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Abstract
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1 Introduction
Electre Tri1 is a family of methods for sorting alternatives evaluated on several
criteria into ordered categories. The principle of these methods is that they assign
an alternative to a category by comparing it with profiles specifying levels on each
criterion. Comparisons are made by using an outranking relation which is typical
of the Electre methods. In its original version, ETri-B (Roy and Bouyssou,
1993, Yu, 1992), each profile represents the limit between a category and the
category below. Therefore, they are called limiting profiles. In contrast, in ETri-
C (Almeida-Dias, Figueira, and Roy, 2010), each category is represented by a
typical profile, therefore called central profile.

For an introduction to the Electre methods, we refer the reader to Belton
and Stewart (2001, Ch. 8). Overviews of these methods can be found in Roy and
Bouyssou (1993, Ch. 5 & 6), Figueira, Greco, Roy, and Słowiński (2010), Figueira,
Greco, Roy, and Słowiński (2013), and Figueira, Mousseau, and Roy (2016).

Recently, Fernández, Figueira, Navarro, and Roy (2017) proposed a method
called Electre Tri-nB. It is an extension of ETri-B, and, thus, uses limiting
profiles. Whereas ETri-B uses one limiting profile per category, ETri-nB allows
one to use several limiting profiles for each category.

ETri-nB deserves close attention for at least two reasons. First, as explained
in Bouyssou and Marchant (2015), ETri can be considered as a real success story
within the Electre family of methods. A closely related model, the NonCom-
pensatory Sorting (NCS) model, has received a fairly complete axiomatic analysis
in Bouyssou and Marchant (2007a,b). ETri has been applied to a large variety
of real world problems (see the references in Almeida-Dias et al., 2010, Sect. 6, as
well as Bisdorff, Dias, Meyer, Mousseau, and Pirlot, 2015, Ch. 6, 10, 12, 13, 15,
16). Many techniques have been proposed for the elicitation of the parameters of
this method (see the references in Bouyssou and Marchant, 2015, Sect. 1).

Second, the extension presented with ETri-nB is most welcome. Since out-
ranking relations are not necessarily complete, one may easily argue that it is
natural to try to characterize a category using several limiting profiles, instead of
just one. Moreover, compared to ETri-B, ETri-nB gives more flexibility to the
decision-maker to define categories using limiting profiles, as observed by Fernán-
dez et al. (2017, Remark 3, p. 217) 2.

In this paper, we analyze ETri-nB from a theoretical point of view. Our aim
is to give a complete characterization of this method without any supplementary
hypotheses. This is, in a sense, in contrast with Bouyssou and Marchant (2007a,b)

1We often abbreviate Electre Tri as ETri in what follows.
2Let us also mention that Fernández et al. (2017) is the last paper on Electre methods

published by Bernard Roy, the founding father of Electre methods, before he passed away at
the end of 2017.
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who characterize a model close to ETri-B, which is not exactly ETri-B (it differs
from it, in particular, by considering “quasi-criteria” instead of the more general
“pseudo-criteria” used in ETri-B, see Roy and Bouyssou, 1993, pp. 55–56, for def-
initions). As far as we know, this is the first time that an axiomatic foundation is
provided for a complete outranking method (encompassing the construction of the
outranking relation and the exploitation phase). The usefulness of such axiomatic
analyses has been discussed elsewhere and will not be repeated here (Bouyssou
and Pirlot, 2015, Dekel and Lipman, 2010, Gilboa, Postlewaite, Samuelson, and
Schmeidler, 2019). Our main finding is that, if the number of profiles used to
delimit each category is not restricted, the axiomatic analysis of ETri-nB is easy
and rests on a condition, linearity, that is familiar in the analysis of sorting models
(Bouyssou and Marchant, 2007a,b, 2010, Goldstein, 1991, Greco, Matarazzo, and
Słowiński, 2001b, 2004, Słowiński, Greco, and Matarazzo, 2002). Our simple result
shows the equivalence between ETri-nB and many other sorting models proposed
in the literature. It could also allow one to use elicitation or learning techniques
developed for these other models for the application of ETri-nB. This is useful
since Fernández et al. (2017) did not propose any elicitation technique (an elici-
tation technique was suggested afterwards in Fernández, Figueira, and Navarro,
2019).

The rest of this text is organized as follows. In the next section, we recall the
definitions of ETri-B and ETri-nB. We motivate the theoretical investigation
that follows by analyzing an example of an ETri-nB model. Section 3 intro-
duces our notation and framework. Section 4 presents our main results about the
pseudo-conjunctive version of ETri-nB. Section 5 presents various extensions of
these results. A final section discusses our findings. An appendix, containing sup-
plementary material to this paper, will allow us to keep the text of manageable
length. Its content will be detailed when needed.

2 ETri-nB: definitions and examples
For the ease of future reference, we first recall the definitions of ETri-B and
ETri-nB. For keeping it simple, we limit ourselves to sorting alternatives into
two categories, say the “acceptable” and the “unacceptable”. For a more detailed
description, we refer the reader to Fernández et al. (2017), Mousseau, Słowiński,
and Zielniewicz (2000), Roy and Bouyssou (1993), Yu (1992). We refer to Bouyssou
and Marchant (2015) for an analysis of the importance of the various Electre
Tri methods within the set of all Electre methods.

In the second subsection, we informally analyze an example of an ETri-nB
model in order to motivate the theoretical investigation conducted in the rest of
the paper.
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2.1 ETri-B and ETri-nB

All Electre Tri methods are based on the definition of an outranking relation.
There are several ways of defining such a relation.

2.1.1 The outranking relations in Electre III and in Electre I

A crisp outranking relation S (with asymmetric part P ) comparing pairs of al-
ternatives as in Electre III (see Roy and Bouyssou, 1993, p. 284–289) is built
by cutting a valued relation σ at a certain level λ. The value associated to each
pair in the relation σ is called the outranking credibility index. It implements
(see formula (1) below) the principle of outranking, i.e., an alternative x out-
ranks an alternative y if x is at least as good as y on a sufficiently important
set of criteria (concordance) and x is unacceptably worse than y on no criterion
(non-discordance). Let x, y be two alternatives respectively represented by their
evaluations (g1(x), . . . gi(x), . . . gn(x)), (g1(y), . . . , gi(y), . . . , gn(y)) w.r.t. n criteria.
For all i = 1, . . . , n, gi is a real valued function defined on the set of alternatives.

The concordance index c(x, y) =
∑n

i=1 wici(gi(x), gi(y)), where wi ≥ 0 is the
importance weight of criterion i (we assume w.l.o.g. that weights sum up to 1)
and ci(gi(x), gi(y)) is a function represented in Figure 1. Its definition involves
the determination of qti (resp. pti), the indifference (resp. preference) threshold.
These two thresholds are nonnegative and such that pti ≥ qti.

gi(xi)− gi(yi)

1

−qti−pti 0

ci(gi(xi), gi(yi))

−vti

di(gi(xi), gi(yi))

Figure 1: Shapes of the single criterion concordance index ci(gi(x), gi(y)) (gray)
and the discordance index di(gi(x), gi(y)) (black dashed) in Electre III. The two
indices are a function of the difference gi(x) − gi(y) and the three nonnegative
thresholds: vti ≥ pti ≥ qti ≥ 0.

The discordance index di(gi(x), gi(y)), also represented in Figure 1, uses an
additional parameter vti, the veto threshold 3 (that is such that vti ≥ pti, so that
we have vti ≥ pti ≥ qti ≥ 0) .

3For the sake of simplicity, the thresholds qti, pti and vti are taken as constant. Nothing in
the sequel depends on this option. They could be considered as variable provided appropriate
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The outranking credibility index σ(x, y) is computed as follows:

σ(x, y) = c(x, y)
∏

i:di(gi(x),gi(y))>c(x,y)

1− di(gi(x), gi(y))

1− c(x, y)
. (1)

Alternative x outranks alternative y, i.e., xSy, if σ(x, y) ≥ λ, with .5 ≤ λ ≤ 1.
In order that x outranks y, c(x, y) has to be greater than or equal to λ. This

index is “locally compensatory” in the sense that, for each i, there is an interval
(namely, [−pti,−qti]) for the differences gi(x) − gi(y) on which the single crite-
rion concordance index increases linearly and these indices are aggregated using a
weighted sum. Discordance also is gradual in a certain zone (namely [−vti,−pti]);
it comes into play only when the discordance index di(gi(x), gi(y)) is greater than
the overall concordance index c(x, y).

A simpler, more ordinal, version of the construction of an outranking relation
stands in the spirit of Electre I. It is also more amenable to theoretical investiga-
tion: see the characterization of outranking relations (Bouyssou and Pirlot, 2016)
and the analysis of the noncompensatory sorting model (Bouyssou and Marchant,
2007a,b). It differs from the above mainly by the shapes of the single criterion
concordance and discordance indices (see Figure 2).

gi(x)− gi(y)

1

−qti
= −pti

0

ci(gi(x), gi(y))

−vti

di(gi(x), gi(y))

Figure 2: Shapes of the single criterion concordance index ci(gi(x), gi(y)) (gray)
and the discordance index di(gi(x), gi(y)) (black dashed) in the style of Elec-
tre I. The two indices are a function of the difference gi(x)− gi(y) and the three
nonnegative thresholds: vti ≥ pti ≥ qti ≥ 0 Filled (resp. empty) circles indicate
included (resp. excluded) values.

The preference and indifference thresholds are confounded, which implies that
there is no linear “compensatory” part in ci(gi(x), gi(y)); discordance only occurs in
an all-or-nothing manner. The overall concordance index c(x, y) =

∑n
i=1wici(gi(x), gi(y)),

as above. In this construction, x outranks y, i.e., xSy, if σ(x, y) ≥ λ, with

conditions are enforced, actually ensuring that the corresponding weak preference, preference
and veto relations form an homogenous chain of semiorders (see Roy and Bouyssou, 1993, p. 56
and pp. 140–141 for details).
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σ(x, y) = c(x, y)
n∏

i=1

(1− di(gi(x), gi(y))), (2)

i.e., xSy if c(x, y) ≥ λ and di(gi(x), gi(y)) = 0, for all i. Note that

c(x, y) =
∑

i:gi(x)≥gi(y)−qti

wi.

We thus have c(x, y) ≥ λ if the sum of the weights of the criteria on which x is
indifferent or strictly preferred to y is at least equal to λ. Subsets of criteria of
which the sum of the weights is at least λ will be called winning coalitions (of
criteria).

Notice that both the Electre III outranking relation defined by means of
(1) and the Electre I outranking relation defined by means of (2) respect the
dominance relation4 ≥. This is easily seen by observing that both formulae (1)
and (2) are nondecreasing in gi(x) and nonincreasing in gi(y), for all i. We note
this fact in the following proposition for further reference.

Proposition 1
Let S denote an outranking relation of Electre III or Electre I type. The
relation S respects the dominance relation ≥, i.e., for all alternatives x, y, z, w,

[xSy, z ≥ x and y ≥ w] ⇒ zSw.

2.1.2 ETri-B

The sorting of an alternative x into category A (acceptable) or U (unacceptable)
is based upon the comparison of x with a limiting profile p using the relation S.

In the pessimistic version of ETri-B, now known, following Almeida-Dias et al.
(2010), as the pseudo-conjunctive version (ETri-B-pc), we have, for all x ∈ X,

x ∈ A ⇔ x S p.

