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Abstract

This note discusses the properties of the asymmetric part of an outrank-
ing relation à la ELECTRE. Such relations have been used in the pseudo-
disjunctive version of ELECTRE TRI-B. We show that they have properties
that are somewhat different from the ones of outranking relations. Indeed,
contrary to outranking relations, they allow to have at the same time veto
and bonus effects. We suggest that this explains the difficulty in analyz-
ing the properties of the pseudo-disjunctive version of ELECTRE TRI-B
and the complexity of the elicitation methods of its parameters. We give
conditions that characterize such relations.

Key Words: Decisions with multiple attributes, Outranking relations,
Concordance, Discordance, Axiomatic analysis.

1 Introduction

Most outranking methods, including the well known ELECTRE methods (Roy,
1968; Roy and Bertier, 1973), compare alternatives evaluated on several attributes
using the concordance / non-discordance principle. It leads to accepting the propo-
sition that an alternative is “superior” to another if the coalition of attributes
supporting it is “sufficiently important” (concordance condition) and there is no
attribute that “strongly rejects” it (non-discordance condition). The fact that an
alternative is “superior” to another means at least two different things. In the
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ELECTRE methods, superior means “not worse”. Such methods aim at build-
ing a reflexive preference relation that is interpreted as an “at least as good as”
relation. In other methods, like the TACTIC method (Vansnick, 1986), superior
means “strictly better than”. Such methods build an asymmetric relation that is
interpreted as strict preference.

We have studied, from an axiomatic point of view, both reflexive outranking
relations (Bouyssou and Pirlot, 2005a, 2007, 2009) and asymmetric outranking
relations (Bouyssou and Pirlot, 2002b, 2012). We have also recently unified and
generalized the analysis of both cases in Bouyssou and Pirlot (2013). For other ap-
proaches, we refer to Greco, Matarazzo, and S lowiński (2001) and Dubois, Fargier,
Perny, and Prade (2003).

These works leave the following problem open. What are the properties of the
asymmetric part of a reflexive outranking relation? This question is not only of
theoretical interest. Indeed, the pseudo-disjunctive version (also known as “op-
timistic”, we use here the terminology of Almeida-Dias, Figueira, and Roy, 2010
and Roy, 2002) of ELECTRE TRI-B (Roy and Bouyssou, 1993, Ch. 6) makes
use of such a relation, contrary to the pseudo-conjunctive version (also known as
“pessimistic”) that uses a reflexive outranking relation. We will show that the
asymmetric part of a reflexive outranking relation is a more complex object than
an outranking relation since it allows both veto and bonus effects. The idea of
veto is classical in outranking methods and refers to a deleted preference due to an
excessively large negative difference of performance on some criterion. The idea
of bonus is more uncommon. It refers to a preference induced by a large positive
difference of performance on some criterion. This idea was already introduced
in Bouyssou and Pirlot (2013). We will use it here in a slightly different manner:
while the bonus effects in Bouyssou and Pirlot (2013) were unconditional, the ones
used here will only occur in specific cases.

The rest of the paper is organized as follows. Section 2 introduces our notation
and definitions concerning binary relations, product sets and outranking relations.
Section 3 presents background material on traces and our previous characteriza-
tions of outranking relations. Section 4 presents our main results. A final section
concludes and discusses our findings.

2 Definitions and notation

2.1 Binary relations

A preference relation on a set X is in general denoted by R. Omitting obvious
quantifications, we say that a binary relation R on X is reflexive if a R a. It is
complete if a R b or b R a. It is antisymmetric if [a R b and b R a]⇒ a = b. It is
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asymmetric if a R b ⇒ Not [b R a]. It is transitive if [a R b and b R c] ⇒ a R c.
It is Ferrers if [a R b and c R d] ⇒ [a R d or c R b]. It is semi-transitive if
[a R b and b R c]⇒ [a R d or d R c].

A weak order is a complete transitive relation. A semiorder is a reflexive, Fer-
rers and semi-transitive relation. As first observed by Luce (1956), any semiorder
R on X induces a weak order T (R) on X that is defined, for all a, b ∈ X,

a T (R) b if ∀c ∈ X, [b R c⇒ a R c] and [c R a⇒ c R b]. (1)

Conversely, if R is reflexive and there is a weak order T such that, for all a, b ∈ X,
a T b⇒ ∀c ∈ X, [b R c⇒ a R c] and [c R a⇒ c R b], then R is a semiorder.

The asymmetric (resp. symmetric) part of R is the binary relation Rα (resp.
Rσ) such that, for all a, b ∈ X a Rα b if [a R b and Not [b R a]] (resp. a Rσ b if
[a R b and b R a]).

2.2 Product sets

The set of alternatives will be denoted by X. As is usual in conjoint measurement
this set will be identified with the Cartesian product

∏n
i=1Xi of n ≥ 2 sets Xi. The

set Xi gathers all possible evaluations that an alternative can have on attribute i.
The sets Xi are not assumed to be sets of numbers, not even to be ordered sets.
The set {1, 2, . . . , n} of all attributes will be denoted by N .

For any nonempty subset J of the set of attributes N , we denote by XJ

(resp. X−J) the set
∏

i∈J Xi (resp.
∏

i∈N\J Xi). With customary abuse of no-

tation, (xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J and
wi = yi otherwise. We sometimes omit braces around sets. For instance, when
J = {i} we write X−i and (xi, y−i).

If R is a binary relation on X, we say that attribute i ∈ N is influential
for R if there are xi, yi, zi, wi ∈ Xi and x−i, y−i ∈ X−i such that (xi, x−i) R
(yi, y−i) and Not [(zi, x−i) R (wi, y−i)] and degenerate otherwise. A degenerate
attribute has no influence whatsoever on the comparison of the elements of X
and may be suppressed from N . As in Bouyssou and Pirlot (2005a), in order to
avoid unnecessary minor complications, we suppose henceforth that all attributes
in N are influential for R. Our results in Section 4 will use the slightly stronger
hypothesis stating that all attributes are influential for the asymmetric part of R
(see Remark 26).

2.3 Outranking relations

The following definition of an outranking relation is taken from Bouyssou and
Pirlot (2013). Notice that it is silent about the fact that the relation R is reflexive
or asymmetric.
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Definition 1 (Concordance-discordance relations)
Let R be a binary relation on X =

∏n
i=1Xi. We say that R is a concordance-

discordance relation (CDR) if there are:

1. a complete binary relation Si on each Xi (i = 1, 2, . . . , n) (with asymmetric
part Pi and symmetric part Ii),

2. an asymmetric binary relation Vi on each Xi (i = 1, 2, . . . , n) such that
Vi ⊆ Pi,

3. a binary relation � between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e., for all A,B,C,D ⊆ N with A ∪ B = N and
C ∪D = N ,

[A � B,C ⊇ A,B ⊇ D]⇒ C � D, (2)

such that, for all x, y ∈ X,

x R y ⇔ [S [x, y] � S [y, x] and V [y, x] = ∅] , (3)

where S [x, y] = {i ∈ N : xi Si yi} and V [x, y] = {i ∈ N : xi Vi yi}. We say that
〈�, Si, Vi〉 is a representation of R as a CDR.

A concordance relation (CR) is a CDR having a representation in which all
relations Vi are empty.

A CDR with attribute transitivity (CDR-AT) is a CDR for which, for all i ∈ N ,

• Si is a semiorder

• Vi is the asymmetric part of a semiorder Ui

• (Si, Ui) form a homogeneous chain of semiorders, i.e., there is a weak order
Ti on Xi such that:

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Si zi ⇒ xi Si zi] and [zi Si xi ⇒ zi Si yi], and

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Ui zi ⇒ xi Ui zi] and [zi Ui xi ⇒ zi Ui yi].
(4)

The asymmetric (resp. symmetric) part of � will be denoted by � (resp. ,).
It is easy to show that if � satisfies (2), the same is true for �.

Remark 2
For the case of asymmetric outranking relations Bouyssou and Pirlot (2012) have
introduced the following definition1. Instead of (3) they have stated that

x R y ⇔ [P [x, y] �′ P [y, x] and V [y, x] = ∅] ,

1As noted in Bouyssou and Pirlot (2013), this definition also applies to reflexive outranking
relations.
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with Pi an asymmetric binary relation on Xi and �′ a relation between disjoint
subsets of N . This definition is clearly equivalent to the one used above. This is
obvious letting A �′ B ⇔ (N \B) � (N \A) and observing that if �′ satisfies (2)
then � also satisfies (2) (and vice versa). •

Remark 3
Observe that, when Si and Ui are complete, the existence of a weak order Ti
satisfying (4) implies that both Si and Ui are semiorders. The above definition
could therefore omit to specify that Si and Ui are semiorders. Moreover, it is not
difficult to check that, when Si and Ui are complete, the first part of (4) may
equivalently be written as

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Pi zi ⇒ xi Pi zi] and [zi Pi xi ⇒ zi Pi yi],

and the second part as

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Vi zi ⇒ xi Vi zi] and [zi Vi xi ⇒ zi Vi yi],

where, as before, Pi (resp. Vi) is the asymmetric part of Si (resp. Ui). This will be
useful later. •

The following proposition shows that the above definition is flexible enough to
cover both the case of a reflexive outranking relation à la ELECTRE and the case
of an asymmetric outranking relation à la TACTIC.

Proposition 4 (Bouyssou and Pirlot, 2013, Proposition 8)
If R is a CDR with representation 〈�, Si, Vi〉, then

1. R is either reflexive or irreflexive. R is reflexive iff N � N . Otherwise, R
is irreflexive,

2. R is asymmetric iff � is asymmetric.

Let us illustrate the flexibility of Definition 1 with two well-known examples.

Example 5 (ELECTRE I, Roy, 1968)
Outranking relations in ELECTRE I are built as follows. Using a real-valued
function ui defined on Xi, and a pair of non-negative thresholds pti and vti, with
pti ≤ vti, we define the semiorders Si

′ and Ui
′ letting:

xi Si
′ yi ⇔ ui(xi) ≥ ui(yi)− pti,

xi Ui
′ yi ⇔ ui(xi) ≥ ui(yi)− vti.

(5)

The relation Vi
′ is the asymmetric part of Ui

′, i.e., xi Vi
′ yi ⇔ [xi Ui

′ yi and
Not [yi Ui

′ xi]]⇔ ui(xi) > ui(yi) + vti
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In ELECTRE I, the outranking relation R is determined using positive weights
wi attached to each attribute and a threshold s (with 1/2 ≤ s ≤ 1), such that, for
all x, y ∈ X,

x R y ⇔
∑

i∈S′[x,y]wi∑
j∈N wj

≥ s and V ′[y, x] = ∅,

where S ′[x, y] = {i ∈ N : xi Si
′ yi}, and V ′[x, y] = {i ∈ N : xi Vi

′ yi}.
It is easy to see that a relation R built with ELECTRE I is a reflexive CDR

(i.e., an R-CDR) with attribute transitivity (i.e., an R-CDR-AT) according to
Definition 1. Indeed, it suffices to take, for all i ∈ N , Si = Si

′, Vi = Vi
′, and, for

all A,B ∈ 2N with A ∪B = N , A � B ⇔ (
∑

i∈Awi)/(
∑

j∈N wj) ≥ s. 3

Example 6 (TACTIC, Vansnick, 1986)
Outranking relations in TACTIC are built as follows. Using a real-valued function
ui defined on Xi, and a pair of non-negative thresholds pti and vti, with pti ≤ vti,
we define the semiorders Si

′ and Ui
′ as in (5). The relation Pi

′ is defined as the
asymmetric part of Si

′, i.e., we have xi Pi
′ yi ⇔ [xi Si

′ yi and Not [yi Si
′ xi]] ⇔

ui(xi) > ui(yi)+vti. The relation Vi
′ is the asymmetric part of Ui

′, i.e., xi Vi
′ yi ⇔

[xi Ui
′ yi and Not [yi Ui

′ xi]]⇔ ui(xi) > ui(yi) + vti
An outranking relation R is defined letting, for all x, y ∈ X,

x R y ⇔

 ∑
i∈P ′[x,y]

wi > ρ
∑

j∈P ′[y,x]

wj + ε and V ′[y, x] = ∅

 ,
where wi is a positive weight assigned to attribute i, ρ is a multiplicative threshold
with ρ ≥ 1, ε is a nonnegative additive threshold, P ′[x, y] = {i ∈ N : xi Pi

′ yi}
and V ′[x, y] = {i ∈ N : xi Vi

′ yi}.
It is easy to see that a relation R built with TACTIC is an asymmetric CDR

(i.e., an A-CDR) with attribute transitivity (i.e., an A-CDR-AT) according to
Definition 1. Indeed, it suffices to take, for all i ∈ N , Si = Si

′, Vi = Vi
′, and, for

all A,B ∈ 2N such that A ∪B = N , A � B ⇔
∑

i∈N\B wi > ρ
∑

j∈N\Awj + ε. 3

3 Background

3.1 Traces

We first recall a few structural definitions taken from Bouyssou and Pirlot (2002a,
2004a,b).
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3.1.1 Traces on differences

Our first definition gives conditions under which it is possible to define complete
traces on differences.

