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Abstract

Among the real-valued representations of nested families of biorders some repre-
sentations reflect the nestedness of the family in a simple way. Calling them chain
representations, we prove their existence in the finite and countably infinite cases.
For the general case, we obtain chain representations in a well-chosen linearly or-
dered set. Although the existence of real-valued representations in general remains
an open problem, our analysis answers questions left pending in the literature. It
also leads to new proofs of classical theorems on the existence of a real represen-
tation for a single biorder, as well as for a single interval order. A combinatorial
property of the set of all biorders from a finite set to another finite set plays a
central role in the new proof; called weak gradedness, it is a particularization of
well-gradedness which derives from a simpler argument.
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1 Introduction

This chapter deals with an apparently new problem: the existence of chain repre-
sentations, possibly using real numbers, of families of biorders. It connects three
themes present in the literature. The first is the existence of real (numerical)
representations of binary relations. The second is the consideration of binary rela-
tions from one set to another set, instead of binary relations on a single set. The
third is the consideration of nested families of relations and of real representations
reflecting this nestedness.

Understanding which types of binary relations admit a specific form of real
representation has a long history. For instance, let us postulate here that a relation
R on a set X admits a representation by real numbers when for a, b in X, there
holds a R b if and only if the real value attributed to a is greater or equal than
the real value attributed to b. When X is finite, such a representation exists if
and only if the relation R is a weak order (or a total preorder) on X. For infinite
sets X, characterizing the existence of a representation is a more involved problem
whose solution essentially goes back to Cantor (for an English version, see Cantor,
1955) and in its modern form to Debreu (1954). Debreu’s result has important
implications in Economics: it singles out the preference relations that are faithfully
described by a utility function assigning real numbers to the items compared (see
Bridges and Mehta, 1995, Fishburn, 1970a, for thorough reviews).

Another example comes from the literature in Psychology. A Guttman scale
(Guttman, 1944, 1950) amounts to a relation from one set to a second set which
is captured by the comparison of real values assigned to the items of each set.
Ducamp and Falmagne (1969) provide a mathematical characterization of such a
relation (at least in the finite case). Here we use the term “biorder” coined by
Doignon, Ducamp, and Falmagne (1984) in a paper which also handles the infinite
case by relying on the results of Cantor and Debreu we just alluded to. Biorders
contain as particular cases interval orders (Fishburn, 1970b, 1973b, 1985; they are
biorders from one set to itself that are irreflexive) and semiorders (Luce, 1956,
Scott and Suppes, 1958; they are semitransitive interval orders).

The study of nested families of relations is a classic theme in the literature on
probabilistic consistency (Block and Marschak, 1960, Marschak, 1960, Luce and
Suppes, 1965, Marley, 1968, Roberts, 1971, Fishburn, 1973a, Roberts, 1979, Ch. 6,
Roubens and Vincke, 1985, Ch. 5, Suppes, Krantz, Luce, and Tversky, 1989, Ch.
17). The usual interpretation is that one observes the frequency p(x, y) with which
a subject chooses between the two objects x and y. A family of nested relations
is then obtained by cutting the probabilistic relation p(x, y) at different levels,
usually taken above 1/2. Indeed, if λ1 > λ2 ≥ 1/2, letting x R1 y iff p(x, y) ≥ λ1
and x R2 y iff p(x, y) ≥ λ2, we obtain a nested family of two relations R1 ⊆ R2.

A similar interpretation holds with biorders. Classically, the set A is a set of

2



“subjects” and the set Z is a set of “problems” that subjects are asked to solve.
Recording the frequency p(a, x) with which subject a ∈ A solves problem x ∈ Z,
we obtain a probabilistic relation from A to Z that can be used, as above, to define
a nested family of biorders (Doignon, Monjardet, Roubens, and Vincke, 1988).

In this chapter we extend representation results from single biorders to nested
families of biorders, using representations which reflect in a simple way the nest-
edness of the family. This leads to our main problem: establishing the existence
of chain representations of nested families of biorders.