In the optimistic version of Electre Tri, now known as the pseudo-disjunctive
version (ETri-B-pd), we have, for all x ∈ X,

x ∈ A ⇔ Not [p P x],

where P is the asymmetric part of S. Consequently, we have x ∈ U ⇔ p P x.
4The (weak) dominance relation ≥ is a reflexive and transitive relation on the set of alterna-

tives, that is defined as follows: x ≥ y if gi(x) ≥i gi(y), for all i. This is the relation denoted ∆F

by Roy and Bouyssou (1993, p. 61), F referring to a family of criteria.

6



2.1.3 ETri-nB

We now have a set of k limiting profiles P = {p1, p2, . . . , pk}. This set of limiting
profiles must be such that, for all p, q ∈ P , we have Not [p P q].

In the pseudo-conjunctive version of ETri-nB (ETri-nB-pc, for short), we
have that

x ∈ A ⇔
{
x S p for some p ∈ P , and
Not [q P x] for all q ∈ P ,

and x ∈ U , otherwise.
In the pseudo-disjunctive version of ETri-nB (ETri-nB-pd, for short), we have

that

x ∈ U ⇔
{
p P x for some p ∈ P , and
Not [x P q] for all q ∈ P ,

and x ∈ A, otherwise.
ETri-B-pc and ETri-B-pd are particular cases of ETri-nB-pc and ETri-nB-

pd, respectively. In this section, we consider only ETri-nB-pc and omit the suffix
“pc”. We shall only turn back, briefly, to ETri-nB-pd in Section 5.6. Following
Fernández et al. (2017), unless otherwise mentioned, we use the Electre III
outranking relation S defined by means of (1). The version of ETri-nB using the
Electre I outranking relation S defined via (2) will be referred to as ETri-nB-I.

Remark 2
Using Proposition 1, it is easy to see that ETri-nB and ETri-nB-I respect the
dominance relation ≥, i.e., are monotone w.r.t. this relation. In particular, if y
dominates the acceptable alternative x, then y is acceptable. Symmetrically, if x
is unacceptable and dominates y, then y is unacceptable. •

2.1.4 The family of Electre Tri methods

To ease the reading, we summarize the different variants of the ETri methods
considered in the sequel as well as their interrelationships. The variants of ETri-
nB appear in Table 1 on the left. Their version using only one limiting profile, i.e.,
the different variants of ETri-B, appear on the right of the same table.

(a) ETri-nB with veto (e) ETri-B with veto
(b) ETri-nB without veto (f) ETri-B without veto
(c) ETri-nB-I with veto (g) ETri-B-I with veto
(d) ETri-nB-I without veto (h) ETri-B-I without veto.

Table 1: Variants of ETri-nB and ETri-B.
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Model (a) contains model (b), which contains model (d). Model (c) (resp.
(d)) differs from model (a) (resp. (b)) in that it uses the outranking relation in
Electre I instead of Electre III.

The relationships between the ETri-B models are the same as between the
homologous ETri-nB models. The NonCompensatory Sorting (NCS) model ana-
lyzed by Bouyssou and Marchant (2007a,b) generalizes (h), while the NCS model
with veto generalizes (g). In both cases, the generalization lies in that the winning
coalitions of criteria are not necessarily determined by means of additive weights.
Model (h) is called the Majority Rule sorting model (MR-Sort) in the literature
(Leroy, Mousseau, and Pirlot, 2011, Sobrie, Mousseau, and Pirlot, 2019).

Note that another type of ETri methods has been proposed, namely ETri-
C (Almeida-Dias et al., 2010) and ETri-nC (Almeida-Dias, Figueira, and Roy,
2012). These are based on a different logic (using central profiles instead of limiting
profiles) as analyzed in Bouyssou and Marchant (2015). We shall not consider them
in this paper for lack of place.

2.2 An example of an ETri-nB model

Consider alternatives evaluated on three criteria. Each criterion value belongs to
the [0, 10] interval. In practice, such evaluations have a limited precision. Let us
assume that evaluations are integers or half-integers.

Assume that the alternatives are partitioned into two classes A and U by an
ETri-nB model with 2 limiting profiles. Let these profiles be p1 = (8, 7, 5) and
p2 = (5, 6, 8). The indifference, preference and veto thresholds are, respectively,
qti = 1, pti = 2 and vti = 4, the same for all criteria i = 1, 2, 3. All criteria have
the same weight wi =

1
3

and the cutting threshold λ = .6.
It is readily verified that p1Sp2 and p2Sp1 so that none of the profiles strictly

outranks the other.

2.2.1 Minimally acceptable alternatives

Let us apply the above model. The set of possible evaluations for criterion i is
Xi = {0, .5, 1, 1.5, . . . , 9.5, 10}, for i = 1, 2, 3, and the set of all possible alter-
natives is X =

∏3
i=1Xi. Each alternative is thus represented by an evaluation

vector: for any x ∈ X, x = (x1, x2, x3), with xi = gi(x), i = 1, 2, 3. Since each
alternative is identified with its evaluation vector, the dominance relation ≥ on X
is antisymmetric. Therefore, it is a partial order.

Since ETri-nB is monotone w.r.t. the dominance relation ≥, which is a partial
order on X, and since there are finitely many alternatives, the set A of accept-
able alternatives has a finite number of minimal elements A∗ that we shall call
minimally acceptable alternatives (see Section 4.2 for further justification). The
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set A is the set of alternatives that dominate at least one alternative in A∗. It
contains A∗. Decreasing the performance of a minimally acceptable alternative by
any amount on any criterion produces an unacceptable alternative.

Let us determine the set A∗. We first focus on p1. Given the granularity of the
evaluations, for satisfying c(x, p1) ≥ .6, the index ci(xi, p

1
i ), which takes only the

values 0, .5 and 1,

• must be 1 for two criteria i ∈ {1, 2, 3}; it can be 0 for the third one,

• or must be 1 for one criterion and take the value .5 on the other two.

Consider the alternatives of the form x = (7, 6, x3). For them, c(x, p1) ≥ 2
3
> .6.

We have d3(x3, p
1
3) = .75 if x3 = 1.5 and d3(x3, p

1
3) = .5 if x3 = 2. Therefore

σ(7, 6, 1.5) = 2
3
× 1/4

1/3
= .5 < .6 and σ(7, 6, 2) = 2

3
> .6 since d3(2, p

1
3) = .5 <

c(x, p1). Therefore, (7, 6, 2) is minimal in A and, by a similar reasoning, we have
that (7, 4, 4) and (5, 6, 4) are also minimal.

Consider now the second type of minimal alternatives. For example, for x =
(7, 5.5, 3.5), we have σ(x, p1) = c(x, p1) = 1 × 1/3 + 1/2 × 1/3 + 1/2 × 1/3 =
2/3 > 0.6. Clearly, none of the performances of x can be decreased by .5 without
resulting in an unacceptable alternative. Therefore, (7, 5.5, 3.5) is minimal and,
by a similar reasoning, we see that (6.5, 6, 3.5) and (6.5, 5.5, 4) are minimal too.

Applying the same analysis to the second profile p2, yields the complete de-
scription of the set A∗ of minimally acceptable elements displayed in Table 2 (the
first (resp. second) row corresponds to profile p1 (resp. p2)).

(7, 6, 2) (7, 4, 4) (5, 6, 4) (7, 5.5, 3.5) (6.5, 6, 3.5) (6.5, 5.5, 4)
(4, 5, 5) (4, 3, 7) (2, 5, 7) (4, 4.5, 6.5) (3.5, 5, 6.5) (3.5, 4.5, 7).

Table 2: List of minimally acceptable alternatives in case evaluations are integers
or half-integers.

None of these 12 alternatives dominates another. The number of elements in
A∗ is thus 12.

Remark 3
Let us briefly discuss the consequences of using a similar ETri-nB-I model, using
the Electre I outranking relation, instead of the more classical version above.
We keep the same two limiting profiles p1, p2 and the same parameters except for
qti and pti that we both set equal to 1 and vti that we set to 3. It is easy to see
that there are three minimally acceptable alternatives w.r.t. p1 which are (7, 6, 2),
(7, 4, 4) and (5, 6, 4). The minimally acceptable alternatives w.r.t. p2 are (4, 5, 5),
(4, 3, 7) and (2, 5, 7). The number of minimally acceptable alternatives is half the
one in Table 2. The minimally acceptable alternatives in this simplified model are
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identical to the first three ones in each row of Table 2. The last three ones in each
row are not “represented” in the simplified model. They correspond to alternatives
for which the distinction between thresholds pti and qti plays an important role. •

2.2.2 Observations

We emphasize the following observations supported by the above example.

1. From the analysis of the above example, it results that an alternative is
assigned to A by the ETri-nB model iff it is equal or dominates one of the
twelve alternatives listed in Table 2. Therefore, this model is equivalent to
another ETri-nB model with different parameters. The latter has the 12
alternatives P ′ = {p′1, . . . , p′j, . . . , p′12} listed in Table 2 as limiting profiles.
For all i = 1, 2, 3, w′

i = 1/3, pt′i = qt′i = 0 and vt′i is a large number, e.g.,
vt′i = 10. We set λ′ = 1. With this model, c′(x, p′j) ≥ λ′ = 1 iff xi ≥ p′ji
for all i. There is no veto effect since di(xi, p

′j
i ) ≤ c′(x, p′j) whenever the

condition c′(x, p′j) ≥ λ′ is fulfilled and whatever the value of vt′i. We call
such a model an unanimous ETri-nB model in the sequel.

2. While the scale Xi of each criterion i = 1, 2, 3 has 21 levels (all integers and
half integers between 0 and 10), only 6 of them are distinguished by appear-
ing as distinct values of the ith coordinate in the 12 minimally acceptable
alternatives listed in Table 2. The ETri-nB model distinguishes only the 7
classes of equivalent evaluations that are delimited by these 6 values. For in-
stance, on the scale of criterion i = 1, the 6 values that make a difference are
7, 6.5, 5, 3, 2.5, 1. They are the different values taken by the first coordinate
of the alternatives in Table 2. This means that the model’s assignments to
A or U induce a weak order ≿1 on X1 that is coarser than the natural order
on the set of integers and half-integers in [0, 1]. This weak order ≿1 (with its
asymmetric part denoted ≻1 and its symmetric part ∼1) on X1 is as follows:

[10 ∼1 9.5 ∼1 9 ∼1 8.5 ∼1 8 ∼1 7.5 ∼1 7] ≻1 6.5 ≻1 [6 ∼1 5.5 ∼1 5]

≻1 [4.5 ∼1 4 ∼1 3.5 ∼1 3] ≻1 2.5 ≻1 [2 ∼1 .5 ∼1 1] ≻1 [0.5 ∼1 0].

This implies, for example, the following. If the evaluation of x on the first
criterion is 6, decreasing it to 5 does not change the assignment of the al-
ternative. Such a weak order with 7 equivalence classes is defined on each
criterion by the model.

