraints and dominance relations and that can be used to
adequately describe a broad range of pattern mining settings.
This algebra resembles relational algebras and arguably would
be easy to integrate in a database system.



To evaluate expressions in our algebra, we have proposed a
methodology based on the constraint programming technology.
Despite the gain in generality provided by dominance pro-
gramming, our system can compete with specialized mining al-
gorithms and even outperform them in some cases. We believe
that this is a strong indication that dominance programming
uses the right concepts to describe pattern mining tasks.

Because of its explanatory nature, this work leaves a number
of open questions:

Query rewriting: Given the close connection between
data mining and databases it is natural to wonder whether
common query optimization techniques in databases can also
be applied to dominance programming.

Advanced data structures for evaluating dominance:
Specialized algorithms for dominance reporting [29] could be
used transparently by the CP system to improve efficiency.
Similarly, optimized data structures for checking the domi-
nance within a set of item sets may be used as well.

Intelligent variable and value ordering: At the moment,
our system selects a value ordering that eliminates the need
for post-processing. This order may not always be the most
efficient to solve the core CSP. Studying the impact of the
value ordering on the time required to evaluate dominance
programs would also help to improve the efficiency.

Furthermore, this paper has a strong focus on itemset
mining. An interesting question is how our algebra can be used
to formulate more structured mining tasks such as sequence or
graph mining. Furthermore, there is no reason to believe that
dominance programming could not be used for other types of
problems such as resource allocation problems.
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