We give fairly complete results characterizing the existence of chain represen-
tations in some arbitrary linearly ordered set (E,≥). The case of real chain-
representations (E is taken to be R) is more delicate outside the denumerable case
(denumerable means finite or countably infinite).

We have two main results. The first says that all nested families of biorders
from one finite set to another finite set have a real chain-representation. The
second says that the same is true for all chains of biorders from an arbitrary set to
another arbitrary set if the chain representations are sought in an arbitrary linearly
ordered set. Moreover, our results offer some new proofs of results characterizing
the existence of representations for a single relation.

In the finite case, our sufficiency proof uses combinatorial properties of biorders.
A weakening of the property of well-gradedness, called weak gradedness, plays a
central role; both properties concern the family of all biorders from a finite set to a
finite set (we refer to Doignon and Falmagne, 1997, for a study of well-gradedness).

The rest of the paper is organized as follows. Section 2 recalls a number of
useful facts on biorders. Section 3 introduces weak gradedness and compares it
to the stronger property of well-gradedness. Section 4 presents our main results,
in the finite case, on chain representations of nested families of biorders. We also
relate them to the existing literature. Turning to the general case in Section 5,
we analyse the question of the existence of chain representations. We illustrate
some of the difficulties of this more delicate problem on a number of examples. A
final section discusses our results and lists several open problems that we see as
interesting opportunities for future research.

We use a standard vocabulary for binary relations. To avoid any ambiguity,
we define the main properties and structures that we use in Appendix A.

2 Biorders

2.1 Notation and framework

Let A and Z be two disjoint sets. A binary relation R from A to Z is a subset of
A× Z.
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Remark 1
The disjointness hypothesis on A and Z, which we make throughout the chapter,
may seem quite restrictive. This is not so. If A and Z are not disjoint, we build
duplications A′ of A and Z ′ of Z with A′ and Z ′ disjoint, and next a new relation
R′ from A′ to Z ′ which faithfully encodes R; see details in Doignon et al. (1984,
Def. 4, p. 79). All properties and concepts used below are better understood if we
work with R′ rather than with R. A similar remark holds for any relation defined
on a set X: we replace it, w.l.o.g., with a relation from a duplication of X to
another, disjoint duplication of X. •

For a relation R from A to Z, we denote by R = (A× Z) \ R its complement,

by R−1 = {(z, a) ∈ Z×A : (a, z) ∈ R} its converse and by R
−1

= {(z, a) ∈ Z×A :
(a, z) /∈ R} its dual. Moreover, if R is a relation from A to Z and T is a relation
from Z to K, we define the product RT of R and T by letting a RT `, where
a ∈ A and ` ∈ K, when a R x and x T ` for some x ∈ Z.

Remark 2
Clearly the above definition of the complement R depends on the specification of
A and Z. In any case, the context will make clear which complement is denoted
by R: when R is a relation from A to Z, the complement is taken with respect to
A× Z. •

2.2 Biorders

A binary relation R from A to Z is a biorder if it is Ferrers, that is, for all a, b ∈ A
and all x, y ∈ Z, we have:

[a R x and b R y]⇒ [a R y or b R x].

More compactly, R is a biorder when RR
−1

R ⊆ R.
The following notation and concepts are central in this chapter. Let R be a

relation from A to Z, with A and Z disjoint sets. For a in A, we let aR = {z ∈
Z : a R z} and Rz = {a ∈ A : a R z}. The left trace of R is the binary relation
%A

R on A defined by letting, for all a, b ∈ A (the second equivalence is trivial),

a %A
R b⇔ [b R x⇒ a R x, for all x ∈ Z]⇔ aR ⊇ b R. (1)

Similarly, the right trace of R is the binary relation %Z
R on Z defined by letting,

for all x, y ∈ Z,

x %Z
R y ⇔ [a R x⇒ a R y, for all a ∈ A]⇔ Rx ⊆ Ry. (2)

Whatever R, the relations %A
R and %Z

R are, by construction, quasi orders (that is,
reflexive and transitive relations).
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Here are easy characterizations of biorders (see for instance Doignon et al.,
1984, Proposition 2, p. 78; Monjardet, 1978, Theorem 1, p. 60; Rabinovitch, 1978,
Theorem 2, p. 52).