3. In the process of aiding a decision maker (DM) to make a decision by elic-
iting her preference in a question-and-answer session, ETri-nB may be a
useful tool because the principle of concordance/non-discordance at the root
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of the method is intuitively appealing. The perspective is different when the
parameters of the method are not elicited through actual interaction with
a DM but have to be learned on the basis of an (often limited) number of
assignment examples. The minimal number of examples that allows us to
determine a sorting model is important whenever learning the model is the
issue. Assume that an oracle tells you that ETri-nB is the model used by
the DM for sorting the alternatives into two categories A and U . The oracle
gives you the values of all the model’s parameters including the number and
the definition of limiting profiles. What is the minimal number of assignment
questions you have to ask the DM just to verify that the oracle is not cheat-
ing on you? The most efficient questioning strategy is asking the decision
maker to assign all minimally acceptable alternatives (that can be deter-
mined according to the model indicated by the oracle). If the DM assigns
them all to A, then it is still necessary to ask her to assign all maximally
unacceptable alternatives. If the DM assigns them all to U , then the oracle’s
model is the right one. So, in particular, the number of minimally acceptable
alternatives (i.e., the limiting profiles of the unanimous ETri-nB equivalent
model) is important in a learning context. From this point of view, ETri-nB
appears as rather complex since the set of minimally acceptable alternatives
it induces tends to be large. In the above example with 3 criteria, 2 lim-
iting profiles and criteria scales composed of integers and half-integers, this
number is 12. It grows rapidly, for instance, with the criteria scales preci-
sion. If we apply the same model to the case the criteria scales are rational
numbers with one decimal digit ranging in [0,10] (i.e., 101 levels on each cri-
terion scale instead of 21), the number of minimally acceptable alternatives
grows up to 192 (see Supplementary material, Appendix C). Therefore, in a
learning perspective, the question of approximating an ETri-nB model by
a simpler one, i.e., a model determining relatively few minimally acceptable
alternatives is important.

2.3 Goal of the paper

In Sections 3 and 4, we analyze, in a conjoint measurement framework (Krantz,
Luce, Suppes, and Tversky, 1971, Ch. 6 and 7), an assignment model, Model (E),
that is closely related to the ETri-nB-I method presented above. Just as ETri-
nB generalizes ETri-B, Model (E) generalizes the noncompensatory sorting model
studied by Bouyssou and Marchant (2007a,b) to the case in which several limiting
profiles are used to sort the alternatives.

We place ourselves in a conjoint measurement framework because it is the
usual one in decision theory and it has been used in previous works analyzing the
Electre methods. Analyzing sorting methods in this framework means that any
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alternative in a Cartesian product can be sorted into categories and that an a
priori linear ordering of each criterion scale is not postulated. A weak order on
each criterion scale, if it exists, will be revealed by the partition. Working in such
a framework does not restrict the generality of the study. Indeed, in case each
criterion scale is linearly ordered and a partition respects the dominance relation
determined by these orders, then the partition does reveal a weak order on each
scale, possibly coarser than the a priori linear orders, but compatible with them.
This was illustrated in item 2 of Section 2.2.2.

Our main finding is that, if the number of limiting profiles is not bounded above,
the axiomatic analysis of Model (E) is easy and rests on a condition, linearity, that
is familiar in the analysis of sorting models (Bouyssou and Marchant, 2007a,b,
2010, Goldstein, 1991, Greco et al., 2001b, 2004, Słowiński et al., 2002). Our
simple result shows the equivalence between Model (E) and several other sorting
models, in particular, the unanimous model introduced above in the example.

We prove, in Section 5.2, that the ETri-nB model, which uses the Electre III
outranking relation, is equivalent to the ETri-nB-I model and to the Decompos-
able model (D1) (that will be defined below, in Section 3.2). By “equivalent”, we
mean that, for all particular ETri-nB model, there is an ETri-nB-I model that
determines the same partition. The parameters of these equivalent models are pos-
sibly different. In particular, we emphasize that the sets of limiting profiles used in
equivalent models usually differ, also in cardinality. Our theoretical analysis gives
insight into the issue of learning such models on the basis of assignment examples
(see Section 6.2).

3 Notation and framework
Although the analyses presented in this paper can easily be extended to cover the
case of several ordered categories, we will mostly limit ourselves to the study of
the case of two ordered categories. This will allow us to keep things simple, while
giving us a sufficiently rich framework to present our main points.

Similarly, we suppose throughout that the set of objects to be sorted is finite.
This is hardly a limitation with applications of sorting methods in mind. The
extension to the general case is not difficult but calls for developments that would
obscure our main messages 5.

5In fact our framework allows us to deal with some infinite sets of objects: all that is really
required is that the set of equivalence classes of each set Xi under the equivalence ∼i is finite,
see below.
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3.1 The setting

Let n ≥ 2 be an integer and X = X1 ×X2 × · · · ×Xn be a finite set of objects6.
Elements x, y, z, . . . of X will be interpreted as alternatives evaluated on a set
N = {1, 2, . . . , n} of attributes 7. Any element x ∈ X is thus an n-dimensional
vector x = (x1, . . . , xi, . . . , xn), with xi ∈ Xi, for all i ∈ N . For all x, y ∈ X and
i ∈ N , we denote by (xi, y−i) the element w ∈ X such that wi = xi and, for all
j ̸= i, wj = yj. In other words, w = (xi, y−i) is obtained by replacing the ith
component of y, i.e., yi, by xi.

Our primitives consist in a twofold partition ⟨A,U⟩ of the set X. This means
that the sets A and U are nonempty and disjoint and that their union is the
entire set X. Our central aim is to study various models allowing to represent the
information contained in ⟨A,U⟩. We interpret the partition ⟨A,U⟩ as the result
of a sorting method applied to the alternatives in X. Although the ordering of
the categories is not part of our primitives, it is useful to interpret the set A as
containing Acceptable objects, while U contains Unacceptable ones.

We say that an attribute i ∈ N is influential for ⟨A,U⟩ if there are xi, yi ∈
Xi and a−i ∈ X−i such that (xi, a−i) ∈ A and (yi, a−i) ∈ U . We say that an
attribute is degenerate if it is not influential. Note that the fact that ⟨A,U⟩ is a
partition implies that there is at least one influential attribute in N . A degenerate
attribute has no influence whatsoever on the sorting of the alternatives and may be
suppressed from N . Hence, we suppose henceforth that all attributes are influential
for ⟨A,U⟩.

A twofold partition ⟨A,U⟩ induces on each i ∈ N a binary relation defined
letting, for all i ∈ N and all xi, yi ∈ Xi,

xi ∼i yi if
[
∀a−i ∈ X−i, (yi, a−i) ∈ A ⇔ (xi, a−i) ∈ A

]
. (3)

This relation is always reflexive, symmetric and transitive, i.e., is an equivalence.
We omit the simple proof of the following (see Bouyssou and Marchant, 2007a,
Lemma 1, p. 220).

Lemma 4
For all x, y ∈ X and all i ∈ N ,

1. [y ∈ A and xi ∼i yi] ⇒ (xi, y−i) ∈ A,
6Note that, in contrast with Section 2, the sets Xi are not necessarily sets of real numbers.

They also need not be the range of a function gi evaluating the alternatives w.r.t. criterion i.
The set Xi can be any finite set, not necessarily ordered a priori.

7We use a standard vocabulary for binary relations. For the convenience of the reader, all
terms that are used in the main text are defined in Appendix A, given as supplementary material.
See also, e.g., Aleskerov, Bouyssou, and Monjardet (2007), Doignon, Monjardet, Roubens, and
Vincke (1988), Pirlot and Vincke (1992), Roubens and Vincke (1985).
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2. [xj ∼j yj, for all j ∈ N ] ⇒ [x ∈ A ⇔ y ∈ A].

This lemma will be used to justify the convention made later in Section 4.1.

3.2 A general measurement framework

Goldstein (1991) suggested the use of conjoint measurement techniques for the
analysis of twofold and threefold partitions of a set of multi-attributed alterna-
tives. His analysis was rediscovered and developed in Greco et al. (2001b) and
Słowiński et al. (2002). We briefly recall here the main points of the analysis
in the above papers for the case of twofold partitions. We follow Bouyssou and
Marchant (2007a).

Let ⟨A,U⟩ be a partition of X. Consider a measurement model, henceforth the
Decomposable model, in which, for all x ∈ X,

x ∈ A ⇔ F (u1(x1), u2(x2), . . . , un(xn)) > 0, (D1)

where ui is a real-valued function on Xi and F is a real-valued function on∏n
i=1 ui(Xi) that is nondecreasing in each argument 8. The special case of Model

(D1) in which F is supposed to be increasing in each argument, is called Model
(D2). Model (D2) contains as a particular case the additive model for sorting in
which, for all x ∈ X,

x ∈ A ⇔
n∑

i=1

ui(xi) > 0, (Add)

that is at the heart of the UTADIS technique (Jacquet-Lagrèze, 1995) and its vari-
ants (Greco, Mousseau, and Słowiński, 2010, Zopounidis and Doumpos, 2000a,b).
It is easy to check 9 that there are twofold partitions that can be obtained in Model
(D2) but that cannot be obtained in Model (Add) (see Supplementary material,
Appendix E).

In order to analyze Model (D1), we define on each Xi the binary relation ≿i

letting, for all xi, yi ∈ Xi,

xi ≿i yi if [for all a−i ∈ X−i, (yi, a−i) ∈ A ⇒ (xi, a−i) ∈ A]. (4)

It is not difficult to see that, by construction, ≿i is reflexive and transitive. We
denote by ≻i (resp. ∼i) the asymmetric (resp. symmetric) part of ≿i (hence, the
relation ∼i coincides with the one defined by (3)).

8In Model (D1), notice that we could have chosen to replace the strict inequality by a nonstrict
one. The two versions of the model are equivalent, as shown in Bouyssou and Marchant (2007a,
Rem. 8, p. 222). The same is true for Model (D2).

9When X is finite, it is clear that the variant of Model (Add) in which the strict inequality is
replaced by a nonstrict one is equivalent to Model (Add).
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We say that the partition ⟨A,U⟩ is linear on attribute i ∈ N (condition i-linear)
if, for all xi, yi ∈ Xi and all a−i, b−i ∈ X−i,

(xi, a−i) ∈ A
and

(yi, b−i) ∈ A

 ⇒


(yi, a−i) ∈ A,

or
(xi, b−i) ∈ A.

(i-linear)

The partition is said to be linear if it is i-linear, for all i ∈ N . This condition was
first proposed in Goldstein (1991), under the name “context-independence”, and
generalized in Greco et al. (2001b) and Słowiński et al. (2002) (these authors call
it “cancellation property”). The adaptation of this condition to the study of binary
relations, adaptation first suggested by Goldstein (1991), is central in the analysis
of the nontransitive decomposable models presented in Bouyssou and Pirlot (1999,
2002, 2004).

The following lemma takes note of the consequences of condition i-linear on
the relation ≿i and shows that linearity is necessary for Model (D1). Its proof can
be found in Bouyssou and Marchant (2007a, Lemma 5, p. 221).

Lemma 5
1. Condition i-linear holds iff ≿i is complete,

2. If a partition ⟨A,U⟩ has a representation in Model (D1) then it is linear.

The following proposition is due to Goldstein (1991, Theorem 2) and Greco
et al. (2001b, Theorem 2.1, Part 2).

Proposition 6
Let ⟨A,U⟩ be a twofold partition of a set X. Then:

(i) there is a representation of ⟨A,U⟩ in Model (D1) iff it is linear,

(ii) if ⟨A,U⟩ has a representation in Model (D1), it has a representation in
which, for all i ∈ N , ui is a numerical representation of ≿i,

(iii) moreover, Models (D1) and (D2) are equivalent.