Definition 7
We say that R satisfies

RC 1i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(xi, c−i) R (yi, d−i)
or

(zi, a−i) R (wi, b−i),

RC 2i if
(xi, a−i) R (yi, b−i)

and
(yi, c−i) R (xi, d−i)

⇒


(zi, a−i) R (wi, b−i)
or

(wi, c−i) R (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i.
We say that R satisfies RC 1 (resp. RC 2) if it satisfies RC 1i (resp. RC 2i) for

all i ∈ N .

Condition RC 1i amounts to say that all preference differences (xi, yi) on Xi

can be weakly ordered. Condition RC 2i establishes a link between opposite dif-
ferences of preferences such as (xi, yi) and (yi, xi). Note that RC 2 entails that
R is independent (i.e., that, for all i ∈ N all xi, yi ∈ Xi and all a−i, b−i ∈ X−i,
(xi, a−i) R (xi, b−i)⇔ (yi, a−i) R (yi, b−i)). Since they will be useful in the sequel,
we recall the precise definition of the weak orders induced on each attribute Xi as
well as the main properties linking them to conditions RC 1 and RC 2. It is easy
to check that all CDR satisfy conditions RC 1 and RC 2.

Definition 8
Let R be a binary relation on a set X =

∏n
i=1Xi. We define the binary relations

%∗i and %∗∗i on X2
i letting, for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %
∗
i (zi, wi)⇔

∀a−i, b−i ∈ X−i, [(zi, a−i) R (wi, b−i)⇒ (xi, a−i) R (yi, b−i)],

(xi, yi) %
∗∗
i (zi, wi)⇔ [(xi, yi) %

∗
i (zi, wi) and (wi, zi) %

∗
i (yi, xi)] .

These relations allow to give a precise meaning to the comparison of preference
differences on each attribute (see Bouyssou and Pirlot, 2002a, for more detail). By
construction, both relations %∗i and %∗∗i are transitive. The impact of RC 1i and
RC 2i is to ensure their completeness, as shown below.
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Lemma 9 (Bouyssou and Pirlot, 2002a, Lemma 1)
1. RC 1i ⇔ [%∗i is complete],

2. RC 2i ⇔
[for all xi, yi, zi, wi ∈ Xi,Not [(xi, yi) %∗i (zi, wi)]⇒ (yi, xi) %∗i (wi, zi)],

3. [RC 1i and RC 2i] ⇔ [%∗∗i is complete].

Traces on differences are well-behaved, as detailed below.

Lemma 10 (Bouyssou and Pirlot, 2005b, Lemma 3.7)
For all x, y ∈ X and all zi, wi ∈ Xi,

[(zi, wi) ∼∗i (xi, yi) for all i ∈ N ]⇒ [x R y ⇔ z R w],

[x R y and (zi, wi) %
∗
i (xi, yi)]⇒ (zi, x−i) R (wi, y−i),

[x Rα y and (zi, wi) %
∗∗
i (xi, yi)]⇒ (zi, x−i) Rα (wi, y−i),

[(zi, wi) ∼∗∗i (xi, yi) for all i ∈ N ]⇒


[x R y ⇔ z R w]

and

[x Rα y ⇔ z Rα w].

3.1.2 Traces on levels

The next definition gives conditions under which it is possible to define complete
traces on the elements of each attribute.

Definition 11
We say that R satisfies

AC 1i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(zi, a−i) R (yi, b−i)
or

(xi, c−i) R (wi, d−i),

AC 2i if
(xi, a−i) R (yi, b−i)

and
(zi, c−i) R (wi, d−i)

⇒


(xi, a−i) R (wi, b−i)
or

(zi, c−i) R (yi, d−i),

AC 3i if
(xi, a−i) R (yi, b−i)

and
(yi, c−i) R (wi, d−i)

⇒


(xi, a−i) R (zi, b−i)
or

(zi, c−i) R (wi, d−i),

for all xi, yi, zi, wi ∈ Xi, all a−i, b−i, c−i, d−i ∈ X−i.
We say that R satisfies AC 1 (resp. AC 2, AC 3) if it satisfies AC 1i (resp.

AC 2i, AC 3i) for all i ∈ N .

8



These conditions are related to the existence of linear arrangements of the el-
ements of Xi. AC 1i suggests that the elements of Xi can be ordered relatively to
“upward dominance”: if xi “upward dominates” zi, then (zi, c−i) R (wi, d−i) en-
tails (xi, c−i) R (wi, d−i). AC 2i has a similar interpretation regarding “downward
dominance”. AC 3i ensures that the upward and downward dominance orders are
not incompatible. It is easy to check that all CDR-AT satisfy conditions AC 1,
AC 2, and AC 3.

The following gives a precise definition of the upward and downward dominance
relations.

Definition 12
Let R be a binary relation on a set X =

∏n
i=1Xi. We define the binary relations

%+
i , %−i and %±i on Xi letting, for all xi, yi ∈ Xi,

xi %
+
i yi ⇔ ∀a−i ∈ X−i, b ∈ X, [(yi, a−i) R b⇒ (xi, a−i) R b], (6)

xi %
−
i yi ⇔ ∀a ∈ X, b−i ∈ X−i, [a R (xi, b−i)⇒ a R (yi, b−i)], (7)

xi %
±
i yi ⇔ xi %

+
i yi and xi %

−
i yi. (8)

By definition, %+
i , %−i and %±i are transitive relations. Conditions AC 1i, AC 2i

and AC 3i ensure that they are complete, as shown below.

Lemma 13 (Bouyssou and Pirlot, 2004a, Lemma 3)
Let R be a binary relation on a set X =

∏n
i=1Xi. R satisfies:

1. AC 1i ⇔ %+
i is complete,

2. AC 2i ⇔ %−i is complete,

3. AC 3i ⇔ [Not [xi %
+
i yi]⇒ yi %

−
i xi]⇔ [Not [xi %

−
i yi]⇒ yi %

+
i xi],

4. [AC 1i, AC 2i and AC 3i] ⇔ %±i is complete.

Traces on levels are also well-behaved, as detailed below.

Lemma 14 (Bouyssou and Pirlot, 2005b, Lemma 3.5)
For all i ∈ N and x, y, z, w ∈ X:

[x R y, zi %
+
i xi]⇒ (zi, x−i) R y,

[x R y, yi %
−
i wi]⇒ x R (wi, y−i),

[zi %
±
i xi, yi %

±
i wi]⇒

{
x R y ⇒ (zi, x−i) R (wi, y−i), and

x Rα y ⇒ (zi, x−i) Rα (wi, y−i),

[zi ∼±i xi, yi ∼±i wi, for all i ∈ N ]⇒
{
x R y ⇔ z R w, and
x Rα y ⇔ z Rα w.
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3.1.3 Relations between traces

Traces on differences and on levels will be of central importance in what follows.
We summarize below the main links between the relations %∗i , %

∗∗
i , %±i , %+

i and
%−i below.

Lemma 15 (Bouyssou and Pirlot, 2005b, Lemma 3.8)
For all i ∈ N and all xi, yi ∈ Xi,

1. xi %
+
i yi ⇔ [(xi, wi) %∗i (yi, wi), for all wi ∈ Xi],

2. xi %
−
i yi ⇔ [(wi, yi) %∗i (wi, xi), for all wi ∈ Xi],

3. xi %
±
i yi ⇔ [(xi, wi) %∗∗i (yi, wi), for all wi ∈ Xi],

4. [`i %
+
i xi and (xi, yi) %∗i (zi, wi)] ⇒ (`i, yi) %∗i (zi, wi),

5. [yi %
−
i `i and (xi, yi) %∗i (zi, wi)] ⇒ (xi, `i) %∗i (zi, wi),

6. [zi %
+
i `i and (xi, yi) %∗i (zi, wi)] ⇒ (xi, yi) %∗i (`i, wi),

7. [`i %
−
i wi and (xi, yi) %∗i (zi, wi)] ⇒ (xi, yi) %∗i (zi, `i),

8. [xi ∼+
i zi and yi ∼−i wi] ⇒ (xi, yi) ∼∗i (zi, wi),

9. [xi ∼±i zi and yi ∼±i wi] ⇒ (xi, yi) ∼∗∗i (zi, wi).

Bouyssou and Pirlot (2002a, 2004a,b) have shown how the conditions intro-
duced so far enable to obtain various numerical representations of R even though
it may not be complete or transitive.

3.2 Characterization of outranking relations

3.2.1 Concordance relations

The strategy of Bouyssou and Pirlot (2002b, 2005a, 2007, 2009), first presented
in Bouyssou, Pirlot, and Vincke (1997) and Bouyssou and Pirlot (1999), to char-
acterize outranking relations is to introduce conditions limiting the number of
equivalence classes of %∗i and %∗∗i . Indeed, it is easy to see that an outranking
relation generates a relation %∗i that has at most four equivalence classes. The
first one corresponds to a strict preference. The second one to an indifference.
The third one to a reverse strict preference that is not a veto. The fourth one to a
reverse strict preference that is veto. When this relation is a concordance relation,
the fourth class must be empty. This is the intuition behind the following two
conditions.
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Definition 16
We say that R satisfies

MM 1i if

(xi, a−i) R (yi, b−i)
and

(zi, a−i) R (wi, b−i)
and

(zi, c−i) R (wi, d−i)

⇒


(yi, a−i) R (xi, b−i)
or

(wi, a−i) R (zi, b−i)
or

(xi, c−i) R (yi, d−i),

MM 2i if

(xi, a−i) R (yi, b−i)
and

(wi, a−i) R (zi, b−i)
and

(yi, c−i) R (xi, d−i)

⇒


(yi, a−i) R (xi, b−i)
or

(zi, a−i) R (wi, b−i)
or

(zi, c−i) R (wi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i.

We say that MM 1 (resp. MM 2) holds if MM 1i (resp. MM 2i) holds for all
i ∈ N .

MM 1i without its second premise is called M 1i. MM 1i without its second
conclusion is called Maj 1i. MM 1i without both its second premise and its second
conclusion is called UC i.

MM 2i without its second premise is called M 2i. MM 2i without its second
conclusion is called Maj 2i. MM 2i without both its second premise and its second
conclusion is called LC i.