Proposition 1
The following assertions about a relation R from A to Z are equivalent:

(i) R is a biorder;

(ii) the sets aR, for a ∈ A, form a chain;

(iii) the sets Rx, for x ∈ Z, form a chain;

(iv) the left trace %A
R of R is complete;

(v) the right trace %Z
R of R is complete.

For the record let us spell out the following result from Ducamp and Falmagne
(1969, Th. 3, finite case) and Doignon et al. (1984, Prop. 4, p. 79), which is the
representation theorem of biorders in the denumerable case (meaning finite or
countably infinite case).

Proposition 2
Let R be a binary relation from A to Z. When each of A and Z is denumerable,
the following statements are equivalent:

(i) the relation R is a biorder;

(ii) there are a real-valued function f on A and a real-valued function g on Z
such that, for all a ∈ A and x ∈ Z,

a R x⇔ f(a) > g(x). (3)

Furthermore, the functions f and g can always be chosen in such a way that, for
all a, b ∈ A and x, y ∈ Z,

a %A
R b⇔ f(a) ≥ f(b),

x %Z
R y ⇔ g(x) ≥ g(y).

(4)

Let R be any relation from A to Z. In Proposition 2, it is tempting to replace
the real-valued mappings f and g with mappings to some linearly ordered set
(E,≥). As we will see, the equivalence in the above proposition then holds for all
sets A and Z. We now give a name and a notation for the pair of mappings.
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Definition 1 (Representations)
A >-representation in (E,≥) of the relation R from A to Z consists in a linearly
ordered set (E,≥) and in two mappings f : A→ E and g : Z → E such that, for
all a in A and z in Z:

a R z ⇔ f(a) > g(z). (5)

We then also say that (f, g) is a >-representation (also called a strict represen-
tation) of R in (E,≥). The representation is trace-compatible, or respects the
traces, when moreover the following holds, for all a, b ∈ A and x, y ∈ Z,

a %A
R b⇔ f(a) ≥ f(b),

x %Z
R y ⇔ g(x) ≥ g(y).

(6)

The representation is special if, for all a ∈ A and all x ∈ Z, we have f(a) 6= g(x).
The definition of ≥-representations results from changing only the order sign

in Equation (5) from > to ≥. Such representations are also called nonstrict rep-
resentations. y

As it is easily checked, a relation R from A to Z admits a >-representation

in the ordered set (E,≥) exactly if the relation R
−1

from Z to A admits a ≤-
representation in the same linearly ordered set (E,≥).

A general characterization of the existence of a >-representation in some lin-
early ordered set follows. It is a slight variation on Doignon, Ducamp, and Fal-
magne (1987, Prop. 1, p. 4).

Proposition 3
A relation R from A to Z has a >-representation in some linearly ordered set
(E,≥) if and only if R is a biorder. For a biorder, there always exists a represen-
tation which is both special and trace-compatible.

Proof Sketch
Necessity is easy. We sketch sufficiency. Define a relation Qm on A ∪ Z by the
following table:

Qm A Z

A %A
R R

Z R
−1

%Z
R

Using Equations (1) and (2), it is routine to show that Qm is a weak order. This
weak order is such that for all a ∈ A and all z ∈ Z, it is never true that a Qm z
and z Qm a. The relation Qm ∩ Q−1m is an equivalence (a reflexive, symmetric
and transitive relation) on A ∪ Z. We build the set E as the quotient of A ∪ Z
by Qm ∩ Q−1m . This set is linearly ordered by the relation induced by Qm on the
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quotient set. The function f associates to each a ∈ A the equivalence class of %A
R to

which it belongs. Similarly, the function g associates to each x ∈ Z the equivalence
class of %Z

R to which it belongs. It is clear that (f, g) is a ≥-representation of R
in (E,≥).