Proof
See, e.g., Bouyssou and Marchant (2007a, Proposition 6, p. 222) 2

3.3 Partitions respecting a dominance relation

Footnote 6 has emphasized that it is not necessarily the case that Xi is a subset of
the reals and the range of a function gi evaluating the alternatives w.r.t. criterion i,
for all i ∈ N . In the case a partition respects the dominance relation determined by
pre-existing linear orderings of the criteria scales (see Remark 2, for a definition),
we note the following result.
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Proposition 7
Let X =

∏n
i=1Xi, where the finite set Xi is endowed with a linear order ≥i, for all

i. Let ⟨A,U⟩ be a twofold partition of X which respects the dominance relation ≥
determined by the linear orders ≥i. Then ⟨A,U⟩ is linear and the weak order ≿i

induced by the partition is compatible with the linear order ≥i, for all i, i.e., for
all xi, yi ∈ Xi, xi ≥i yi entails xi ≿i yi.

Proof
If xi ≥i yi, condition (4) is fulfilled, since the partition respects dominance, and
therefore xi ≿i yi. Since ≥i is complete, so is ≿i, for all i. Therefore ⟨A,U⟩ is
linear (Lemma 5.1). 2

The fact that, in general, ≿i does not distinguish (i.e., considers as equivalent)
some pairs that are strictly ordered by ≥i is illustrated in Section 2.2.2, item 2.

We noticed in Remark 2, that ETri-nB-pc and ETri-nB-I-pc respect the dom-
inance relation. Therefore, we have the following corollary of Proposition 7.

Corollary 8
The twofold partitions determined by ETri-nB-pc and ETri-nB-I-pc are linear.

3.4 Interpretations of the Decomposable model (D1)
The framework offered by the Decomposable model (D1) is quite flexible. It con-
tains many other sorting models as particular cases. We already observed that it
contains Model (Add) as a particular case. Bouyssou and Marchant (2007a) have
reviewed various possible interpretations of Model (D1). They have shown that
both the pseudo-conjunctive and the pseudo-disjunctive variants of ETri-B-I (see
Table 1) enter into this framework. In particular, they have characterized, within
the Decomposable model, the NCS model, which is a generalization (without ad-
ditive weights) of ETri-B-I (pseudo-conjunctive).

Greco et al. (2001b, Theorem 2.1, Parts 3 and 4) (see also Słowiński et al., 2002,
Theorem 2.1) have proposed two equivalent reformulations of the Decomposable
model (D1). The first one uses “at least” decision rules. The second one uses a
binary relation to compare alternatives to a profile. We refer to Bouyssou and
Marchant (2007a) and to the original papers for details.

4 Main Results

4.1 Definitions

The following definition synthesizes the main features of ETri-nB-I-pc, the ver-
sion of ETri-nB-pc using the Electre I outranking relation (see Section 2.1).
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The main differences w.r.t. ETri-nB-I-pc are that: (i) we do not suppose that
the real-valued functions gi are given beforehand and (ii) we do not use additive
weights combined with a threshold to determine the winning coalitions. Actually,
the model defined below is a multi-profile version of the noncompensatory sorting
model with veto analyzed in Bouyssou and Marchant (2007a), exactly in the same
way as ETri-nB is a multi-profile version of ETri-B. For notational simplicity,
we shall refer to it as Model (E) (“E ”, for Electre Tri) in the sequel.
Definition 9
We say that a partition ⟨A,U⟩ has a representation in Model (E) if:

• for all i ∈ N , there is a semiorder Si on Xi (with asymmetric part Pi and
symmetric part Ii),

• for all i ∈ N , there is a strict semiorder Vi on Xi that is included in Pi and
is the asymmetric part of a semiorder Ui,

• (Si, Ui) is a homogeneous nested chain of semiorders and Wi = Swo
i ∩ Uwo

i is
a weak order that is compatible with both Si and Ui,

• there is a set of subsets of attributes F ⊆ 2N such that, for all I, J ∈ 2N ,
[I ∈ F and I ⊆ J ] ⇒ J ∈ F ,

• there is a binary relation S on X (with symmetric part I and asymmetric
part P ) defined by

x S y ⇔ [S(x, y) ∈ F and V (y, x) = ∅] ,

• there is a set P = {p1, . . . , pk} ⊆ X of k limiting profiles, such that for all
p, q ∈ P , Not [p P q],

such that

x ∈ A ⇔
{
x S p for some p ∈ P and
Not [q P x] for all q ∈ P ,

(E)

where
S(x, y) = {i ∈ N : xi Si yi},

and
V (x, y) = {i ∈ N : xi Vi yi}.

We then say that ⟨(Si, Vi)i∈N ,F ,P⟩ is a representation of ⟨A,U⟩ in Model (E).
Model (Ec) is the particular case of Model (E), in which there is a representation
that shows no discordance effects, i.e., in which all relations Vi are empty. Model
(Eu) is the particular case of Model (E), in which there is a representation that
requires unanimity, i.e., such that F = {N}. ⌟
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(E) ⟨(Si, Vi)i∈N ,F ,P⟩ General model
(Ec) ⟨(Si,∅)i∈N ,F ,P⟩ Based on concordance
(Eu) ⟨(Si,∅)i∈N ,F = {N},P⟩ Based on unanimity

Table 3: Model (E) and its variants.

Table 3 summarizes the models defined above. It should be clear that (E) is
closely related to ETri-nB-I-pc (see Remark 10 below). It does not use criteria
but uses attributes, as is traditional in conjoint measurement. Moreover, it does
not use an additive weighting scheme combined with a threshold to determine
winning coalitions but uses instead a general family F of subsets of attributes
that is compatible with inclusion (see also Bouyssou and Marchant, 2007a). Note
that, when the set of limiting profiles P is restricted to be a singleton, Model (E)
is exactly the noncompensatory sorting model (NCS) studied by Bouyssou and
Marchant (2007a).

Remark 10
Any partition determined by an ETri-nB-I-pc model has a representation in Model
(E). We illustrate this fact using the example of the ETri-nB-I-pc model described
in Remark 3. Note that this way of constructing a representation in Model (E) is
applicable to any ETri-nB-I-pc model.

For all i = 1, 2, 3, Xi is the set of integers and half-integers between 0 and 10.
The semiorder Si on Xi is defined using the threshold pti = qti = 1, i.e., for all
xi, yi ∈ Xi, xiSiyi iff xi ≥ yi − 1. We have xiSiyi iff ci(xi, yi) = 1. Similarly, the
strict semiorder Vi is defined using the threshold vti = 3 by xiViyi iff xi > yi + 3.
We have xiViyi iff di(yi, xi) = 1. The subsets of attributes in F are all sets of two
or three attributes since c(x, y) ≥ .6 if and only if, for at least two criteria, xiSiyi
and, therefore, |S(x, y)| ≥ 2. The pair (x, y) belongs to the outranking relation
S iff |S(x, y)| = |{i : xiSiyi}| ≥ 2 and V (y, x) = {i : yiVixi} = ∅, i.e., it is never
the case that yi ≥ xi + 3.5. With these definitions of Si, Vi and F , the acceptable
alternatives in the example are exactly these which satisfy (E).

It is easy to see that the model in the example is equivalent to a model based on
unanimity, i.e., a model (Eu), using as limiting profiles the three first alternatives
in each row of Table 2 and the natural order ≥ as the relation Si on Xi. •

Remark 11
It is clear that Model (Eu) is a particular case of Model (Ec): if unanimity is
required to have x S y, the veto relations Vi play no role and can always be taken
to be empty. •

The following lemma takes note of elementary consequences of the fact that
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(Si, Ui) is a homogeneous nested chain of semiorders (we remind the reader that
the necessary definitions are recalled in Appendix A, as supplementary material).

Lemma 12
Let ⟨A,U⟩ be a twofold partition of X. If ⟨A,U⟩ is representable in (E) then, for
all a = (ai, a−i), b = (bi, b−i) ∈ X, all i ∈ N and all ci ∈ Xi,

a S b and bi Wi ci ⇒ a S (ci, b−i), (5a)
a P b and bi Wi ci ⇒ a P (ci, b−i), (5b)
a S b and ci Wi ai ⇒ (ci, a−i) S b, (5c)
a P b and ci Wi ai ⇒ (ci, a−i) P b, (5d)

where Wi denotes a weak order that is compatible with the homogeneous nested
chain of semiorders (Si, Ui).

Proof
Let a′ = (ci, a−i) and b′ = (ci, b−i). Let us show that (5a) holds. Suppose that
a S b, so that S(a, b) ∈ F and V (b, a) = ∅. Because bi Wi ci, we know that
S(a, b′) ⊇ S(a, b). Hence, we have S(a, b′) ∈ F . Similarly, we know that V (b, a) =
∅, so that Not [bi Vi ai]. It is therefore impossible that ci Vi ai since bi Wi ci would
imply bi Vi ai, a contradiction. Hence, V (b′, a) = ∅ and we have a S b′.

Let us show that (5b) holds. Because a P b implies a S b, we know from (5a)
that a S b′. Suppose now that b′ S a so that S(b′, a) ∈ F and V (a, b′) = ∅. Because
bi Wi ci, ci Si ai implies bi Si ai, so that S(b, a) ⊇ S(b′, a), implying S(b, a) ∈
F . Similarly, we know that V (a, b′) = ∅, so that Not [ai Vi ci]. It is therefore
impossible that ai Vi bi, since bi Wi ci would imply ai Vi ci, a contradiction.
Hence, we must have V (a, b) = ∅, so that we have b S a, a contradiction.

The proof of (5c) and (5d) is similar. 2

The next lemma shows that Model (E) implies linearity.

Lemma 13
Let ⟨A,U⟩ be a twofold partition of X =

∏n
i=1Xi. If ⟨A,U⟩ has a representation

in Model (E) then it is linear.

Proof
Suppose that we have (xi, a−i) ∈ A, (yi, b−i) ∈ A. Defining the relations Wi as in
Lemma 12, we have either xi Wi yi or yi Wi xi. Suppose that xi Wi yi. Because
(yi, b−i) ∈ A, we know that (yi, b−i) S p, for some p ∈ P , and Not [q P (yi, b−i)] for
all q ∈ P , Lemma 12 implies that (xi, b−i) S p and Not [q P (xi, b−i)] for all q ∈ P .
Hence, (xi, b−i) ∈ A. The case yi Wi xi is similar: we start with (xi, a−i) ∈ A to
conclude that (yi, a−i) ∈ A. Hence, linearity holds. 2
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In view of Lemma 13, we therefore know from Lemma 5 that in Model (E)
there is, on each attribute i ∈ N , a weak order ≿i on Xi that is compatible with
the partition ⟨A,U⟩.
Convention
For the analysis of ⟨A,U⟩ on X =

∏n
i=1Xi, it is not useful to keep in Xi elements

that are equivalent w.r.t. the equivalence relation ∼i. Indeed, if xi ∼i yi then
(xi, a−i) ∈ A iff (yi, a−i) ∈ A (see Lemma 4).

In order to simplify the analysis, it is not restrictive to suppose that we work
with Xi/∼i (i.e., the set of equivalence classes in Xi for the equivalence ∼i) instead
of Xi and, thus, on

∏n
i=1[Xi/∼i] instead of

∏n
i=1 Xi. This amounts to supposing

that the equivalence ∼i becomes the identity relation. We systematically make this
hypothesis below. This is w.l.o.g. since the properties of a partition on

∏n
i=1[Xi/∼i]

can immediately be extended to a partition on
∏n

i=1 Xi (see Lemma 4) and is done
for convenience only. In order to simplify notation, we suppose below that we
are dealing with partitions on

∏n
i=1 Xi for which all relations ∼i are trivial. Our

convention implies that each relation ≿i is antisymmetric, so that the sets Xi are
linearly ordered by ≿i.