MM 1i is clearly a weaker condition than both M 1i and Maj 1i. Both M 1i and
Maj 1i are implied by UC i. Similarly, MM 2i is clearly a weaker condition than
both M 2i and Maj 2i. Both M 2i and Maj 2i are implied by LC i.

It is not difficult to check that a concordance relation (CR) satisfies UC and
LC . The need for the weaker conditions introduced above is to ensure that all
conditions remain independent from the conditions used to impose the existence
of complete traces. We have:

Lemma 17 (Bouyssou and Pirlot, 2013, Lemma 41)
The following implications hold, for all i ∈ N :

1. MM 1i and RC 1i entail M 1i,

2. MM 1i and RC 2i entail Maj 1i,

3. MM 2i and RC 2i entail M 2i,
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4. MM 2i and RC 1i entail Maj 2i.

Under RC 1i and RC 2i, we have:

1. MM 1i ⇔ M 1i ⇔ Maj 1i ⇔ UC i,

2. MM 2i ⇔ M 2i ⇔ Maj 2i ⇔ LC i.

Moreover we have:

Lemma 18 (Bouyssou and Pirlot, 2013, Lemma 24)
1. If R satisfies RC 2i, then R satisfies M 1i ⇔

[for all xi, yi, zi, wi ∈ Xi,Not [(yi, xi) %∗i (xi, yi)]⇒ (xi, yi) %∗i (zi, wi)],

2. If R satisfies RC 1i, then R satisfies M 2i ⇔
[for all xi, yi, zi, wi ∈ Xi,Not [(yi, xi) %∗i (xi, yi)]⇒ (zi, wi) %∗i (yi, xi)].

The above two lemmas show that, in presence of RC 1 and RC 2, conditions
MM 1 and MM 2 imply that there are only one type of positive differences (corre-
sponding to strict preference) and one type of negative differences (corresponding
to reverse strict preference). This is a characteristic of outranking relations in
which there is no veto, i.e., of concordance relations. We have:

Theorem 19 (Bouyssou and Pirlot, 2013, Theorems 43 & 52)
Let R be a reflexive binary relation on X =

∏n
i=1Xi.

1. R is a concordance relation (CR) iff it satisfies RC 1, RC 2, MM 1 and MM 2.

2. R is a concordance relation with attribute transitivity (CR-AT) iff it satisfies
RC 1, RC 2, AC 1, AC 3, MM 1, MM 2.

3. In the class of reflexive relations and in the class of asymmetric relations,
conditions RC 1, RC 2, AC 1, AC 3, MM 1, MM 2 are independent.

The above result generalizes the ones obtained in Bouyssou and Pirlot (2005a,
2007, 2012).

3.2.2 Outranking relations

When veto effect are allowed, there can be two types of negative differences: neg-
ative difference corresponding to a “normal” reverse preference and negative dif-
ferences corresponding to a “large” reverse preference, i.e., a negative difference
acting as a veto. Taking veto effect into account implies relaxing condition MM 2.
This motivates the condition below.
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Definition 20
We say that R satisfies

MM 3i if

(xi, a−i) R (yi, b−i)
and

(wi, a−i) R (zi, b−i)
and

(yi, c−i) R (xi, d−i)
and

(zi, e−i) R (wi, f−i)


⇒


(yi, a−i) R (xi, b−i)

or
(zi, a−i) R (wi, b−i)

or
(zi, c−i) R (wi, d−i),

(9)

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i , e−i, f−i ∈ X−i.

We say that R satisfies MM 3 if it satisfies MM 3i, for all i ∈ N .

M 3i is the same condition as MM 3i except that the second premise has been
removed. Maj 3i is the same condition as MM 3i except that the second conclusion
has been removed.

Let us observe that MM 3i only differs from MM 2i by the adjunction of a
premise, implying that MM 3i is a weakening of MM 2i.

Let us interpret condition M 3i, under the hypothesis that RC 1i holds. As-
suming RC 1i amounts to say that %∗i is complete. Hence if the first two premises
of M 3i hold and neither the first nor the third conclusion do, then we have
(xi, yi) �∗i (yi, xi) �∗i (zi, wi). In these circumstances, the second conclusion can-
not be true, since this would imply that (zi, wi) �∗i (yi, xi), a contradiction with
(yi, xi) �∗i (zi, wi). Hence, none of the three conclusions holds and M 3i can only
be satisfied if it never happens that (zi, e−i) R (wi, f−i). This means that the
ordered pair (zi, wi) represents an unacceptable preference difference, leading to a
veto. We have:

Lemma 21 (Bouyssou and Pirlot, 2013, Lemma 55)
The following implications hold:

1. MM 3i and RC 2i entail M 3i,

2. MM 3i and RC 1i entail Maj 3i,

3. M 3i and RC 1i entail Maj 3i,

4. Maj 3i and RC 2i entail M 3i.

Under RC 1i and RC 2i, we have:

MM 3i ⇔ M 3i ⇔ Maj 3i.

13



The conditions introduced so far are all what we need to characterize outrank-
ing relations.

Theorem 22 (Bouyssou and Pirlot, 2013, Theorems 57 & 61)
Let R be a binary relation on X =

∏n
i=1Xi.

1. The relation R is a CDR iff it satisfies RC 1, RC 2, AC 1, MM 1 and MM 3.

2. The relation R is a CDR-AT iff it satisfies RC 1, RC 2, AC 1, AC 2, AC 3,
MM 1 and MM 3.

3. Conditions RC 1, RC 2, AC 1, AC 2, AC 3, MM 1 and MM 3 are indepen-
dent in the class of reflexive relations as well as in the class of asymmetric
relations.

The above result generalizes the ones obtained in Bouyssou and Pirlot (2009,
2012).

We now have all the necessary background to study the properties of the asym-
metric part of a reflexive CDR-AT (i.e., is an R-CDR-AT). Indeed, if the CDR-AT
is already asymmetric (i.e., is an A-CDR-AT), there is little point studying its
asymmetric part.

4 The asymmetric part of an outranking relation

4.1 Introduction

Let R be a reflexive CDR (i.e., an R-CDR) with representation 〈�, Si, Vi〉. Using
the definition of an R-CDR, its asymmetric part, denoted by Rα, is such that, for
all x, y ∈ X,

x Rα y ⇔ [x R y and Not [y R x]]

⇔


[S [x, y] � S [y, x] and V [y, x] = ∅]
and

[Not [S [y, x] � S [x, y]] or V [x, y] 6= ∅] .

Such a relation Rα is the asymmetric part of an R-CDR. We say that Rα is an
AP-R-CDR. If, furthermore, the relation R is an R-CDR-AT, we say that Rα is
an AP-R-CDR-AT.

It is easy to see that the above definition can equivalently be written as:

x Rα y ⇔
[S [x, y] � S [y, x] and V [y, x] = ∅] or (10)[
S [x, y] , S [y, x] and V [y, x] = ∅ and V [x, y] 6= ∅

]
. (11)
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The first of these conditions is similar to the one defining a CDR. The second
one is more complex. In the asymmetric part of an R-CDR, the relation Vi may
play the rôle of a veto (discarding a pair belonging to the asymmetric part of the
concordance relation) or, on the contrary, play the rôle of a bonus (transforming
an indifference, w.r.t. the concordance relation, into a strict preference). Note
that the “bonus effect” just described is different from the one at work in the
concordance relations with bonus studied in Bouyssou and Pirlot (2013, Section
4.7). In the latter, a bonus effect shows up and results in a preference as soon
as there is a large enough difference of preference on a single attribute. In the
present case, the bonus effect is conditional: it only shows up in case a pair of
alternatives are indifferent w.r.t. the concordance relation and there is no veto
against preference.

Remark 23
The relations we study in this paper have been defined in an indirect way, namely,
as the asymmetric part of a concordance-discordance relation. A direct definition
of such relations can easily be obtained from Definition 1. We just have to specify
that the relation R is asymmetric and to substitute the condition (3), for having
x R y, by conditions (10) and (11). •

Remark 24
It is easy to see that there are two simple cases in which the asymmetric part of a
reflexive CDR-AT is an asymmetric CDR-AT.

The first case is trivial: if the reflexive CDR-AT is antisymmetric, i.e., when
the relation , is empty, except that N , N , the asymmetric part of R is identical
to R except for loops. It is then easy to check that the asymmetric part of R is
an asymmetric CDR-AT.

The second case is also trivial. When the relation R is a reflexive CDR-AT has
a representation in which all relations Vi are empty (i.e., is a CR-AT), it is easy
to see that the asymmetric part of R is an asymmetric CDR-AT (that is also a
CR-AT). •

Indeed, in general, the asymmetric part of a reflexive CDR-AT is not an asym-
metric CDR-AT. This is illustrated below.

Example 25
Let N = {1, 2, 3, 4} and X = {x1, y1, z1}×{x2, y2}×{x3, y3}×{x4, y4}. Let R on
X be such that

x R y ⇔ |S [x, y] | ≥ |S [y, x] | and V [y, x] = ∅,
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where S [x, y] = {i ∈ N : xi Si yi} and V [x, y] = {i ∈ N : xi Vi yi} with:

x1 P1 y1 P1 z1,

x2 P2 y2, x3 P3 y3, x4 P4 y4,

Vi = ∅, for i ∈ {2, 3, 4} and x1 V1 z1.

(where Pi denotes the asymmetric part of the complete relation Si).
By construction, R is a reflexive CDR-AT. Denoting by Rα the asymmetric

part of R, it is easy to check that we have:

(x1, x2, x3, y4) Rα (z1, x2, x3, x4) and Not [(x1, x2, x3, y4) Rα (y1, x2, x3, x4)],

(x1, x2, x3, x4) Rα (y1, y2, x3, x4) and Not [(y1, x2, x3, x4) Rα (x1, y2, x3, x4)].

The first line implies that, w.r.t. Rα, the difference (x1, z1) is strictly larger (w.r.t.
%∗1) than the difference (x1, y1). The second line shows that the difference (x1, y1)
is strictly larger (w.r.t. %∗1) than its opposite (y1, x1). It is easy to see that this is
impossible in a CDR (see Bouyssou and Pirlot, 2012, Lemma 9.1, for details). 3

The problem we would like to study is the following. Suppose that we are
given an asymmetric relation P on X. Under what conditions is there a reflexive
CDR-AT R on X such that Rα = P ? In other words, under what conditions can
we be sure that P is the asymmetric part of a reflexive CDR-AT?

Some of the conditions characterizing an R-CDR-AT also hold for an AP-R-
CDR-AT. Others will have to be weakened.

In the rest of this section, in order to avoid the superscript α, we use P to
denote an asymmetric relation. When P is an AP-R-CDR-AT, the R-CDR-AT of
which P is the asymmetric part will be denoted by S. In the rest of this section,
unless otherwise specified, the relations %∗i , %

∗∗
i , %+

i , %−i and %±i always refer to
the relation P .

Remark 26
For an AP-R-CDR P that is the asymmetric part of an R-CDR S, assuming that
all attributes are influential for S is in general insufficient for guaranteeing the
corresponding property for Sα. It is clear that if an attribute is influent for Sα
it must be influent for S. Indeed the influence of i ∈ N for Sα implies that
there are xi, yi, zi, wi ∈ Xi and x−i, y−i ∈ X−i such that (xi, x−i) Sα (yi, y−i) and
Not [(zi, x−i) Sα (wi, y−i)]. Hence we have (xi, x−i) S (yi, y−i) and Not [(yi, y−i) S
(xi, x−i)] together with either Not [(zi, x−i) S (wi, y−i)] or (wi, y−i) S (zi, x−i). In
either case we easily conclude that i ∈ N is influential for S.