By definition of Qm, the representation respects the traces. It is also special,
so that it is at the same time a >-representation and a ≥-representation. 2

Remark 3
Notice that any representation in a denumerable linearly ordered set (E,≥) is
easily turned into a real representation: it suffices to compose the mappings f and
g with any embedding of (E,≥) into (R,≥). Clearly, this is no more true in the
general case. •

The study of nested families of biorders led us to new proofs of Propositions 2
and 3 (see Subsection 4.4 and after Corollary 1). The next section introduces a
tool useful to investigate the combinatorial properties of biorders on finite sets.

3 Well-gradedness and Weak Gradedness

3.1 Well-gradedness

Consider two relations R and S from A to Z, both sets being finite (and disjoint).
The distance between these two relations is d(R, S) = |R4 S|, with R4 S =
(R \ S) ∪ (S \ R), and |U | denoting the cardinality of the set U .

Let BO(A,Z) (or simply BO, when there is no ambiguity on the underlying
sets) be the collection of all biorders from A to Z. Consider two relations R, S ∈
BO such that d(R, S) = `. Doignon and Falmagne (1997) show that there are
F0,F1, . . . ,F` in BO such that F0 = R, F` = S, and d(Fi−1,Fi) = 1, for i =
1, 2, . . . , `. In words, for any two biorders at distance ` from one another, some
sequence of exactly ` elementary steps, each consisting in the addition or the
removal of a single (ordered) pair, transforms the first biorder into the second one
without never leaving BO. Collections, like BO, having this property are called
well-graded in Doignon and Falmagne (1997).

The previous paragraph points, for a given biorder, to exceptional pairs (a, x)
whose addition to, or deletion from, the biorder produces again a biorder. The
following definition and lemma capture the two resulting collections of pairs.

Definition 2 (Inner and outer fringes)
The inner fringe and outer fringe of a biorder R are defined respectively by

RI = R \ RR−1R, RO = RR−1R \ R. (7)

y
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Doignon and Falmagne (1997) prove the following result.

Lemma 1
We have RI = RR

−1
R ⊆ R and RO = RR−1R ⊆ R. Moreover:

RI = {p ∈ R : R \ {p} is a biorder}, (8)

RO = {q ∈ (A× Z) \ R : R ∪ {q} is a biorder}. (9)

Observe, in particular, that if R, S ∈ BO are such that R ⊆ S and d(R, S) = `,
then there are T0,T1, . . . ,T` ∈ BO such that T0 = R, T` = S, d(Ti−1,Ti) = 1, for
i = 1, 2, . . . , `, and R = T0 ( T1 ( · · · ( T` = S. In words, some sequence of `
elementary steps, each one consisting in the addition of a single pair, transforms R
into S without ever leaving BO (no pair removal is applied). This property, implied
by well-gradedness (compare with Proposition 4 in Doignon and Falmagne, 1997),
is called here “weak gradedness”. It is all we need to establish our results on nested
families of biorders in the finite case.

3.2 Weak gradedness

This subsection deals only with the finite case. We first establish a lemma which
implies the property of “weak gradedness” from previous paragraph.

Lemma 2
Suppose that the sets A and Z are finite. For any two biorders R and S from A
to Z with R ( S, there exists some pair p in S \ R such that R ∪{p} is again a
biorder.

Proof
According to Proposition 1, the subsets (aR)a∈A form a chain. We may thus list
the elements of A as a1, a2, . . . , an in such a way that

a1R ⊆ a2R ⊆ · · · ⊆ anR (10)

(many or even all of the inclusions may be equalities). Notice that for any z in
ai+1 R \ ai R where i ∈ {1, 2, . . . , n − 1}, the new relation R′ = R ∪ {(ai, z)} is
again a biorder (the subsets ai R

′, for i = 1, 2, . . . , n, still form a chain).
For i = 1, 2, . . . , n, we have by assumption

a1R ⊆ a1S, a2R ⊆ a2S, . . . anR ⊆ anS. (11)