Let us define the relation ≿ on X letting, for all x, y ∈ X,

x ≿ y ⇔ xi ≿i yi, for all i ∈ N.

It is clear that the relation ≿ plays the role of a dominance relation in our conjoint
measurement framework. It is a partial order on X, being reflexive, antisymmetric,
and transitive. This partial order is obtained as a “direct product of chains” (the
relations ≿i on each Xi) as defined in Caspard, Leclerc, and Monjardet (2012,
p. 119).

Before we turn to our main results, it will be useful to take note of a few
elementary observations about maximal and minimal elements in partially ordered
sets (posets), referring to Davey and Priestley (2002), for more details.

4.2 Minimal and maximal elements in posets

Let T be a binary relation on a set Z. An element x ∈ B ⊆ Z is maximal (resp.
minimal) in B for T if there is no y ∈ B such that y Tα x (resp. x Tα y), where
Tα denotes the asymmetric part of T . The set of all maximal (resp. minimal)
elements in B ⊆ Z for T is denoted by Max(T ,B) (resp. Min(T ,B)).

For the record, the following proposition recalls some well-known facts about
maximal and minimal elements of partial orders on finite sets (Davey and Priestley,
2002, p. 16). We sketch its proof in Appendix B for completeness.
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Proposition 14
Let T be a partial order (i.e., a reflexive, antisymmetric and transitive relation)
on a nonempty set Z. Let B be a finite nonempty subset of Z. Then the set of
maximal elements, Max(T ,B), and the set of minimal elements, Min(T ,B), in B
for T are both nonempty. For all x, y ∈ Max(T ,B) (resp. Min(T ,B)) we have
Not[x Tα y]. Moreover, for all x ∈ B, there is y ∈ Max(T ,B) and z ∈ Min(T ,B)
such that y T x and x T z.

We will apply the above proposition to the proper nonempty subset A of the
finite set X =

∏n
i=1 Xi, partially ordered by ≿.

4.3 A characterization of Model (E)

We know that ≿ is a partial order on X =
∏n

i=1 Xi. Because ⟨A,U⟩ is a twofold
partition of X, we know that A ≠ ∅. Because we have supposed X to be finite, so
is A. Hence, we can apply Proposition 14 to conclude that the set A∗ = Min(≿,A)
is nonempty.

We are now fully equipped to present our main result.

Theorem 15
Let X =

∏n
i=1Xi be a finite set and ⟨A,U⟩ be a twofold partition of X. The parti-

tion ⟨A,U⟩ has a representation in Model (E) iff it is linear. This representation
can always be taken to be ⟨(≿i, Vi = ∅)i∈N ,F = {N},P = A∗⟩.

Proof
We know from Lemma 13 that Model (E) implies linearity. Let us prove the
converse implication. Take, for each i ∈ N , Si = ≿i and Vi = ∅. Take F = {N}.
Hence, we have S = ≿. Take P = A∗. Using Proposition 14, we know that A∗ is
nonempty and that, for all p, q ∈ A∗, we have Not [p ≻ q]. Hence, taking P = A∗
leads to an admissible set of profiles in Model (E).

If x ∈ A, we use Proposition 14 to conclude that there is y ∈ A∗ such that
x ≿ y, so that we have x ≿ p, for some p ∈ P . Suppose now that, for some
q ∈ P , we have q ≻ x. Using the fact that ≿ is a partial order, we obtain q ≻ p,
contradicting the fact that p, q ∈ A∗, in view of Proposition 14. Suppose now that
x ∈ U . Supposing that x ≿ p, for some p ∈ P = A∗, would lead to x ∈ A, a
contradiction. This completes the proof. 2

Remark 16
In the representation in Model (E) built in Theorem 15, the relation S is a partial
order. When this is so, the condition stating that Not [q P x] for all q ∈ P and all
x ∈ A, is automatically verified. Indeed, suppose that, for some q ∈ P and some
x ∈ A, we have q P x. Because x ∈ A, there is p ∈ P such that x S p. Transitivity
leads to q P p, violating the condition on the set of profiles. •
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Remark 17
Under our convention that ≿i is antisymmetric, for all i ∈ N , it is clear that,
if we are only interested in representations with F = {N}, the set P must be
taken equal to A∗. Hence, the representation built above is unique, under our
convention about antisymmetry and the constraint that F = {N}. Without the
constraint that F = {N}, uniqueness does not obtain any more, as shown, e.g.,
by Example 18 below. Since this is not important for our purposes, we do not
investigate this point further in this text. •

4.4 Example

We illustrate the construction of the representation in Theorem 15 with the ex-
ample below.

Example 18
Let X =

∏3
i=1 Xi with X1 = X2 = X3 = {39, 37, 34, 30, 25}. Hence, X contains

53 = 125 objects.
Define the twofold partition ⟨A,U⟩ letting:

(x1, x2, x3) ∈ A ⇔ x1 + x2 + x3 ≥ 106.

In this twofold partition, the set A contains 32 objects, while U contains the
remaining 93 objects.

It is easy to check that all attributes are influential for this partition and that,
on each attribute i ∈ N , we have 39 ≻i 37 ≻i 34 ≻i 30 ≻i 25. For instance, for
attribute 1, we have:

(39, 37, 30) ∈ A (37, 37, 30) /∈ A,

(37, 39, 30) ∈ A (34, 39, 30) /∈ A,

(34, 39, 34) ∈ A (30, 39, 34) /∈ A,

(30, 39, 37) ∈ A (25, 39, 37) /∈ A.

This twofold partition has an obvious representation in Model (Add). Hence it
is linear and also has a representation in Model (E). Considering the representation
built in Theorem 15 with Si = ≿i, Vi = ∅, P = A∗ and F = {N}, we obtain 10 a
representation that uses the following 12 profiles:

(37, 37, 34) (39, 34, 34) (39, 37, 30) (37, 30, 39)

(37, 34, 37) (34, 39, 34) (39, 30, 37) (30, 39, 37)

(34, 37, 37) (34, 34, 39) (37, 39, 30) (30, 37, 39).

(6)

10We omit details and the reader is invited to check this example using, e.g., his/her favorite
spreadsheet software.
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It is clear that these twelve profiles are pairwise incomparable w.r.t. S = ≿.
For instance, the object (39, 30, 39) belongs to A, because 39+30+39 = 108 ≥

106. This object outranks (meaning here, dominates) the two profiles (39, 30, 37)
and (37, 30, 39), but no other.

Notice that this twofold partition is also determined by an ETri-nB-pc model
with a single limiting profile p1 = (39, 39, 39), thresholds qti = 0, pti = 9, vti = 14,
for i = 1, 2, 3 and λ = 16/27. 3

5 Remarks and extensions

5.1 Positioning Model (E) w.r.t. other sorting models

Theorem 15 gives a simple characterization of Model (E). It makes no restriction
on the size of the set of profiles P , except that it is finite.

The proof of Theorem 15 builds a representation of any partition ⟨A,U⟩ satis-
fying linearity in a special case of Model (E), Model (Eu). This shows that Models
(Eu) and (E) are equivalent. Because, (Eu) is a particular case of Model (Ec),
this also shows that Models (E), (Eu) and (Ec) are equivalent.

In view of Proposition 6, Model (E) is equivalent to Model (D1) and, hence, to
Model (D2). However, Model (Add) is not equivalent to Model (E). An example of
a linear partition that is not representable in Model (Add) is given in Appendix E,
as supplementary material. Note also that a characterization of Model (Add) in
case X is a finite set is known but requires a countably infinite scheme of axioms
(see Bouyssou and Marchant, 2008, Appendix B, and especially, Remark 31, p. 32).

Because Model (D2) contains Model (Add) as a particular case, the same is
true for Model (E).

We summarize our observations in the following.

Proposition 19
1. Models (E), (Ec), and (Eu) are equivalent.

2. Models (E), (D1), and (D2) are equivalent.

3. Model (Add) is a particular case of Model (E) but not vice versa.

The above proposition allows us to position rather precisely Model (E) within
the family of all sorting models.

Remark 20
As observed in Section 4.1, when the set P of limiting profiles is restricted to a sin-
gleton, Model (E) is the noncompensatory sorting model. The twofold partitions
⟨A,U⟩ that can be represented in this model have been characterized as being

23



linear and 3v-graded (see Bouyssou and Marchant, 2007a). The latter property
implies that the weak order ≿i induced by the partition on Xi, for all i, distin-
guishes at most three equivalence classes of evaluations on criterion i. In case there
is no veto effect, ≿i distinguishes at most two equivalence classes on Xi (2-graded).
This result characterizes the twofold partitions representable in the noncompen-
satory sorting model within the set of linear twofold partitions. In other words, it
characterizes the particular case of Model (E) with one limiting profile within the
general Model (E). •

5.2 Model (E) vs. ETri-nB-pc

In order to position Model (E) w.r.t. ETri-nB-pc, we assume that, for all i, Xi is
the range of a real-valued function gi evaluating the alternatives w.r.t. criterion i.
We know that Model (E) is equivalent to Model (Eu). These models are character-
ized by linearity. But all partitions obtained with the original method ETri-nB-pc
satisfy linearity (by Corollary 8). Therefore, ETri-nB-pc is a particular case of
Model (E).

Conversely, Model (Eu) is a particular case of ETri-nB-pc that is obtained
taking the cutting level λ to be 1 and, on all criteria, the preference and indifference
thresholds to be equal. Since unanimity is required, veto thresholds play no role.
Since Model (Eu) is equivalent to Model (E), Model (E) is a particular case of
ETri-nB-pc.

The same can be said of ETri-nB-I-pc, since this model also satisfies linearity
(by Corollary 8) and contains the unanimous model (Eu). This is also true of the
versions without veto of ETri-nB-pc and ETri-nB-I-pc. Therefore, (E) and all
four models in the left part of Table 1 are equivalent models.

We take note of this in the next proposition.

Proposition 21
Models (E), ETri-nB-pc (with or without veto) and ETri-nB-I-pc (with or with-
out veto) are equivalent models11.

The relationship of (E) with ETri-nB-I-pc is however tighter than with ETri-
nB-pc. Indeed, as shown in Remark 10, any ETri-nB-I-pc model has a straight-
forward representation in Model (E) that does not make use of the unanimous
model.

11We emphasize that, by equivalent models, we mean that any partition that has a represen-
tation in one of the three models, also has a representation in the two other models, using an
appropriate set of parameters. In particular, not only the limiting profiles used in these models
are generally different but also the numbers of limiting profiles differ.
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5.3 Unanimous representations

The reader may be perplexed by the fact that the proof of Theorem 15 builds a
representation in Model (E) in which F = {N}. This is indeed a very particular
form of representation. Notice that there are linear partitions of which the sole
representation in Model (E) is a unanimous one, i.e., with F = {N}. The curious
reader will find such an example in Appendix D, as supplementary material. Hence,
representations with F = {N} are sometimes quite useful and even, may be the
only possible ones. We show below that obtaining such a representation from a
representation based on concordance, i.e., in Model (Ec), is easy.