The converse is not true. Indeed, an attribute which only impact would be to
transform some pairs belonging to the symmetric part Sσ of S into pairs that are
incomparable w.r.t. S, is influential for S but is degenerate for Sα.
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The condition that all attributes are influential for Sα is therefore slightly
stronger than the one stating that all attributes are influential for S. Our results
on AP-R-CDR-AT will use this slightly stronger hypothesis. •

4.2 Properties of an AP-R-CDR-AT

The main difference between an AP-R-CDR-AT and an R-CR-AT is that with an
AP-R-CDR-AT there may exist bonus effects as well as veto effects. Bonus effects
amount to creating a new class of positive preference differences. Hence it should
not be a surprise that we have to relax condition MM 1. However, as shown in the
next lemma, all other conditions needed to characterize R-CDR-AT also hold for
AP-R-CDR-AT.

Lemma 27
If P is an AP-R-CDR-AT, then

1. P satisfies RC 1 and RC 2,

2. P satisfies AC 1, AC 2, and AC 3,

3. P satisfies Maj 3 and, hence, MM 3.

Proof
The fact that P is an AP-R-CDR means that there is an R-CDR, S, with repre-
sentation 〈�, Si, Vi〉 such that P is the asymmetric part of S. Alternatively, one
may use the definition introduced in Remark 23.

Part 1. [RC 1] Suppose that (xi, a−i) P (yi, b−i), (zi, c−i) P (wi, d−i). We know
that Not [yi Vi xi] and Not [wi Vi zi]. If xi Vi yi, since (zi, c−i) P (wi, d−i), we must
have (xi, c−i) P (yi, d−i). Similarly, if zi Vi wi, since (xi, a−i) P (yi, b−i), we must
have (zi, a−i) P (wi, b−i). If neither xi Vi yi nor zi Vi wi, the desired conclusion
easily follows from the monotonicity of �.

[RC 2] Suppose that (xi, a−i) P (yi, b−i), (yi, c−i) P (xi, d−i). This implies that
neither xi Vi yi nor yi Vi xi. If zi Vi wi, since (xi, a−i) P (yi, b−i), we must have
(zi, a−i) P (wi, b−i). Similarly if wi Vi zi, since (yi, c−i) P (xi, d−i), we must have
(wi, c−i) P (zi, d−i). If neither zi Vi wi nor wi Vi zi, the desired conclusion easily
follows from the completeness of Si and the monotonicity of �.

Part 2. By hypothesis, there is a weak order Ti on Xi such that

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Si zi ⇒ xi Si zi] and [zi Si xi ⇒ zi Si yi], and

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Ui zi ⇒ xi Ui zi] and [zi Ui xi ⇒ zi Ui yi].

Let us show that, if zi Ti xi, then (xi, a−i) P (yi, b−i) implies (zi, a−i) P (yi, b−i).
By hypothesis, we have S [(zi, a−i), (yi, b−i)] ⊇ S [(xi, a−i), (yi, b−i)], S [(yi, b−i), (zi, a−i)] ⊆
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S [(yi, b−i), (xi, a−i)], V [(yi, b−i), (zi, a−i)] ⊆ V [(yi, b−i), (xi, a−i)], V [(zi, a−i), (yi, b−i)] ⊇
V [(xi, b−i), (zi, a−i)].

By hypothesis, (xi, a−i) P (yi, b−i) means that (xi, a−i) S (yi, b−i) and Not [(yi, b−i) S
(xi, a−i)]. Hence, using the monotonicity of �, because (xi, a−i) S (yi, b−i), we
know that (zi, a−i) S (yi, b−i). Suppose now that (yi, b−i) S (zi, a−i). Using the
monotonicity of �, we conclude that (yi, b−i) S (xi, a−i), a contradiction. Hence,
we have (zi, a−i) P (yi, b−i).

Similarly, it is easy to show that, if yi Ti wi, then (xi, a−i) P (yi, b−i) implies
(xi, a−i) P (wi, b−i).

Using these two facts and the completeness of Ti, it is easy to check that AC 1,
AC 2, and AC 3 hold.

Part 3. Suppose that (xi, a−i) P (yi, b−i), (wi, a−i) P (zi, b−i), (yi, c−i) P (xi, d−i),
and (zi, e−i) P (wi, f−i). This implies that it is impossible to have xi Vi yi, yi Vi xi,
zi Vi wi and wi Vi zi. The desired conclusion easily follows from the monotonicity
of �. 2

The following lemma gives a simple interpretation of Maj 3. It is also useful for
checking whether Maj 3 holds.

Lemma 28
Let P be a binary relation on X =

∏n
i=1Xi satisfying RC 1 and RC 2. Then

P satisfies Maj 3 iff, for all i ∈ N , for all xi, yi, zi, wi, ri, si ∈ Xi, [(xi, yi) �∗i
(yi, xi) �∗i (zi, wi)] ⇒ (ri, si) %∗i (zi, wi) and Not [(zi, e−i) P (wi, f−i)], for all
e−i, f−i ∈ X−i.

Proof
Part [⇒]. Suppose that, for some xi, yi, zi, wi, ri, si ∈ Xi, we have (xi, yi) �∗i
(yi, xi) �∗i (zi, wi) and (zi, wi) �∗i (ri, si). This implies (xi, a−i) P (yi, b−i),
Not [(yi, a−i) P (xi, b−i)], (yi, c−i) P (xi, d−i), Not [(zi, c−i) P (wi, d−i)] and (zi, e−i) P
(wi, f−i), for some a−i, b−i, c−i, d−i, e−i, f−i ∈ X−i.

Since this implies Not [(zi, wi) %∗i (yi, xi)], we have, using RC 2 and Lemma 9.2,
that (wi, zi) %∗i (xi, yi) so that (wi, a−i) P (zi, b−i). Using Maj 3i, (xi, a−i) P
(yi, b−i), (wi, a−i) P (zi, b−i), (yi, c−i) P (xi, d−i), and (zi, e−i) P (wi, f−i) imply
(yi, a−i) P (xi, b−i) or (zi, c−i) P (wi, d−i), a contradiction. Note that the contra-
diction is obtained as soon as (zi, e−i) P (wi, f−i), for some e−i, f−i ∈ X−i. This
proves the second part of the assertion.

Part [⇐]. To prove Maj 3i, we assume that the first three premises in Maj 3i
are true and the two conclusions are false. Maj 3i will result if we prove that the
fourth premise must be false. Using RC 1i, the first premise of Maj 3i and the
negation of the first conclusion imply (xi, yi) �∗i (yi, xi). Using RC 1i again, the
third premise and the negation of the second conclusion imply (yi, xi) �∗i (zi, wi).
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Since by hypothesis [(xi, yi) �∗i (yi, xi) �∗i (zi, wi)] ⇒ Not [(zi, e−i) P (wi, f−i)], for
all e−i, f−i ∈ X−i, Maj 3i is established. 2

4.3 Additional properties of an AP-R-CDR-AT

The following two conditions are clearly weaker than MM 1. They shape the way
bonus effects can occur in an AP-R-CDR-AT. The first condition amounts to
saying that the inverse of a bonus must be a veto. The second one implies that
there is only one type of bonus.

Definition 29
We say that P satisfies

MM 4i if

(xi, a−i) P (yi, b−i)
and

(zi, a−i) P (wi, b−i)
and

(zi, c−i) P (wi, d−i)
and

(wi, e−i) P (zi, f−i)


⇒


(yi, a−i) P (xi, b−i)

or
(xi, c−i) P (yi, d−i)

or
(wi, a−i) P (zi, b−i),

(12)

MM 5i if

(xi, a−i) P (yi, b−i)
and

(zi, c−i) P (wi, d−i)
and

(zi, a−i) P (wi, b−i)
and

(ri, e−i) P (si, f−i)


⇒



(yi, a−i) P (xi, b−i)
or

(xi, c−i) P (yi, d−i),
or

(xi, e−i) P (yi, f−i),
or

(zi, e−i) P (wi, f−i),
or

(wi, a−i) P (zi, b−i).

(13)

We say that MM 4 (resp. MM 5) holds if MM 4i (resp. MM 5i) holds for all
i ∈ N .

MM 4i without its third conclusion is called Maj 4i. MM 5i without its fifth
conclusion is called Maj 5i.

The above two conditions clearly weaken condition MM 1. Let us note the
following relations between our conditions.

Lemma 30
We have
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1. Maj 4i ⇒ MM 4i,

2. MM 1i ⇒ MM 4i,

3. MM 4i and RC 2i ⇒ Maj 4i,

4. Maj 5i ⇒ MM 5i,

5. MM 1i ⇒ MM 5i,

6. MM 5i and RC 2i ⇒ Maj 5i.

Proof
The first two points are obvious. Indeed, MM 4i adds to Maj 4i an additional
possible conclusions. Similarly, MM 4i adds to MM 1i an additional premise. We
prove the third point. Suppose that (xi, a−i) P (yi, b−i), (zi, a−i) P (wi, b−i),
(zi, c−i) P (wi, d−i), (wi, e−i) P (zi, f−i). If Not [(wi, a−i) P (zi, b−i)], then one of
the two possible conclusions of Maj 4i holds. If (wi, a−i) P (zi, b−i), using (zi, c−i) P
(wi, d−i) and RC 2i, we have either (yi, a−i) P (xi, b−i) or (xi, c−i) P (yi, d−i), which
are the two possible conclusions of Maj 4i.

The fourth and fifth points are obvious. Indeed, MM 5i adds to Maj 5i an
additional premise and an additional possible conclusion. Similarly, MM 5i adds
to MM 1i an additional premise and two possible conclusions. We prove the sixth
point. Suppose that (xi, a−i) P (yi, b−i), (zi, c−i) P (wi, d−i), (zi, a−i) P (wi, b−i),
(ri, e−i) P (si, f−i).

If Not [(wi, a−i) P (zi, b−i)], we must have one of the four possible conclusions
of Maj 5i. If (wi, a−i) P (zi, b−i), then (zi, c−i) P (wi, d−i) and RC 2i imply either
(yi, a−i) P (xi, b−i) or (xi, c−i) P (yi, d−i). Hence, one of the possible conclusions
of Maj 5i holds. 2

As shown below, conditions MM 4 and MM 5 are satisfied by an AP-R-CDR-
AT.

Lemma 31
If P is an AP-R-CDR then

1. it satisfies Maj 4 and, hence, MM 4,

2. it satisfies Maj 5 and, hence, MM 5.

Proof
Part 1. Suppose that (xi, a−i) P (yi, b−i), (zi, a−i) P (wi, b−i), (zi, c−i) P (wi, d−i),
and (wi, e−i) P (zi, f−i). This implies that it is impossible to have: yi Vi xi,
wi Vi zi, and zi Vi wi. If xi Vi yi, since (zi, c−i) P (wi, d−i), we must have
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(xi, c−i) P (yi, d−i). If Not [xi Vi yi], the desired conclusion easily follows from the
monotonicity of �.

Part 2. Suppose that (xi, a−i) P (yi, b−i), (zi, c−i) P (wi, d−i), (zi, a−i) P (wi, b−i),
and (ri, e−i) P (si, f−i). This implies that it is impossible to have: yi Vi xi, wi Vi zi,
and si Vi ri. If xi Vi yi, since (zi, c−i) P (wi, d−i), we must have (xi, c−i) P (yi, d−i).
Similarly, if zi Vi wi, since (ri, e−i) P (si, f−i), we must have (zi, e−i) P (wi, f−i).
If neither xi Vi yi nor zi Vi wi, the desired conclusion easily follows from the
monotonicity of �. 2

It is clear that UC i implies M 1i. Hence, UC i implies MM 1i and, therefore,
MM 4i and MM 5i. This will be useful for checking that MM 4i and MM 5i hold.
The following two lemmas give an interpretation of Maj 4 and Maj 5 in terms of
the relations %∗i . They can also be useful to check that these conditions hold.