Although the subsets aiS, for i = 1, 2, . . . , n, also form a chain, we do not
necessarily have aiS ⊆ ai+1S. We may however permute, if necessary, the elements
of A in order to have both (10) and the following: for all i, j in {1, 2, . . . , n},

[i < j and aiR = ajR] =⇒ aiS ⊆ ajS. (12)
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Now if there exists some i in {1, 2, . . . , n−1} such that (ai+1R \ aiR)∩aiS 6= ∅,
then for any z in the intersection the pair p = (ai, z) makes the thesis true.
Moreover, if anR ⊂ anS, then for any element z in anS \ anR the pair p = (an, z)
makes the thesis true.

We are thus left with the situation where we have for any i in {1, 2, . . . , n− 1}

ai+1R \ aiR ⊆ Z \ aiS (13)

and moreover
anR = anS. (14)

We next derive from Equations (13) and (14) the contradiction S = R. It
suffices to prove by induction aiS = aiR, meaning here is aiS ⊆ aiR for i = n,
n− 1, . . . , 1. The case i = n is Equation (14). Assuming ai+1R = ai+1S for some
i with n− 1 ≥ i ≥ 1, we show aiR = aiS by working out two cases.

If aiR = ai+1R, then from Equation (12) we have aiS ⊆ ai+1S = ai+1R = aiR
and we are done (remember aiR ⊆ aiS).

If aiR ( ai+1R, take some t in ai+1R \ aiR. By the induction assumption,
we have also ai+1 S t, and by (13) we have (ai, t) /∈ S. Take any y in aiS. We
deduce ai+1 R y because R is a biorder. Then ai R y follows from the induction
assumption. Now if the pair (ai, y) would not be in R, then y would contradict
(13). 2

We have seen above that if R is a biorder from A to Z and (a, x) is a pair in
R= (A × Z)\ R, then R ∪{(a, x)} is again a biorder if and only if it belongs to
the outer fringe of R. Hence, Lemma 2 asserts that if R ( S and d(R, S) = 1, then
the outer fringe of R has at least one of its pairs in S. Alternatively, it says that if
R ( S and d(R, S) = 1, that the inner fringe of S has at least one of its pairs that
does not belong to R.

It is worth taking a more general point of view on Lemma 2. Biorders from A
to Z, being relations, are subsets of A×Z. Their collection is thus a collection of
subsets of a ground set (here A×Z). Lemma 2 implies a property of this collection,
that we now designate in a more general setting.

Definition 3
Let F be a collection of subsets of a finite ground set E. We say that F is weakly
graded when for any two elements F and G of F with F ( G, there is a sequence
F0, F1, . . . , Fk of elements of E such that F = F0, Fk = G and for each i = 1, 2,
. . . , k there hold both Fi−1 ( Fi and |Fi \ Fi−1| = 1. y

In Definition 3, we necessarily have k = |G \ F |. Notice that the collection F
is weakly graded as soon as for any two of its elements, say J and K, with J ( K,
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there exists a third element L such that J ⊆ L ⊆ K and moreover |L\J | = 1. This
is the property obtained for the collection of biorders from A to Z in Lemma 2.

Let us compare “well-gradedness” and “weak gradedness” of the collection BO
of biorders from A to Z. We know from Doignon and Falmagne (1997) that BO is
well-graded. This clearly implies that it is weakly graded. However, we prefer to
stick here with weak gradedness, which is a weaker property. Indeed, the proof of
well-gradedness of BO needs more elaborate arguments than those in the proof of
Lemma 2. To see why, let A = {a, b} and Z = {y, z}. Consider the two biorders
R = {(a, y)} and S = {(b, z)}, which are at distance 2 from one another. To
transform R into S in 2 steps, we cannot start by adding some pair to R. The first
step has to consist in the deletion of (a, y). Notice that R and S form a collection
of relations which is (trivially) weakly graded but not well-graded.

We are now fully equipped to tackle the case of nested families of biorders.