Any representation in Model (E) can be transformed into a representation with
F = {N}. This is a direct consequence of Theorem 15. When the representation
is without discordance, we show below that the process of building A and then
deriving A∗ can be avoided.

Suppose we know a representation ⟨(Si,∅)i∈N ,F ,P⟩ of the partition ⟨A,U⟩ in
(E) (in fact, in (Ec)) and that F ̸= {N}.

We want to find a representation such that F = {N}. Theorem 15 ensures
that such a representation exists. It can be built quite efficiently, independently
of the construction used in Theorem 15.

Let F∗ = Min(⊇,F), the set of minimal elements in F w.r.t. inclusion. For
each i ∈ N , let x0

i be the unique element in Xi that is minimal for the linear order
≿i. Define x0 accordingly. Moreover, let:

P ′ = {(x0
−I , pI), for all p ∈ P and I ∈ F∗}.

It is clear that ⟨(Si,∅)i∈N , {N},P ′⟩ is a representation of the partition ⟨A,U⟩ in
(E).

5.4 Variable set of winning coalitions F
A rather natural generalization of Model (E), called (Ẽ), is as follows. Instead
of considering a single family of winning coalitions F that is used to build the
relation S and compare each alternative in X to all profiles in P , we could use a
family Fp that would be specific to each profile p ∈ P , with a relation Sp that now
depends on the profile.

The analysis of Model (Ẽ) is easy. It is simple to check that Model (Ẽ) implies
linearity. Indeed, for each relation Sp, Lemma 12 holds and, hence, linearity cannot
be violated. This shows that Model (Ẽ) is a particular case of Model (E) and,
hence, is equivalent to it.
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5.5 More than two categories

Our analysis of Model (E) can easily be extended to cover the case of an arbitrary
number of categories. Because this would require the introduction of a rather
cumbersome framework, without adding much to the analysis of two categories,
we do not formalize this point. We briefly indicate how this can be done, leaving
the details to the interested readers.

Linearity has been generalized to cope with more than two categories. This is
done in Słowiński et al. (2002) and Bouyssou and Marchant (2007b). The intuition
behind this generalization is simple. It guarantees that there is a weak order on
each attribute that is compatible with the ordered partition.

When X is finite, this condition is necessary and sufficient to characterize the
obvious generalization of Model (D1) that uses more than one threshold, instead of
the single threshold 0 (see, e.g., Bouyssou and Marchant, 2007b, Prop. 7, p. 250).
Moreover, it is easy to check that this condition is satisfied by the natural gener-
alization of Model (E) that uses more than two categories (this involves working
with of a set of profiles P for each of the induced twofold partitions).

Now, the technique used in the proof of Theorem 15 easily allows one to define
a family of profiles for each of the induced twofold partitions. It just remains to
check that these families of profiles satisfy the constraints put forward in Fernández
et al. (2017, Condition 1, p. 216). This is immediate.

5.6 Pseudo-disjunctive ETri-nB

Up to this point, we have investigated the properties of Model (E) which is closely
linked to ETri-nB-pc and some of its variants. We now briefly examine ETri-
nB-pd (defined in Section 2.1.3).

Let us first observe, as in Remark 2, that ETri-nB-pd and ETri-nB-I-pd
respect the dominance relation. Therefore, by Proposition 7, we have that these
models satisfy linearity. Hence all partitions determined either by ETri-nB-pd or
by ETri-nB-I-pd have a representation in Model (E).

Whether or not these models are equivalent to Model (E) is still unclear. The
interested reader may refer to Bouyssou, Marchant, and Pirlot (2020, Section 5),
for a theoretical look at ETri-nB-pd. This reference contains examples showing
that the study of this model is more complex than that of the pseudo-conjunctive
version. These examples suggest that ETri-nB-pd might be strictly included in
Model (E), but this question remains open.

The extra complexity involved in studying the pseudo-disjunctive model was
already pointed out by Bouyssou and Marchant (2015) in the case of ETri-B-pd.
Their analysis concludes that this is mainly due to the fact that ETri-B-pc and
ETri-B-pd are not dual of each other (see Bouyssou et al., 2020, Section 5.3, for
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more detail).

6 Discussion

6.1 Summary

Using classical tools from conjoint measurement, we have proposed a new inter-
pretation of the Decomposable model (D1) introduced by Goldstein, i.e., of linear
twofold partitions of a finite product set X =

∏n
i=1 Xi. Any such partition can be

represented in Model (E) using an appropriate set of limiting profiles. It can also
always be represented in Model (Eu), the unanimous model, using as limiting pro-
files the set of minimally acceptable elements in X. Some linear twofold partitions
have a unique representation in Model (E). It is then a unanimous one. Some
other linear twofold partitions have several representations in model (E), one of
which is unanimous.

In case Xi is a finite subset endowed with a linear ordering ≥i (e.g., Xi is the
range of the real-valued evaluation function gi w.r.t. criterion i) and the partition
⟨A,U⟩ of X =

∏n
i=1Xi respects dominance, then it is linear w.r.t. the weak order

≿i on Xi that is compatible with the linear order ≥i on Xi. Any such twofold
partition is representable in Model ETri-nB-pc using an appropriate set of limiting
profiles and other model parameters (thresholds, additive criteria weights). It
can also be represented in model ETri-nB-I-pc (again with appropriate, possibly
different, limiting profiles and parameters). Of course, it can also be represented
in Models (D1) or in Model (E) (possibly using a set of winning coalitions F that
cannot be represented by additive weights and a threshold). Since all these models
contain as a particular case the unanimous model (Eu), it may happen that the
sole representation of the twofold partition in these models is the unanimous one.
In some cases, but not always, there exists a more synthetic representation with
fewer limiting profiles and a nontrivial set of winning coalitions.

Note that any sorting model producing partitions respecting dominance and
able to determine any partition generated by the unanimous model is equivalent
to Model (D1). Not all sorting models respecting dominance however are able
to determine any partition produced by the unanimous model. For example, the
additive model (Add) is strictly included in Model (D1).

Somewhat surprisingly, while Bernard Roy had always championed outrank-
ing approaches as an alternative to the classical additive value function model,
it turns out that the last Electre method that he published before he passed
away, Electre Tri-nB, contains the additive value function model for sorting
as a particular case. We think that this unexpected conclusion is a plea for the
development of axiomatic studies in the field of decision with multiple attributes,

27



as already advocated in Bouyssou, Perny, Pirlot, Tsoukiàs, and Vincke (1993),
more than 25 years ago.

6.2 Perspectives for elicitation and learning

As a preliminary remark, let us observe the following. We have established that
Electre Tri sorting models with multiple limiting profiles have the same expres-
sive power be they based on Electre I (ETri-nB-I) or Electre III (ETri-nB)
outranking relations. This does not imply that one should systematically opt for
the simpler model based on Electre I (ETri-nB-I) in an elicitation or a learning
process. In such a process, the crisp preference thresholds in Electre I may
not fit with the decision maker’s insights, while she may be receptive to the more
gradual preference model in Electre III. Similarly, learning a model based on
Electre III may be at an advantage even though the model has more parame-
ters and assignment examples are scarce. The more “continuous” character of the
preferences in Electre III may allow for different optimization techniques (espe-
cially with the variant of Electre III proposed by Mousseau and Dias (2004)). In
any case, since assignment examples or other preference information are typically
scarce in MCDA, model indeterminacy is generally an issue. Therefore, attention
should be paid to not using exceedingly general models. In particular, the number
of limiting profiles considered should be kept to a minimum (using a model based
on Electre I or on Electre III).

In the rest of this section, we focus on situations in which a model of assignment
respecting dominance has to be learned solely on the basis of assignment examples.
We thus assume that either we do not have the opportunity to interact with a
decision maker or, if such a possibility exists, we decided to only ask her questions
in terms of assignments to the classes of the partition. In such a perspective,
the intuitive content of the underlying models plays no role, while mastering the
complexity of these models is important as observed in Section 2.2.2, item 3.

ETri-nB-pc is equivalent to Model (E), which is equivalent to the Decom-
posable model (D1) and thus to the model based on “at least” decision rules (see
Section 3.4). Techniques have been proposed to learn a decision rule model (see
Greco, Matarazzo, and Słowiński, 1999, 2001a, Greco, Matarazzo, Słowiński, and
Stefanowski, 2001c, Greco, Matarazzo, and Słowiński, 2016, Słowiński et al., 2002,
and, for a recent application of these techniques, Abastante, Bottero, Greco, and
Lami, 2014). A large scale recent application to the detection of frauds in car loans
applications is described in Błaszczyński, de Almeida Filho, Matuszyk, Szeląg, and
Słowiński (2021). The dataset involves 26 187 loans among which 405 were fraud-
ulently obtained. The dominance-based rough set approach (DRSA) is applied. It
determines “at least” decision rules, which approximately reproduce the partition
in fraudulent and non-fraudulent loans. The approach outperforms two classical
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machine learning techniques (random forest and support vector machine). Meth-
ods such as DRSA can directly be used to learn an ETri-nB-pc model since a
limiting profile can immediately be deduced from any “at least” decision rule d.
Indeed, the latter specifies minimal levels to be attained on a subset Nd ⊆ N of
criteria in order to be assigned to category A. A minimally acceptable element
associated to such a rule is the n-tuple whose components corresponding to the
criteria in Nd are set to the minimal levels specified in the rule. The components
corresponding to any criterion i ̸∈ Nd are set to the minimal element in Xi (w.r.t.
the linear order ≥i). An alternative satisfies rule d iff it is at least as good as the
minimally acceptable element associated to the rule. This correspondence between
rules and minimally acceptable elements provides a description of the partition in
the unanimous model Eu.

Because Model (D1) is quite general and the learning sets of assignment exam-
ples usually of limited size, using these techniques is not entirely straightforward
and, e.g., may lead, in the decision rule model, to a large number of rules. More-
over, these techniques, when used for learning an ETri-nB-pc model, produce
indeed an ETri-nB-pc model but under the form of a unanimous model, i.e., in
terms of a set of minimally acceptable alternatives, not under a more compact
form, even when there is one.

Having at hand alternative descriptions of Model (D1) may offer an opportunity
to control the complexity of the learned models. It is therefore important to
investigate particular cases of Model (E), in which the cardinality of the set of
profiles P is restricted. Unfortunately, the problem seems to be difficult. This
is the subject of a companion paper that deals with these more technical issues
(Bouyssou, Marchant, and Pirlot, 2021a). This companion paper only analyzes the
particular case of two profiles coupled with unanimity. Even in this apparently
simple case, the problem is not easy. Hence, our analysis also leaves open the study
of the gain of expressiveness brought by increasing the size of the set of profiles.
Going from a single profile, the case studied in Bouyssou and Marchant (2007a),
to an arbitrarily large number of profiles, the case implicitly studied in Section 4,
leads to a huge gain in expressiveness. Is this gain already present when going from
a single profile to a small number of profiles? This question is clearly important
as a guide to learning the parameters of ETri-nB. Our analysis of the case of two
profiles coupled with unanimity shows that it is unlikely that a purely axiomatic
investigation will allow us to obtain clear answers to this question. Hence, this is
also a plea to combine axiomatic work with other types of work, e.g., based on
computer simulations.