Lemma 32
Let P be a binary relation on X =

∏n
i=1Xi, which satisfies RC 1. Then P satisfies

Maj 4 if and only if, for all i ∈ N , for all xi, yi, zi, wi, ri, si ∈ Xi, [(zi, wi) �∗i
(xi, yi) �∗i (yi, xi)] ⇒ (ri, si) %∗i (wi, zi) and Not [(wi, e−i) P (zi, f−i)], for all
e−i, f−i ∈ X−i.

Proof
Part [⇒]. Suppose that (zi, wi) �∗i (xi, yi) �∗i (yi, xi). This implies (zi, c−i) P
(wi, d−i) and Not [(xi, c−i) P (yi, d−i)], (xi, a−i) P (yi, b−i) and Not [(yi, a−i) P
(xi, b−i)], for some a−i, b−i, c−i, d−i ∈ X−i. Suppose furthermore that (wi, e−i) P
(zi, f−i), for some e−i, f−i ∈ X−i. Because RC 1 holds, we know that %∗i is complete.
Hence (xi, a−i) P (yi, b−i) implies (zi, a−i) P (wi, b−i). Applying now Maj 4i leads
to either (xi, c−i) P (yi, d−i) or (yi, a−i) P (xi, b−i), a contradiction.

Part [⇐]. To prove Maj 4i, we assume that the first three premises of Maj 4i
are true and the two conclusions are false. Maj 4i will result if we prove that the
fourth premise must be false. Using RC 1i, the first premise of Maj 4i and the
negation of the first conclusion imply (xi, yi) �∗i (yi, xi). Using RC 1i again, the
third premise and the negation of the second conclusion imply (zi, wi) �∗i (xi, yi).
Since by hypothesis [(zi, wi) �∗i (xi, yi) �∗i (yi, xi)] ⇒ Not [(wi, e−i) P (zi, f−i)], for
all e−i, f−i ∈ X−i, Maj 4i is established. 2

Lemma 33
Let P be a binary relation on X =

∏n
i=1Xi satisfying RC 1. Then P satisfies Maj 5

iff, for all i ∈ N , for all xi, yi, zi, wi, ri, si ∈ Xi, [(zi, wi) �∗i (xi, yi) �∗i (yi, xi)] ⇒
(zi, wi) %∗i (ri, si), for all ri, si ∈ Xi.

Proof
Part [⇒]. Suppose that (zi, wi) �∗i (xi, yi) �∗i (yi, xi). This implies (zi, c−i) P
(wi, d−i) and Not [(xi, c−i) P (yi, d−i)], (xi, a−i) P (yi, b−i) and Not [(yi, a−i) P
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(xi, b−i)], for some a−i, b−i, c−i, d−i ∈ X−i. Suppose furthermore that (ri, e−i) P
(si, f−i), for some ri, si ∈ Xi and e−i, f−i ∈ X−i. We must show that we have
(zi, e−i) P (wi, f−i).

Because RC 1 is assumed, we have (zi, wi) %∗i (xi, yi), hence, (zi, a−i) P (wi, b−i).
We have (xi, a−i) P (yi, b−i), (zi, c−i) P (wi, d−i), (zi, a−i) P (wi, b−i), and (ri, e−i) P
(si, f−i), while Not [(yi, a−i) P (xi, b−i)] and Not [(xi, c−i) P (yi, d−i)]. Using Maj 5i,
we obtain either (xi, e−i) P (yi, f−i) or (zi, e−i) P (wi, f−i). Since (zi, wi) %∗i
(xi, yi), the former consequence implies the latter, yielding the desired conclusion.

Part [⇐]. To prove Maj 5i, we assume that the four premises of Maj 5i are
true and the first three conclusions are false. Maj 5i will result if we prove that
the fourth conclusion must be true. Using RC 1i, the first premise of Maj 5i
and the negation of the first conclusion imply (xi, yi) �∗i (yi, xi). Using RC 1i
again, the second premise together with the negation of the second conclusion
imply (zi, wi) �∗i (xi, yi). Since by hypothesis [(zi, wi) �∗i (xi, yi) �∗i (yi, xi)] ⇒
[(zi, wi) �∗i (ri, si)] for all ri, si ∈ Xi, the fourth conclusion in Maj 5i is true, hence
Maj 5i is established. 2

Our last condition (the “bonus condition”) requires that the effect of one bonus
is not altered by adding a second bonus on another attribute.

Definition 34
Let i, j ∈ N with i 6= j. We say that P satisfies

BC ij if

(xi, a−i) P (yi, b−i)
and

(x′i, c−i) P (y′i, d−i)
and

(zj, e−j) P (wj, f−j)
and

(z′j, g−j) P (w′j, h−j)
and

(xi, zj, α−ij) P (yi, wj, β−ij)


⇒



(x′i, a−i) P (y′i, b−i)
or

(y′i, c−i) P (x′i, d−i)
or

(z′j, e−j) P (w′j, f−j)
or

(w′j, g−j) P (z′j, h−j)
or

(x′i, zj, α−ij) P (y′i, wj, β−ij),

for all xi, x
′
i, yi, y

′
i ∈ Xi, all zj, z

′
j, wj, w

′
j ∈ Xj, all a−i, b−i, c−i, d−i ∈ X−i, all

e−j, f−j, g−j, h−j ∈ X−j and all α−ij, β−ij ∈ X−ij.
We say that BC holds if BC ij holds for all i, j ∈ N with i 6= j.

Condition BC ensures that the combination of bonuses has no different effect
from that of a single bonus. In order to motivate this condition, suppose that
all the premises of the condition hold. Suppose furthermore that the first four
conclusions are false. This implies that the differences (xi, yi) and (zj, wj) both
act as bonuses, as we shall see in Lemma 38. The last conclusion therefore implies
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that, replacing a bonus on both i, j ∈ N by a bonus on only one of these two
attributes has no effect since at least one bonus is present.

The following lemma shows that BC holds for an AP-R-CDR.

Lemma 35
If P is an AP-R-CDR then it satisfies BC .

Proof
Let 〈�, Si, Vi〉 be a representation of P . Suppose that all the premises of BC ij

hold and that the first four conclusions do not hold. Using the direct definition
of an AP-R-CDR (Remark 23), it is readily seen that the above imply: x′i Pi y

′
i,

Not [x′i Vi y
′
i], xi Pi yi, xi Vi yi, z

′
j Pj w

′
j, Not [z′j Vj w

′
j], zj Pj wj, zj Vj wj.

Let A = S [(xi, zj, α−ij), (yi, wj, β−ij)] and B = S [(yi, wj, β−ij), (xi, zj, α−ij)]. It is
clear that A = S [(x′i, zj, α−ij), (y

′
i, wj, β−ij)] and B = S [(y′i, wj, β−ij), (x

′
i, zj, α−ij)].

Because (xi, zj, α−ij) P (yi, wj, β−ij), we have A � B. If A � B, we must have
(x′i, zj, α−ij) P (y′i, wj, β−ij). Suppose thatA , B. Since V [(x′i, zj, α−ij), (y

′
i, wj, β−ij)] 6=

∅, we have (x′i, zj, α−ij) P (y′i, wj, β−ij). 2

The following three lemmas will help checking that BC holds.

Lemma 36
If P satisfies UC i then, for all j 6= i it satisfies BC ij.

Proof
Suppose that (xi, a−i) P (yi, b−i) and (x′i, c−i) P (y′i, d−i). If the second con-
clusion of BC ij is not verified, we have Not [(y′i, c−i) P (x′i, d−i)]. This implies
Not [((y′i, x

′
i) %∗i (x′i, y

′
i)] and UC i implies (x′i, y

′
i) %∗i (ai, bi), for all ai, bi ∈ Xi.

Hence, we have (x′i, a−i) P (y′i, b−i), so that the first conclusion of BC ij holds. 2

Lemma 37
If P satisfies RC 1i, RC 2i, and MM 1i then, for all j 6= i, it satisfies BC ij.

Proof
The proof follows from combining Lemma 36 with Lemma 17. 2

Lemma 38
Let i, j ∈ N with i 6= j. Let P be a relation satisfying RC 1i and RC 1j. Then P
satisfies BC ij if and only if, for all xi, x

′
i, yi, y

′
i ∈ Xi, and, for all zj, z

′
j, wj, w

′
j ∈ Xj,

we have that

(xi, yi) �∗i (x′i, y
′
i) �∗i (y′i, x

′
i)

(zj, wj) �∗j (z′j, w
′
j) �∗j (w′j, z

′
j)

(xi, zj, α−ij) P (yi, wj, β−ij)

⇒ (x′i, zj, α−ij) P (y′i, wj, β−ij). (14)
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Proof
Conditionally on the fact that %∗i and %∗j are complete relations (a consequence of
RC 1i and RC 1j), the conjunction of the five premises of BC ij and the negation
of the first four consequences is logically equivalent with the premises of (14).
Applying BC ij yields the consequence of (14). Conversely, using (14) yields the
fifth consequence of BC ij. 2

An easy consequence of RC 1 and BC is the following property saying that a
bonus on attribute i has the same effect as a bonus on attribute j.

Lemma 39
Let P be a relation satisfying RC 1 and BC . Then, for all i, j ∈ N with i 6= j, we
have:

(xi, a−i) P (yi, b−i)
and

(x′i, c−i) P (y′i, d−i)
and

(zj, e−j) P (wj, f−j)
and

(z′j, g−j) P (w′j, h−j)
and

(xi, z
′
j, α−ij) P (yi, w

′
j, β−ij)


⇒



(x′i, a−i) P (y′i, b−i)
or

(y′i, c−i) P (x′i, d−i)
or

(z′j, e−j) P (w′j, f−j)
or

(w′j, g−j) P (z′j, h−j)
or

(x′i, zj, α−ij) P (y′i, wj, β−ij),

(15)

for all xi, x
′
i, yi, y

′
i ∈ Xi, all zj, z

′
j, wj, w

′
j ∈ Xj, all a−i, b−i, c−i, d−i ∈ X−i, all

e−j, f−j, g−j, h−j ∈ X−j, and all α−ij, β−ij, ∈ X−ij.
Assuming RC 1, property (15) is equivalent with

(xi, yi) �∗i (x′i, y
′
i) �∗i (y′i, x

′
i)

(zj, wj) �∗j (z′j, w
′
j) �∗j (w′j, z

′
j)

(xi, z
′
j, α−ij) P (yi, w

′
j, β−ij)

⇒ (x′i, zj, α−ij) P (y′i, wj, β−ij). (16)

Proof
Assume that the five premises of (15) are satisfied and none of the first four
conclusions are. Using RC 1j, we infer that (zj, wj) �∗j (z′j, w

′
j). Hence, from the

fifth premise in (15), we deduce that (xi, zj, α−ij) P (yi, wj, β−ij), which is the
fifth premise of BC . Applying BC we get (x′i, zj, α−ij) P (y′i, wj, β−ij), which
establishes property (15).

The proof that (15) is equivalent with (16) is similar to that of Lemma 38
(assuming that P satisfies RC 1). 2

Condition (15) can be interpreted in the following way. Suppose that all the
premises of the condition hold. Suppose furthermore that the first four conclusions
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are false. This is easily seen to imply that the differences (xi, yi) and (zj, wj) both
act as bonuses. The last conclusion therefore implies that, replacing a bonus on
i ∈ N by a relation Pi (that may or not be a bonus) and replacing a relation Pj
on j ∈ N (that may or not be a bonus) by a bonus on j has no effect since at
least one bonus is present. Property (15) ensures that bonuses can be exchanged
between attributes. A bonus on i ∈ N has a similar effect to that of a bonus on
j ∈ N .

4.4 Vetoes and bonuses

We define on each i ∈ N a relation Si letting, for all xi, yi ∈ Xi,

xi Si yi ⇔ (xi, yi) %
∗
i (yi, xi). (17)

The asymmetric (resp. symmetric) part of Si will be denoted by Pi (resp. Ii). This
is standard definition of Si already used for the study of CDR-AT in Bouyssou
and Pirlot (2009). We have:

Lemma 40
Let P be a binary relation on X =

∏n
i=1Xi satisfying RC 1i. The relation Si on Xi

defined by (17) is complete. Moreover, if RC 2i holds and xi Ii yi and zi Ii wi, then
(xi, yi) ∼∗i (zi, wi) ∼∗i (yi, xi) ∼∗i (wi, zi) ∼∗i (ai, ai), for all ai ∈ Xi. The relation
Pi is nonempty.

Proof
RC 1 implies that %∗i is complete. Hence Si is complete.

Using the definition of Si, xi Ii yi and zi Ii wi is equivalent to (xi, yi) ∼∗i (yi, xi)
and (zi, wi) ∼∗i (wi, zi). The conclusion follows from Lemma 9.2.

If Pi is empty, we must have for all xi, yi, zi, wi ∈ Xi, xi Ii yi and zi Ii wi. This
implies (xi, yi) ∼∗i (zi, wi), violating the fact that attribute i ∈ N is influential. 2

The definition of the relation Vi requires more care. Indeed, it includes at
the same time cases of vetoes and cases of bonuses. The relation Vi will model
vetoes. The relation Bi will model bonuses. The necessity to define separately the
relations Vi and Bi comes from the fact that one can built degenerate examples
in which Bi is nonempty while Vi is empty (in that case all negative differences
act as a veto). Similarly there are cases in which Bi is empty but Vi is not (e.g.,
when the relation , only contains N , N .)

Define the relation Vi on Xi letting, for all xi, yi ∈ Xi

xi Vi yi ⇔ (zi, wi) �∗i (wi, zi) �∗i (yi, xi) for some zi, wi ∈ Xi. (18)

We have:
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Lemma 41
Let P be a binary relation on X =

∏n
i=1Xi satisfying RC 1, RC 2, and Maj 3. We

have:

1. Vi ⊆ Pi,

2. [xi Vi yi and zi Vi wi] ⇒ (yi, xi) ∼∗i (wi, zi),

3. [xi Pi yi, zi Pi wi, Not [xi Vi yi] and Not [zi Vi wi]] ⇒ (yi, xi) ∼∗i (wi, zi).

Proof
Part 1. Suppose that xi Vi yi, so that (zi, wi) �∗i (wi, zi) �∗i (yi, xi), for some
zi, wi ∈ Xi. Suppose that Not [xi Pi yi] so that (yi, xi) %∗i (xi, yi). Using RC 1
and RC 2, it is easy to check that (zi, wi) �∗i (wi, zi) implies (zi, wi) %∗i (ai, ai) %∗i
(wi, zi), for all ai ∈ Xi. We therefore obtain (ai, ai) �∗i (yi, xi) %∗i (xi, yi). This
contradicts RC 2, using Lemma 9.2.

Part 2. Suppose that xi Vi yi and zi Vi wi. In view of (18), Lemma 28 implies
that (wi, zi) %∗i (yi, xi) and (yi, xi) %∗i (wi, zi) so that (wi, zi) ∼∗i (yi, xi).

Part 3. By definition, we have (xi, yi) �∗i (yi, xi) and (zi, wi) �∗i (wi, zi).
Suppose that (yi, xi) �∗i (wi, zi). This would imply (xi, yi) �∗i (yi, xi) �∗i (wi, zi),
contradicting the fact that Not [zi Vi wi]. Similarly it is impossible that (wi, zi) �∗i
(yi, xi). Hence, we have (yi, xi) ∼∗i (wi, zi). 2

Remark 42
Assuming RC 1,RC 2 and Maj 3, observe that, if Vi is nonempty, then there exists
zi, wi ∈ Xi such that zi Pi wi and Not [zi Vi wi].

Indeed, since Vi is nonempty, we know that there are xi, yi ∈ Xi such that
(zi, wi) �∗i (wi, zi) �∗i (yi, xi). Hence, we know that zi Pi wi. Suppose now that
zi Vi wi, so that there are ri, si ∈ Xi such that (ri, si) �∗i (si, ri) �∗i (wi, zi). This
implies (wi, zi) �∗i (yi, xi), violating Lemma 28. •

Define the relation Bi on Xi letting, for all xi, yi ∈ Xi

xi Bi yi ⇔ (xi, yi) �∗i (zi, wi) �∗i (wi, zi) for some zi, wi ∈ Xi. (19)

Lemma 43
Let P be a binary relation on X =

∏n
i=1Xi satisfying RC 1, RC 2, Maj 3, Maj 4,

and Maj 5. We have:

1. Bi ⊆ Pi.

2. zi Bi wi and xi Bi yi imply (zi, wi) ∼∗i (xi, yi).

3. zi Bi wi and xi Bi yi imply (wi, zi) ∼∗i (yi, xi).
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4. zi Pi wi, Not [zi Bi wi], xi Pi yi and Not [xi Bi yi], imply (zi, wi) ∼∗i (xi, yi).

5. zi Bi wi, xi Pi yi, Not [xi Bi yi] imply (zi, wi) �∗i (xi, yi).

Proof
Part 1. Suppose that xi Bi yi, so that (xi, yi) �∗i (zi, wi) �∗i (wi, zi), for some
zi, wi ∈ Xi. Suppose that Not [xi Pi yi] so that (yi, xi) %∗i (xi, yi). Using RC 1
and RC 2, it is easy to check that (zi, wi) �∗i (wi, zi) implies (zi, wi) %∗i (ai, ai) %∗i
(wi, zi), for all ai ∈ Xi. We therefore obtain (yi, xi) %∗i (xi, yi) �∗i (ai, ai). This
contradicts RC 2 (Lemma 9.2).

Part 2. Suppose that zi Bi wi and xi Bi yi. In view of (19), Lemma 33
implies (zi, wi) %∗i (ri, si) and (xi, yi) %∗i (ri, si), for all ri, si ∈ Xi. This implies
(zi, wi) ∼∗i (xi, yi).

Part 3. Suppose that zi Bi wi and xi Bi yi. Lemma 32 implies (ri, si) %∗i
(wi, zi) and (ri, si) %∗i (yi, xi), for all ri, si ∈ Xi. This implies (wi, zi) ∼∗i (yi, xi).

Part 4. Suppose that zi Pi wi, Not [zi Bi wi], xi Pi yi and Not [xi Bi yi]. This
implies that (zi, wi) �∗i (wi, zi) and (xi, yi) �∗i (yi, xi). If (zi, wi) �∗i (xi, yi), we
obtain zi Bi wi, a contradiction. Similarly, it is impossible that (xi, yi) �∗i (zi, wi).
Hence,we must have (xi, yi) ∼∗i (zi, wi).

Part 5. Suppose that zi Bi wi, xi Pi yi, Not [xi Bi yi]. This implies (zi, wi) �∗i
(ai, bi) �∗i (bi, ai), for some ai, bi ∈ Xi, and (xi, yi) �∗i (yi, xi). If (xi, yi) %∗i (zi, wi),
we obtain (xi, yi) �∗i (ai, bi) �∗i (bi, ai), implying that xi Bi yi, a contradiction. 2

Remark 44
Observe that if Bi is nonempty then there exist zi, wi ∈ Xi such that zi Pi wi and
Not [zi Bi wi].

Assuming that Bi is nonempty, we know that there are xi, yi ∈ Xi such that
(xi, yi) �∗i (zi, wi) �∗i (wi, zi). Hence, we know that zi Pi wi. It is clearly impossible
that zi Bi wi, since by Lemma 33, this would imply that (zi, wi) �∗i (ri, si), for all
ri, si ∈ Xi, contrary to the fact that (xi, yi) �∗i (zi, wi). •

Let us now define the relation Vi on Xi, letting, for all xi, yi ∈ Xi,

xi Vi yi ⇔ [xi Bi yi or xi Vi yi]. (20)

Combining Lemma 43.1 with Lemma 41.1 shows that Vi ⊆ Pi.

4.5 The main result

The main result of this note is the following.

Theorem 45 (Characterization of AP-R-CDR)
Let P be a binary relation on X =

∏n
i=1Xi and assume that all attributes are

influential for P. Then P is an AP-R-CDR-AT iff P is an asymmetric relation
satisfying RC 1, RC 2, MM 3, MM 4, MM 5, BC , AC 1, AC 2, and AC 3.
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Proof
Necessity was shown above. We show sufficiency.

Define the relation Si and Vi on Xi as above (formulas (17), (18), (19), (20)).
We have shown above that Si is complete, that Pi is nonempty and that Vi is
included in Pi.

Consider any two subsets A,B ⊆ N such that A ∪B = N and let:

A � B ⇔
[x P y, for all x, y ∈ X such that S [x, y] = A, S [y, x] = B, and V [y, x] = ∅].

Similarly, Consider any two subsets A,B ⊆ N such that A ∪B = N and let:

A , B ⇔[
x P y,Not [z P w], for some x, y, z, w ∈ X such that

S [x, y] = S [z, w] = A, S [y, x] = S [w, z] = B, V [y, x] = V [w, z] = ∅
]
.

Let us show that, with the previous definitions of Si, Vi and �, (10–11) holds for
P .

Part [⇒] of (10–11). Suppose that x P y. Using Lemma 28, we know that
it is impossible that yi Vi xi, for some i ∈ N . Similarly, using Lemma 32, it is
impossible that yi Bi xi, for some i ∈ N . In view of (20), this implies V (y, x) = ∅.
Let A = S [x, y] and B = S [y, x]. We must show that A � B or that [A , B and
V [x, y] 6= ∅]. We distinguish two cases.

1. Suppose first that, for all z, w ∈ X, A = S [z, w], B = S [w, z] and V [w, z] =
∅ implies z P w. By definition, this implies A � B. Hence, in this case, we
have S [x, y] � S [y, x] and V [y, x] = ∅.

2. Suppose now that, for some z, w ∈ X, A = S [z, w], B = S [w, z] and
V [w, z] = ∅ and Not [z P w]. Since x P y, this implies A , B. Let us show
that we must have xi Bi yi, for some i ∈ N .

We have A = S [x, y] = S [z, w], B = S [y, x] = S [w, z] and V [y, x] =
V [w, z] = ∅. We have xi Ii yi ⇔ zi Ii wi. For all i ∈ N such that xi Ii yi,
we have, using Lemma 40, (xi, yi) ∼∗∗i (zi, wi). We have yi Pi xi ⇔ wi Pi zi.
Because we know that V [y, x] = V [w, z] = ∅, Lemma 40 implies that, for
all i ∈ N such that yi Pi xi, we have (xi, yi) ∼∗i (zi, wi). We have xi Pi yi ⇔
zi Pi wi. Suppose that there is no j ∈ N such that xj Bj yj. Using Parts 4
and 5 of Lemma 43, this implies that (zi, wi) %∗i (xi, yi), for all i ∈ N such
that xi Pi yi.