Instead of constraining the number of limiting profiles in the unanimous model,
an alternative approach would consist of exploring ETri-nB-pc or ETri-nB-I-pc
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with restricted number of limiting profiles12. Models ETri-nB-I-pc and (E) with
one limiting profile are well-known. Model (E) with one limiting profile is the
noncompensatory sorting (NCS) model characterized by Bouyssou and Marchant
(2007a). The particular case in which the winning coalitions can be represented
by additive weights and a majority threshold corresponds to model ETri-nB-I-pc
with one limiting profile. In the absence of veto, this model is known as MR-Sort
(Leroy et al., 2011, Sobrie et al., 2019)

Several methods have been proposed for learning Model (E) with one limit-
ing profile (Belahcène, Labreuche, Maudet, Mousseau, and Ouerdane, 2018) or its
particular case Model ETri-nB-I-pc with one limiting profile (Leroy et al., 2011,
Sobrie, Mousseau, and Pirlot, 2017, Sobrie et al., 2019). These methods rely on
various techniques such as mixed integer programming (MIP), Boolean satisfiabil-
ity algorithms (SAT, MaxSAT) or metaheuristics. The size of sets of assignment
examples that exact methods (such as MIP, SAT or MaxSAT) can deal with is
limited. In contrast, the metaheuristic designed by Sobrie, Mousseau, and Pirlot
(2013), Sobrie et al. (2019) or that by Olteanu and Meyer (2014) competes with
state-of-the-art machine learning algorithms on real datasets (Tehrani, Cheng, and
Hüllermeier, 2012a, Tehrani, Cheng, Dembczyński, and Hüllermeier, 2012b). The
size of these datasets, which are benchmarks commonly used in machine learning,
ranges from 120 to 1728 alternatives, the number of attributes, from 3 to 8 and
the number of categories, from 2 to 9.

Characterizing Model (E) with a fixed small number (e.g., 2 or 3) of limiting
profiles seems very difficult. The only thing that can easily be provided is an upper
bound on the number of equivalence classes of the relations ≿i induced by the
corresponding twofold partition on the scale Xi of each criterion (see Observation 2
in Section 2.2.2, for an illustration) and correlatively, an upper bound on the
maximal number of minimally acceptable alternatives (see footnote 14). Extending
the approaches referred to above for learning models with more than one limiting
profile has not been done yet and does not seem straightforward either. In case
a formulation for learning such models when the number of limiting profiles is
limited to 2 or 3 would prove operational, then an incremental learning approach

12With such models, even with one limiting profile, the number of minimally acceptable alter-
natives (i.e., the number of limiting profiles in the equivalent unanimous model) can be large.
In the simplest case of ETri-nB-I-pc with one limiting profile and no veto, a minimally accept-
able alternative takes the values of the limiting profile minus the indifference threshold qti on
a minimal winning coalition of criteria and the minimal value in Xi on all other criteria. If
the model is such that a coalition is winning whenever it contains at least n/2 criteria (this is
obtained by setting all criteria weights to 1/n and the cutting level λ to 1/2), then the num-
ber of minimal winning coalitions is maximal and is equal to the Sperner number

(
n

⌈n/2⌉
)

(see,
e.g., Caspard et al., 2012, pp. 116-118). Therefore, for such a model, the maximal number of
minimally acceptable alternatives is equal to this number.
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could be envisaged. Start with fitting Model (E) with one limiting profile to the
data. If assignment accuracy is not satisfactory, proceed with fitting a model with
two profiles, etc.

Turning to the learning of an ETri-nB-pc model (using an Electre III out-
ranking relation), observe first that the case with one limiting profile corresponds
to the classical Electre Tri-pc model. Much effort has been devoted to develop
learning methods for this model (e.g., Doumpos, Marinakis, Marinaki, and Zo-
pounidis, 2009, Mousseau and Słowiński, 1998, Ngo The and Mousseau, 2002).
The genetic algorithm proposed by Doumpos et al. (2009) has been tested on a
real dataset (in the banking sector) involving 100 alternatives evaluated on 7 cri-
teria and assigned to 3 categories. It has also been tested on artificial datasets,
involving up to 1000 alternatives in the learning set, assigned to categories using
randomly generated ETri models. No exact methods have been developed to date
to learn ETri-nB-pc. The genetic algorithm proposed by Fernández et al. (2019)
for learning ETri-nB-pc has shown good performance on a real case study involv-
ing 81 assignment examples (R & D projects) evaluated on 4 criteria assigned to
8 categories. It has also been tested on artificial datasets assigned to categories
by randomly generated ETri-nB-pc (using 5 limiting profiles in each category
boundary).

In conclusion, the general approach, based on the decision rule model and tech-
niques, without restrictions on the generality of Model (D1), is available but does
not allow to easily control the simplicity of the learned model (see Dembczyński,
Pindur, and Susmaga, 2003, Greco, Matarazzo, Slowinski, and Stefanowski, 2000).
Current methods, such as the genetic algorithm proposed by Fernández et al.
(2019) are usable. Unfortunately, the scalability of these algorithms is difficult to
assess since they have not been tested on common benchmark datasets 13 .

Alternative approaches remain to be developed. Ideally, they should fulfill the
following three requirements.

1. Focus on a well-defined, preferably characterized, family of assignment mod-
els forming a proper subset of all assignment models (D1) respecting the
linearity property or the dominance relation.

2. The models in this family should have a compact description, i.e., there
should be a synthetic, interpretable, manner of describing the set of mini-
mally acceptable alternatives.

3. Learning these models should be computationally tractable, i.e., there should
13Incidentally, we came across the recent paper by Silva, de Lima Silva, Ferreira, and de

Almeida-Filho (2021) in which the decision rule approach (DRSA) is applied to the rating of
sovereign risk; the results are then compared with those obtained using an additive model and
MR-Sort. Unfortunately, the dataset involved is a small one (36 countries).
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be an algorithm able to fit, in reasonable computing time, a model in the
family to a set of assignment examples involving several hundreds up to a
few thousands assignments.

Model (E) and ETri-nB-pc with a restricted number of limiting profiles fulfill
the first requirement and the second but not the third (except perhaps for Model
(E) with one limiting profile). The additive model (Add) is a candidate that
checks all three boxes. It is closely related with the UTADIS technique and its
variants (as already mentioned in Section 3.2). However, its interpretation is quite
at a distance from that of Electre based models, which rely on the idea of
one or several limiting profiles and outranking relations. These are interpreted as
expressing requirements on each criterion that an alternative should ideally fulfill
in order to be acceptable. A challenging research issue is thus to define a family of
models within the Decomposable model (D1) that are in the spirit of the Electre
methods and fulfills the above three requirements.

6.3 Future research and work in progress

Theorem 15 is a simple result that establishes the equivalence of the Decomposable
model (D1) with ETri-nB-pc and related models in the spirit of Electre Tri.
Besides issues related to learning, this result leaves open a number of interesting
problems that we intend to deal with in later studies. Among them, let us mention
the following sets of questions.

Algorithmic questions. Is it easy to test whether a partition ⟨A,U⟩ satisfies
linearity? Are there efficient algorithms to find a linear partition close to a partition
that is not linear? Is it easy to test whether it is possible to build a linear partition
on the basis of partial information about A and U? Similar questions arise, when
there is a supplementary constraint on the size of the set of profiles.

Combinatorial questions. Given a set X =
∏n

i=1 Xi, can we devise (easy to
evaluate) formulae for the maximal number of objects in A∗ (this is related to the
size of the largest antichain 14 in a direct product of chains, see Sander, 1993, for
the case of the direct product of chains of the same length)? What is the number
of twofold partitions of X =

∏n
i=1Xi that can be represented in Model (E) (this

is related to the famous problem of Dedekind numbers, see Ersek Uyanık, Sobrie,
Mousseau, and Pirlot, 2017, Kahn, 2002, Kisielewicz, 1988)?

14In Bouyssou, Marchant, and Pirlot (2021b), we give the proof of a result that has already
appeared in the grey literature but for which no proof was available. It states that if the chain
on Xi has mi elements, the maximal size of an antichain in X =

∏n
i=1 Xi partially ordered by

≿ is ∑
I⊆N :mI<h−n

(
h−mI − 1

n− 1

)
(−1)|I|,
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Questions linked to the number of profiles. Given a learning set of assignment
examples that is compatible with Model (D1), what is the minimal number of
limiting profiles of a unanimous model (or of a Model (E) or of an ETri-nB-pc
model) that exactly restores the assignments?
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Appendix: To appear as supplementary material

A Binary relations
We use a standard vocabulary for binary relations. For the convenience of the
reader and in order to avoid any misunderstanding, we detail our vocabulary here.
A binary relation T on a set Z is a subset of Z × Z. For x, y ∈ Z, as is usual, we
will often write x T y instead of (x, y) ∈ T .

Let T be a binary relation on Z. We define:

• the asymmetric part Tα of T as x Tα y ⇔ [x T y and Not [y T x]],

• the symmetric part T ι of T as x T ι y ⇔ [x T y and y T x],

• the symmetric complement T σ of T as x T σ y ⇔ [Not [x T y] and Not [y T x]],

for all x, y ∈ Z.
A binary relation T on Z is said to be:

(i) reflexive if x T x,

(ii) irreflexive if Not [x T x],

(iii) complete if x T y or y T x,

(iv) symmetric if x T y implies y T x,

(v) asymmetric if x T y implies Not [y T x],

(vi) antisymmetric if [x T y and y T x] ⇒ x = y,

(vii) transitive if [x T y and y T z] ⇒ x T z,

(viii) Ferrers if [x T y and z T w] ⇒ [x T w or z T y],

(ix) semitransitive if [x T y and y T z] ⇒ [x T w or w T z],

for all x, y, z, w ∈ Z.
We list below a number of remarkable structures. A binary relation T on Z is

said to be:

(i) a weak order (or complete preorder) if it is complete and transitive,

(ii) a linear order if it is an antisymmetric weak order,

(iii) a semiorder if it is reflexive, Ferrers and semitransitive,
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(iv) a strict semiorder if it is irreflexive, Ferrers and semitransitive,

(v) an equivalence if it is reflexive, symmetric, and transitive,

(vi) a partial order if it is reflexive, antisymmetric and transitive.

Notice that a reflexive and Ferrers relation must be complete. Similarly an ir-
reflexive and Ferrers relation must be asymmetric.

When T is an equivalence relation on Z, the set of equivalence classes of T on
Z is denoted Z/T . A partition of Z is a collection of nonempty subsets of Z that
are pairwise disjoint and such that the union of the elements in this collection is
Z. It is clear that, when T is an equivalence relation on Z, Z/T is a partition of
Z.

When T on Z is a semiorder, its asymmetric part Tα is irreflexive, Ferrers and
semitransitive, i.e., a strict semiorder.

Any Ferrers and semitransitive T on Z (which includes semiorders and strict
semiorders) induces a weak order Two on Z that is defined as follows:

a Two b if ∀c ∈ Z, [b T c ⇒ a T c] and [c T a ⇒ c T b]. (7)

If T is a semiorder and V is its asymmetric part, it follows that Two = V wo. The
weak order induced by a semiorder is identical to the one induced by its asymmetric
part.

Let T and V be two semiorders on Z such that T ⊆ V . We say that (T , V ) is
a nested chain of semiorders. Let Two (resp. V wo) be the weak order on Z induced
by T (resp. V ). If a nested chain of semiorders T ⊆ V is such that the relation
Two∩V wo is complete (and therefore is a weak order), we say that the nested chain
of semiorders (T , V ) is homogeneous (Doignon et al., 1988).

Finally, let us note that T is a semiorder on a finite set Z iff there are a real-
valued function f on Z and a positive number s > 0 such that, for all a, b ∈ Z,
a T b ⇔ f(a) ≥ f(b)− s

B Sketch of the proof of Proposition 4
Suppose that Max(T ,B) is empty. Let x ∈ B. By hypothesis, x does not belong
to Max(T ,B). This implies that there is w1 ∈ B such that w1 T

α x. Clearly, this
implies that w1 is distinct from x, because Tα is irreflexive. But w1 does not belong
to Max(T ,B). This implies that there is w2 ∈ B such that w2 Tα w1. Clearly,
this implies that w2 is distinct from both w1 and x. Continuing the reasoning
leads to postulating the existence of a chain of elements wi, i ∈ N+, that are all
distinct (otherwise, the transitivity of Tα will lead to violate irreflexivity). This
violates the finiteness of B. Hence, Max(T ,B) must be nonempty. The proof that
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Min(T ,B) must be nonempty is similar. The fact that, for all x, y ∈ Max(T ,B),
we have Not [x Tα y] is clear from the definition of Max(T ,B). The same is clearly
true with Min(T ,B).

Suppose now that x ∈ B and there is no y ∈ Max(T ,B) such that y T x. If
x ∈ Max(T ,B), the contradiction is established, because T is reflexive. Suppose,
hence, that x /∈ Max(T ,B). There is w1 ∈ B such that w1 Tα x. But it is
impossible that w1 belongs to Max(T ,B). This implies that there is w2 ∈ B such
that w2 Tα w1. Because, Tα is transitive, it is impossible that w2 ∈ Max(T ,B).
Because Tα is asymmetric are transitive, it is impossible that w2 is identical to w1

or to x. Continuing the same reasoning, leads to postulating the existence of a
chain of elements wi, i ∈ N+, that are all distinct. This violates the finiteness of
B. Hence, there exists y ∈ Max(T ,B) such that y T x. The proof that if x ∈ B,
there is z ∈ Min(T ,B) such that x T z is similar. 2

C Example: Minimally acceptable alternatives for
rational evaluations with one decimal digit

The ETri-nB model specified in Section 2.2 uses two profiles p1 = (8, 7, 5) and
p2 = (5, 6, 8). The indifference, preference and veto thresholds are, respectively,
qti = 1, pti = 2 and vti = 4, the same for all criteria i = 1, 2, 3. All criteria have
the same weight wi =

1
3

and the cutting threshold λ = .6. We apply this model to
the set X of alternatives whose evaluations are rational numbers with one decimal
digit ranging in [0, 10]. The set of minimally acceptable alternatives is determined
below.

For x ∈ X to be acceptable, c(x, p1) or c(x, p2) has to be at least equal to
λ = .6. We develop the consequences of this condition for p1, the case of p2 being
similar. This condition entails that xi must be strictly greater than p1i − 2 for at
least two criteria. We distinguish two cases: Case 1: xi is strictly greater than
p1i − 2 on all three criteria; Case 2: xi is strictly greater than p1i − 2 on exactly two
criteria and less than this value on the third criterion.

C.1 Case 1

Let ci be shorthand for ci(x, p
1), i = 1, 2, 3. If x ∈ A, c(x, p1) =

∑3
i=1 wici =

1/3
∑3

i=1 ci ≥ .6. If xi is strictly greater than p1i − 2 for all i, then we have∑3
i=1 ci ≥ 1.8 with ci > 0 for all i. The alternative y = (7, 6, 4) is the minimal one

realizing c(y, p1) = 1. With respect to (7, 6, 4), we may decrease all coordinates by
a total of 1.2 while remaining in A. For instance, for x = (6.5, 5.8, 3.5), we have∑3

i=1 ci = 1.8 and x is minimally acceptable. There are actually
(
11
2

)
= 55 ordered

partitions of 12 objects (12 tenths) in three nonempty subsets. Among them, 3
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partitions have a class of cardinal 10, which we must exclude. Hence, there are
52 ways of decreasing each coordinate of (7, 6, 4) by at least one tenth, for a total
amount of 12/10 while yielding rational coordinates with one decimal digit, that
are respectively strictly greater than 6, 5, 3. To this we have to add the different
ways of decreasing two of the coordinates of (7, 6, 4) by a total amount of 12/10,
while keeping unchanged the value of the third coordinate. There are 3× 7 = 21
such alternatives. Hence there are 52 + 21 = 73 minimally acceptable elements of
this type for p1 and 73 for p2.

C.2 Case 2

The second type of minimally acceptable elements x satisfies xi > p1i − 2 for two
values of i; the other coordinate does not satisfy this inequality. Assume that
the latter coordinate is i = 3. The condition c(x, p1) ≥ .6 is only satisfied in the
following 6 cases:

1. (x1, x2) = (7, 6) and x3 < 3; in such a case c(x, p1) = 2/3;

2. (x1, x2) = (6.9, 6) or (7, 6.9) and x3 < 3; in such a case c(x, p1) = 19/30;

3. (x1, x2) = (6.8, 6) or (6.9, 5.9) or (7, 5.8) and x3 < 3; in such a case c(x, p1) =
6/10;

Let us now compute in each case, the minimal value of x3 such that σ(x, p1) ≥ .6.

1. If x3 = 1.6, d3(1.6, 5) = 0.7 > 2/3 = c(x, p1). We have 1−d3(1.6,5)
1−c(x,p1

= 3/10
1/3

=

9/10. Therefore σ((7, 6, 1.6), p1) = 2/3 × 9/10 = .6. Taking x3 < 1.6 would
lead to an unacceptable alternative. Hence (7, 6, 1.6) is minimal in A.

2. If x3 = 1.7, d3(1.7, 5) = 0.65 > 19/30 = c(x, p1). We have 1−d3(1.7,5)
1−c(x,p1

=
7/20
11/30

= 21/22. Therefore, for (x1, x2) = (6.9, 6) or (7, 6.9), σ((x1, x2, 1.7), p
1) =

19/30 × 21/22 ≈ .6045 > .6. Taking x3 < 1.7 would lead to unacceptable
alternatives. Hence (6.9, 6, 1.7) and (7, 5.9, 1.7) are minimal in A.

3. If x3 = 1.8, d3(1.8, 5) = 0.6 = c(x, p1). We have σ((x1, x2, 1.8), p
1) =

c((x1, x2, 1.8), p
1) = .6, for (x1, x2) = (6.8, 6) or (6.9, 5.9) or (7, 5.8). Tak-

ing x3 < 1.8 would lead to unacceptable alternatives. Hence (6.8, 6, 1.8),
(6.9, 5.9, 1.8) and (7, 5.8, 1.8) are minimal in A.

There are thus 6 minimally acceptable alternatives with their third coordinate
smaller than p13 − 3. By symmetry, there are 6 minimally acceptable alternatives
having a third coordinate smaller than p1i − 3. Therefore, there are 18 minimally
acceptable alternatives of the second type for p1 and similarly for p2.

Summing up, the total number of minimally acceptable alternatives is 2×(73+
18) = 182. None of these dominates another, as it can be easily verified.
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D Example: A linear partition having only a unan-
imous representation in model (E)

The example has n = 4 and X1 = X2 = X3 = X4 = {0, 1, 2}. We let A = {x ∈
X :

∑4
i=1 xi ≥ 6}. There are 34 = 81 objects in X, 15 are in A, while 66 are in U .

Observe first that, on all attributes, we have 2 ≻i 1 ≻i 0. Indeed, with i = 1,
we have:

(2, 0, 2, 2) ∈ A, (1, 0, 2, 2) ∈ U ,
(1, 1, 2, 2) ∈ A, (0, 1, 2, 2) ∈ U .

The same relations clearly hold on all attributes since the problem is symmetric.
This partition clearly has a representation in Model (E) with F = {N} and

a set of profiles consisting of all 10 objects in the class 6 (i.e., having a sum
of components equal to 6). By construction, these 10 profiles are not linked by
dominance (this is a representation in model (Ec)).

Our objective is to try obtaining a representation in Model (E) using a set F
that is not reduced to {N}. Notice first that bringing the veto relations into play
will not help us do so. Indeed, it is easy to check that if a representation exists
in model (E), a representation exists in Model (Ec) (because whatever xi, we can
find a−i such that (xi, a−i) ∈ A). Hence, let us try to find a representation in
Model (Ec).

This clearly excludes to take any object in the class 6 as a profile. Indeed, a
family F that is not reduced to {N} would then imply that some object in a class
strictly lower than 6 belongs to A, which is false. Hence, we must take as profiles
objects belonging to the class 7 or 8.

Because profiles cannot dominate one another, if we take the object (2, 2, 2, 2)
as a profile, it must be the only one. We know that (2, 2, 1, 1) ∈ A. Hence, we
must have {1, 2} ∈ F . This is contradictory. Indeed, since {1, 2} ∈ F , we should
have (2, 2, 0, 0) ∈ A, a contradiction.

Hence the set of profiles must consist exclusively of objects belonging to the
class 7.

Suppose that there is a unique profile, e.g., (2, 2, 2, 1). It is clear that the set
{1, 2, 3} must be included in all elements of F (otherwise we would have an object
in the class 5 belonging to A). Because (2, 2, 2, 0) ∈ A, it must be true that {1, 2, 3}
is an element of F , which must therefore be equal to {{1, 2, 3}, {1, 2, 3, 4}}. This
is contradictory since we know that (0, 2, 2, 2) ∈ A. It is easy to see that, the
problem being symmetric, it is therefore impossible to have a representation using
a single profile from the class 7.

A similar reasoning can be made if we consider the cases of two or three profiles
from the class 7 as profiles.
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Suppose finally that we choose all four profiles from the class 7: (1, 2, 2, 2),
(2, 1, 2, 2), (2, 2, 1, 2), and (2, 2, 2, 1). Using the same reasoning as above, the set
F must contain the sets {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, and {1, 2, 3}, since (0, 2, 2, 2),
(2, 0, 2, 2), (2, 2, 0, 2) and (2, 2, 2, 0) are all in A. But this is contradictory since this
would imply that (0, 1, 2, 2) ∈ A (since (2, 1, 2, 2) is a profile and {2, 3, 4} ∈ F).

Therefore, the only possible representation of this partition in Model (E) must
use as profiles all 10 elements in the class 6 together with F = {N}.

E An example of linear partition not representable
in Model (Add)

Let X =
∏4

i=1Xi, where Xi = {0, 1}. Let A = {1100, 0011, 1110, 1101, 1011, 0111, 1111}
and U the complement of A in X. The partition ⟨A,U⟩ respects the dominance
relation determined by the natural order on Xi, for all i. This partition cannot be
represented in Model (Add). Assuming the contrary would entail the following:

u1(1) + u2(1) + u3(0) + u4(0) > 0

u1(0) + u2(0) + u3(1) + u4(1) > 0.

This implies that
∑4

i=1 ui(1) +
∑4

i=1 ui(0) > 0. Since 1010 and 0101 belong yo U ,
we should also a have:

u1(1) + u2(0) + u3(1) + u4(0) ≤ 0

u1(0) + u2(1) + u3(0) + u4(1) ≤ 0.

Therefore we must have
∑4

i=1 ui(1) +
∑4

i=1 ui(0) ≤ 0, a contradiction.
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