We have (zi, wi) %∗i (xi, yi), for all i ∈ N . This is contradictory since x P y
and Not [z P w] (see Lemma 10). Hence, we must have xj Bj yj, for some
j ∈ N . We therefore have S [x, y] , S [y, x], V [y, x] = ∅ and V [x, y] 6= ∅.
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Part [⇐] of (10–11). Let A,B ⊆ N such that A ∪ B = N . Because Pi
is nonempty (since all attributes are influential for P), we know that there are
x, y ∈ X such that A = S [x, y] and B = S [y, x].

If A � B and V [y, x] = ∅, we have, by construction, x P y.
Suppose now that A , B, V [y, x] = ∅ and V [x, y] 6= ∅ and Not [x P y]. By

construction, we know that there are z, w ∈ X such that z P w, V [w, z] = ∅,
A = S [z, w] and B = S [w, z].

If V [x, y] ⊇ V [z, w], we know that (xi, yi) %∗i (zi, wi), for all i ∈ N . Since
Not [x P y] and z P w, this is contradictory (see Lemma 10).

Otherwise, we repeatedly use BC to build alternatives z′ and w′ such that
A = S [z′, w′], B = S [w′, z′], z′ P w′ and V [w′, z′] contains a single attribute.
Suppose for definiteness that {k} = V [w′, z′].

If k ∈ V [x, y], we have (xi, yi) %∗i (z′i, w
′
i), for all i ∈ N , contradicting the

fact that Not [x P y] and z P w. If k /∈ V [x, y], we use property (15), defined in
Lemma 39, to build alternatives z′′ and w′′ such that A = S [z′, w′], B = S [w′, z′],
z′′ P w′′ and {`} = V [w′′, z′′] ⊆ V [x, y]. Hence, we have (xi, yi) %∗i (z′′i , w

′′
i ), for

all i ∈ N , contradicting the fact that Not [x P y] and z P w.
This shows that, with our definitions, (10–11) hold.

Let us now show that the relation � = � ∪, defined on the set of subsets of
N having N for union is monotonic, i.e., satisfies (2).

Suppose that A � B. It is easy to see that the proof used in Bouyssou and
Pirlot (2012) can be used to show that � is monotonic. Indeed, the set of all
x, y ∈ X such that V [y, x] = ∅, A = S [x, y] and B = S [y, x] must contain
alternatives z, w ∈ X such that V [w, z] = ∅, A = S [z, w], B = S [w, z], and
V [z, w] = ∅.

Suppose that A , B. By construction, we know that there are x, y ∈ X such
that A = S [x, y], B = S [y, x], and x P y. Suppose that C ⊇ A, B ⊇ D such
that C ∪ D = N . Let us show that there are z, w ∈ X such that C = S [z, w],
D = S [w, z], and z P w, which will complete the proof.

Let E = C \ A. We have B ⊇ E. We build z, w ∈ X with S [z, w] = C �

S [w, z] = B. We know that for all ai ∈ Xi, we have ai Ii ai. Using such pairs,
define z′, w′ ∈ X as follows:

A E B \E

z′ xi ai xi
w′ yi ai yi

It is clear that (z′i, w
′
i) %

∗
i (xi, yi), for all i ∈ N . Hence, we have z′ P w′.

Since C ∪D = N , we have B \D ⊆ C. Let F = B \D. For all i ∈ N , Pi is not
empty so that we can take, for all i ∈ F , any ai, bi ∈ Xi such that ai Pi bi. Using
such pairs, define z′′, w′′ ∈ X as follows:
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C \ F F D

z′′ z′i ai zi
w′′ w′i bi wi

It is clear that (z′′i , w
′′
i ) %

∗
i (zi, wi), for all i ∈ N . Hence, we have z′′ P w′′.

Let us finally show that (Si, Ui) form a homogeneous chain of semiorders. We
already know that both Si and Ui are complete and that Vi is included in Pi. In
view of Remark 3, all we have to show is that there is a weak order Ti on Xi such
that:

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Si zi ⇒ xi Si zi] and [zi Si xi ⇒ zi Si yi], and

xi Ti yi ⇒ ∀zi ∈ Xi, [yi Vi zi ⇒ xi Vi zi] and [zi Vi xi ⇒ zi Vi yi].

Let us show that the weak order Ti can be taken to be %±i , this relation being a
weak order due to AC 1, AC 2, and AC 3.

Suppose that ai Si bi so that (ai, bi) %∗i (bi, ai). Suppose furthermore that
xi %

±
i ai. By construction xi %

±
i ai implies xi %

+
i ai, which is equivalent to saying

that (xi, ci) %∗i (ai, ci), for all ci ∈ Xi. Taking ci = bi, we obtain (xi, bi) %∗i (ai, bi).
Similarly, xi %

±
i ai implies xi %

−
i ai, which is equivalent to saying that (ci, ai) %∗i

(ci, xi), for all ci ∈ Xi. Taking ci = bi, we obtain (bi, ai) %∗i (bi, xi). Hence, we
have (xi, bi) %∗i (ai, bi) %∗i (bi, ai) %∗i (bi, xi), so that (xi, bi) %∗i (bi, xi) and xi Si bi.
The proof that bi Si ai and ai %

±
i xi imply bi Si xi is similar.

Suppose now that ai Vi bi, so that either ai Vi bi or ai Bi bi. Suppose that
ai Vi bi, so that (ci, di) �∗i (di, ci) �∗i (bi, ai), for some ci, di ∈ Xi. Suppose
furthermore that xi %

±
i ai. By construction, xi %

±
i ai implies xi %

−
i ai, which is

equivalent to saying that (ei, ai) %∗i (ei, xi), for all ei ∈ Xi. Taking ei = bi, we
obtain (bi, ai) %∗i (bi, xi). Hence, we have (ci, di) �∗i (di, ci) �∗i (bi, ai) %∗i (bi, xi).
This implies xi Vi bi. The proof that bi Vi ai and ai %

±
i xi imply bi Vi xi is similar.

Suppose finally that ai Bi bi, so that (ai, bi) �∗i (ci, di) �∗i (di, ci), for some
ci, di ∈ Xi. Suppose furthermore that xi %

±
i ai. By construction xi %

±
i ai implies

xi %
+
i ai, which is equivalent to saying that (xi, ci) %∗i (ai, ci), for all ci ∈ Xi.

Taking ci = bi, we obtain (xi, bi) %∗i (ai, bi). Hence, we have (xi, bi) %∗i (ai, bi) �∗i
(ci, di) �∗i (di, ci), so that xi Bi bi. The proof that bi Bi ai and ai %

±
i xi imply

bi Bi xi is similar. This completes the proof. 2

Remark 46
An easy corollary of the above result is that P is an AP-R-CDR iff it is asymmetric
and satisfies RC 1, RC 2, Maj 3, Maj 4, Maj 5, and BC . Indeed, in the above proof,
conditions AC 1, AC 2, and AC 3 (via the fact that they imply that %±i is a weak
order) are only used to show that (Si, Ui) is a homogeneous chain of semiorders. •
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The above result uses 9 conditions. It would be of minor interest if these 9
conditions were not independent. We show below that this is indeed the case in
the class of asymmetric relations, i.e., the class of relations of interest for the study
of AP-R-CDR-AT.

Proposition 47
In the class of asymmetric relations, conditions RC 1, RC 2, AC 1, AC 2, AC 3,
MM 3, MM 4, MM 5, and BC are independent.

Proof
We need 9 examples.

Bouyssou and Pirlot (2013) have shown that conditions RC 1, RC 2, AC 1, AC 2,
AC 3, MM 1 and MM 3 are independent in the class of asymmetric relations.

We know from Lemma 30 that MM 1 implies MM 4 and MM 5. Moreover, we
know from Lemma 37 that RC 1, RC 2, and MM 1 imply BC . Hence, the four
examples in Bouyssou and Pirlot (2013) concerning MM 3, AC 1, AC 2, AC 3 can
be used here. This leaves us with 5 examples. We give them below in Section 4.6. 2

4.6 Examples

We give below the 5 examples needed to complete the proof of Proposition 47.

Example 48 (Not [BC ])
Let X =

∏5
i=1Xi with Xi = {xi, yi, zi}, for i = 1, 2 and Xj = {xj, yj} for j =

3, 4, 5. We define P as follows. For all a, b ∈ X, we have a P b if
∑5

i=1 pi(ai, bi) > 0,
where pi is defined in the following table for all pairs (ai, bi) in Xi ×Xi.

pi X1 X2 Xj for j = 3, 4, 5

21 (x2, z2)
11 (x1, z1)
10 (x1, y1), (y1, z1) (x2, y2), (y2, z2) (xj, yj)
0 (a1, a1) (a2, a2) (aj, aj)

−10 (y1, x1), (z1, y1) (y2, x2), (z2, y2) (yj, xj)
−100 (z1, x1) (z2, x2)

It is easy to check that relation P is asymmetric, mainly because the opposite
(z1, x1) and (z2, x2) of the bonus pairs (x1, z1) and (x2, z2) play the rôle of ve-
toes. Indeed, due to the fact that p1(z1, x1) = p2(z2, x2) = −100, these pairs are
incompatible with relation P .

For i = 1, 2, 3, 4, 5, we have %∗i = %∗∗i , which are the weak orders induced by
the values assigned to pi in the above table. Hence P satisfies RC 1 and RC 2. It
is easy to check that AC 1, AC 2, and AC 3 hold.
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The only cases of super negative pairs, i.e., pairs (ci, di) such that there are
elements ai, bi with (ai, bi) �∗i (bi, ai) �∗i (ci, di), are again (z1, x1) and (z2, x2).
These pairs, as already observed, play the rôle of vetoes. They are therefore
incompatible with relation P , which, in view of Lemma 28, entails that P satisfies
Maj 3.

Since (z1, x1) and (z2, x2) are the opposite of the only two bonus pairs and are
never involved in preferences, using Lemma 32 shows that P satisfies Maj 4. Using
Lemma 33, it is also clear that Maj 5 holds. Hence, MM 4 and MM 5 hold.

In view of Lemma 38, property BC ij is trivially satisfied for all {i, j} 6=
{1, 2}. Using the same lemma, we see that this example violates BC 12 since
we have (x1, z1) �∗1 (x1, y1) �∗1 (y1, x1), (x2, z2) �∗2 (x2, y2) �∗2 (y2, x2), and
(x1, x2, y3, y4, y5) P (z1, z2, x3, x4, x5) but Not [(x1, x2, y3, y4, y5) P (z1, y2, x3, x4, x5)]. 3

Example 49 (Not [MM 5])
Let X =

∏3
i=1Xi with X1 = {x1, y1, z1} and Xj = {xj, yj} for j = 2, 3. The

relation P is defined as follows. For all a, b ∈ X, we have a P b if
∑3

i=1 pi(ai, bi) >
0, where pi is defined in the following table for all pairs (ai, bi) in Xi ×Xi.

pi X1 X2 X3

3 (x1, z1)
2 (x1, y1)
1 (y1, z1) (x2, y2) (x3, y3)
0 (a1, a1) (a2, a2) (a3, a3)
−1 (z1, y1) (y2, x2) (y3, x3)
−10 (y1, x1), (z1, x1)

The relation P is asymmetric, since the opposite (y1, x1) and (z1, x1) of the
bonus pairs (x1, y1) and (x1, z1) are never involved in pairs belonging to P .

For all i, %∗i is the weak order induced by pi in the above table. For i =
2, 3, %∗i = %∗∗i while %∗∗1 separates the bottom class of %∗1 in two classes since
(y1, x1) �∗∗1 (z1, x1). Hence P satisfies RC 1 and RC 2. It is easy to check that
AC 1, AC 2, and AC 3 hold.

MM 3i is trivially satisfied for i = 2, 3 (in view of Lemma 28). For i = 1, the
only super negative pairs are (y1, x1) and (z1, x1) and they are never involved in
P . Therefore, using Lemma 28, we have that Maj 31 and, hence, MM 3i, hold.

Maj 4i is trivially satisfied for i = 2, 3. For i = 1, the only bonus pairs are
(x1, y1) and (x1, z1) and their opposite pairs are never involved in P . Therefore,
applying Lemma 32 yields Maj 41 and, hence, MM 4.

Maj 5i and, hence, MM 5i are trivially satisfied for i = 2, 3 but this example
violates Maj 51. Indeed, we have (x1, y1) �∗1 (y1, z1) �∗1 (z1, y1) but there is a pair
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above (x1, y1) in %∗1, namely, (x1, z1) �∗1 (x1, y1). Since, RC 1 and RC 2 hold, this
implies a violation of MM 51 (Lemma 33).

In view of Lemma 38, property BC ij is trivially satisfied for all i 6= j since
bonuses occur on the sole attribute X1. 3

Example 50 (Not [MM 4])
Let X =

∏3
i=1Xi with X1 = {x1, y1, z1} and Xj = {xj, yj} for j = 2, 3. The

relation P is defined as follows. For all a, b ∈ X, we have a P b if
∑3

i=1 pi(ai, bi) >
0, where pi is defined in the following table for all pairs (ai, bi) in Xi ×Xi.

pi X1 X2 X3

2 (x1, z1)
1 (x1, y1), (y1, z1) (x2, y2) (x3, y3)
0 (a1, a1) (a2, a2) (a3, a3)
−1 (y1, x1), (z1, y1), (z1, x1) (y2, x2) (y3, x3)

When comparing a and b, provided (x1, z1) is neither (a1, b1) nor (b1, a1), we
have

∑3
i=1 pi(bi, ai) = −

∑3
i=1 pi(ai, bi). Hence, at most one of the pairs (a, b) or

(b, a) belongs to P . If a1 = x1 and b1 = z1, there is only one case in which we have
b P a, namely (z1, x2, x3) P (x1, y2, y3). In this case, we do not have a P b since
Not [(x1, y2, y3) P (z1, x2, x3)]. Relation P is thus asymmetric.

For all i, %∗i is the weak order induced by function pi defined in the above
table. For i = 2, 3, %∗i = %∗∗i while %∗∗1 separates the bottom class of %∗1 in two
classes since [(y1, x1) ∼∗∗1 (z1, y1)] �∗∗1 (z1, x1). Hence P satisfies RC 1 and RC 2.
It is easy to check that AC 1, AC 2, and AC 3 hold.

Maj 3i and, hence, MM 3i are trivially satisfied for all i since there are no super
negative pairs at all (Lemma 28).

Maj 4i and, hence, MM 4i are trivially satisfied for i = 2, 3. Maj 41 is violated
for i = 1. Indeed, we have (x1, z1) �∗1 (x1, y1) �∗1 (y1, x1) while (z1, x2, x3) P
(x1, y2, y3), which, combined with Lemma 32, implies that Maj 41 is not true. Since
RC 1 and RC 2 hold, this implies a violation of MM 41.

Maj 5i is trivially satisfied for i = 2, 3. For i = 1, (x1, z1) is the only bonus and
for all (r1, s1), we have (x1, z1) %∗1 (r1, s1). Therefore, using Lemma 33, we have
established that Maj 51 and, hence, MM 5i hold.

In view of Lemma 38, property BC ij is trivially satisfied for all i 6= j since a
bonus occurs on the sole attribute X1. 3

Example 51 (Not [RC2])
Let X = X1×X2 with X1 = {a, b} and X2 = {x, y}. Let P be empty except that
we have (a, x) P (a, y) and (a, x) P (b, y). The relation is clearly asymmetric.

On attribute 1, we have [(a, a) ∼∗1 (a, b)] �∗1 [(b, a) ∼∗1 (b, b)]. This shows that
RC 11 holds but that RC 21 is violated. We have a �+

1 b and a �−1 b. Hence, AC 11,
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AC 21 and AC 31 hold. It is easy to check that UC 1 and LC 1 hold so that MM 31,
MM 41, MM 51, and BC 12 hold.

On attribute 2, we have (x, y) �∗2 [(x, x) ∼∗2 (y, x) ∼∗2 (y, y)]. This shows that
RC 12 and RC 22 hold. We have x �+

2 y and x �−2 y. Hence, AC 12, AC 22 and
AC 32 hold. It is easy to check that UC 2 and LC 2 hold so that MM 32, MM 42,
MM 52, and BC 21 hold. 3

Example 52 (Not [RC1])
(This is also Example 92 in Bouyssou and Pirlot (2013)). Let X = X1 × X2 ×
X3 with X1 = {x, y, z, w}, X2 = {a, b} and X3 = {p, q}. Let P be such that
(α, a, p) P (β, a, q), (α, a, p) P (β, b, p), (α, a, p) P (β, b, q), (α, a, q) P (β, b, q),
(α, b, p) P (β, b, q), for all (α, β) ∈ Γ1 = X2

1 \ {(x, y), (z, y), (z, w)}.
We add the following pairs: (x, a, p) P (y, b, p), (x, a, p) P (y, b, q), (x, a, q) P

(y, b, q), and (z, a, p) P (w, a, q), (z, a, p) P (w, b, q), (z, b, p) P (w, b, q).
This relation has a total of 71 ordered pairs. It is easy to check that it is

asymmetric.
On attribute 2, we have (a, b) �∗2 [(a, a) ∼∗2 (b, b)] �∗2 (b, a). This shows that

RC 12 and RC 22 hold. We have a �+
2 b and a �−2 b. Hence, AC 12, AC 22 and

AC 32 hold. It is easy to check that UC 2 and LC 2 hold so that MM 32, MM 42,
MM 52, BC 21, and BC 23 hold.

On attribute 3, we have (p, q) �∗3 [(p, p) ∼∗3 (q, q)] �∗3 (q, p]. This shows that
RC 13 and RC 23 hold. We have p �+

3 q and p �−3 q. Hence, AC 13, AC 23 and
AC 33 hold. It is easy to check that UC 3 and LC 3 hold so that MM 33, MM 43,
MM 53, BC 31, and BC 32 hold.

On attribute 1, all ordered pairs, except (x, y), (z, y) and (z, w), are in the
same equivalence class of ∼∗1 and above these three pairs. The ordered pairs (x, y)
and (z, w) are clearly incomparable w.r.t. %∗1 and are both above (z, y).

This shows that RC 11 fails but that RC 21 holds. It is not difficult to check
that we have [y ∼+

1 w] �+
1 x �+

1 z and y �−1 w �−1 [x ∼+
1 z]. Hence, AC 11, AC 21

and AC 31 hold. It is easy to see that UC 1 holds. Hence, MM 41, MM 51, BC 12,
and BC 13 hold.

It remains to check that MM 31 holds. Let us check that M 31 holds.
Suppose that (x1, a−1) P (y1, b−1), (y1, c−1) P (x1, d−1) and (z1, e−1) P (w1, f−1).

We want to show that we have one of the following three relations: (y1, a−1) P
(x1, b−1), (z1, a−1) P (w1, b−1), (z1, c−1) P (w1, d−1).

If (y1, x1) ∈ Γ then the first conclusion always holds. If (y1, x1) = (z, y), the
second premise never holds, so that the condition is trivially satisfied. It remains
to deal with the following two cases: (y1, x1) = (x, y) and (y1, x1) = (z, w). We
deal with the first case, the treatment of the second being entirely similar.

Suppose that (y1, x1) = (x, y). If (z1, w1) 6= (z, y) and (z1, w1) 6= (z, w), we
have (z1, w1) %∗1 (x, y), so that the third conclusion always holds. If (z1, w1) =
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(z, w), the third premise never holds, so that the condition is trivially satisfied. If
(z1, w1) = (z, y), it is easy to check that there are no a−1, b−1 ∈ X−1 such that
(y1, a−1) P (x1, b−1), Not [(x1, a−1) P (y1, b−1)] and Not [(z1, a−1) P (w1, b−1)], so
that no violation of M 31 is possible in this case. 3

5 Discussion

We have analyzed and characterized binary relations P on product sets that can
be obtained as the asymmetric part of an outranking relation S. We have seen
that these relations are more complex than outranking relations. Indeed, they can
be seen as outranking relations only in degenerate cases.

Consider two alternatives (xi, a−i) and (yi, b−i) that are such that there is no re-
lation Vj on the attributes j 6= i. This complexity stems from the fact that yi Vi xi
can have two different effects. If S [(xi, a−i), (yi, b−i)] � S [(yi, b−i), (xi, a−i)],
then yi Vi xi acts as a normal veto. It forbids to have (xi, a−i) P (yi, b−i)
because the negative preference difference between yi and xi is “too large”. If
S [(xi, a−i), (yi, b−i)] , S [(yi, b−i), (xi, a−i)] then yi Vi xi acts as a bonus. It im-
plies that (yi, bi) P (xi, ai), because it forbids to have (xi, a−i) S (yi, b−i). This
makes an AP-R-CDR-AT an object that is far more complex than an outranking
relation.

This is reflected in our analysis by the fact that conditions MM 4, MM 5 and BC
are complex conditions, even though it remains possible to interpret them in terms
of the relation %∗i . This complexity also explains the difference between the pseudo-
disjunctive (also known as “optimistic”) and pseudo-conjunctive (also known as
“pessimistic”) versions of ELECTRE TRI-B. While the latter uses a reflexive out-
ranking relation (i.e., an R-CDR-AT), the former uses an AP-R-CDR-AT. Because
these two objects are different, we should not be surprised by the fact that the theo-
retical analysis of the pseudo-conjunctive version given in Bouyssou and Marchant
(2007a,b) does not carry over to the pseudo-disjunctive version. Similarly, we
should not be surprised by the fact that most of elicitation techniques developed
for the parameters of ELECTRE TRI-B only deal with the pseudo-conjunctive
version (see Cailloux, Meyer, and Mousseau, 2012; Damart, Dias, and Mousseau,
2007; Dias and Cĺımaco, 2000; Dias and Mousseau, 2003, 2006; Dias, Mousseau,
Figueira, and Cĺımaco, 2002; Leroy, Mousseau, and Pirlot, 2011; Mousseau and
Dias, 2004; Mousseau and S lowiński, 1998; Mousseau, S lowiński, and Zielniewicz,
2000; Mousseau, Figueira, and Naux, 2001; Mousseau, Figueira, Dias, da Silva,
and Cĺımaco, 2003; Ngo The and Mousseau, 2002). There has been a number
of recent works proposing elicitation techniques for the pseudo-disjunctive version
(see Zheng, 2012; Zheng, Takougang, Mousseau, and Pirlot, 2012). These excep-
tions do not invalidate the above remark, since these elicitation techniques are far
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more complex than the ones developed for the pseudo-conjunctive version (they
use MILP instead of LP). For more details on this point, we refer to Bouyssou and
Marchant (2013).

A clear limitation of the present work as well as our previous works on outrank-
ing relations is that it only deals with crisp relations. Since there are outranking
methods such as ELECTRE III (Roy, 1978) or PROMETHEE (Brans and Vincke,
1985; Brans, Vincke, and Mareschal, 1986) that use valued relations, an important
direction for future research would be to analyze such relations. Although this will
surely imply the development of a framework different from the ones used here,
this does not seem to be out of reach.
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number 6992 in LNAI, pages 219–233. Springer, 2011.

R. D. Luce. Semiorders and a theory of utility discrimination. Econometrica, 24:178–191,
1956.

V. Mousseau and L. C. Dias. Valued outranking relations in ELECTRE providing
manageable disaggregation procedures. European Journal of Operational Research,
156(2):467–482, 2004.
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