4 Nested Families of Biorders on Finite Sets

This section establishes results on nested families of biorders from A to Z, with A
and Z finite sets. We deal with the extension of these results to the infinite case
in the next section.

4.1 Relation to the literature

Doignon et al. (1988) have proposed a detailed study of (non-necessarily nested)
families of biorders defined on finite sets and their real representations. Their
findings consolidate and extend results due to Roberts (1971), Fishburn (1973a),
Monjardet (1984, 1988), Roubens and Vincke (1985, Ch. 5), and Doignon (1988).
Most of these results deal with situations in which the intersection of the left
traces (or of the right traces) of all biorders in the family is complete. This
gives rise to what Doignon et al. (1988) have called right (or left) homogeneous
families of biorders. The real representation of such families involves using a
single function either on A (for right-homogeneous families) or on Z (for left-
homogeneous families)1. This function is a real representation of the intersection
of the traces on this set that is supposed to be complete.

Doignon et al. (1988) also particularize their results to the case of nested fam-
ilies of biorders (see Section IV of their paper) through the study of the cuts of
a valued relation. Nested families of biorders are the subject of the present text.
We study real-valued representations of such families without supposing that they
are left or right homogeneous.

1This is no mistake since our use of left and right trace does not conform to the terminology
of Doignon et al. (1988), as explained in Bouyssou and Marchant (2011).
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4.2 Results
Definition 4
A family of relations from A to Z consists in an integer k ≥ 1 and k relations
(R1,R2, . . . ,Rk). It is nested if

R1 ⊆ R2 ⊆ · · · ⊆ Rk.

If all the relations Ri, i = 1, 2, . . . , k are biorders, we speak of a nested family of
biorders. y

Doignon et al. (1988, Proposition 1, p. 460–461) state that, if (R1,R2, . . . ,Rk)
is a nested family of biorders between the finite sets A and Z, then there are real-
valued functions fi on A and gi on Z, for i = 1, 2, . . . , k, such that, for all a ∈ A,
x ∈ Z, and i = 1, 2, . . . , k,

a Ri x⇔ fi(a) > gi(x),

and, for all i, j ∈ {1, 2, . . . , k} with i > j,

fi(a) > gi(x)⇒ fj(a) > gj(x).

We use a different notion of representation, called a “chain representation”,
that makes obvious the nested character of the family (see Figure 1).

Definition 5
A real chain->-representation of a family of relations (R1,R2, . . . ,Rk) consists in
real-valued functions f1, f2, . . . , fk on A and g1, g2, . . . , gk on Z such that, for all
a ∈ A, x ∈ Z and i ∈ {1, 2, . . . , k},

a Ri x⇔ fi(a) > gi(x),

fk(a) ≥ fk−1(a) ≥ · · · ≥ f1(a),

g1(x) ≥ g2(x) ≥ · · · ≥ gk(x).

(15)

The chain->-representation respects the traces, or is trace-compatible, when for
all a, b ∈ A, x, y ∈ Z and i ∈ {1, 2, . . . , k}

a %A
Ri
b⇔ fi(a) ≥ fi(b), (16)

x %Z
Ri
y ⇔ gi(x) ≥ gi(y). (17)

It is special when for all a ∈ A, x ∈ Z and i ∈ {1, 2, . . . , k}

fi(a) 6= gi(z). (18)

y
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R

R
f1(a) f2(a) fk(a). . .

g1(x)g2(x)gk(x) . . .

Figure 1: Illustration of the real values assigned to a and x in a chain representa-
tion: here, a R2 x, a R3 x, . . . , a Rk x hold but a R1 x does not hold. We have
R1 ⊆ R2 ⊆ · · · ⊆ Rk, fk ≥ fk−1 ≥ · · · ≥ f1, and g1 ≥ g2 ≥ · · · ≥ gk

We illustrate a chain representation in Figure 1.
Our main purpose in this section is to prove the following proposition that gives

necessary and sufficient conditions for the existence of real chain >-representations.
This clearly tightens the result from Doignon et al. (1988) recalled above.

Proposition 4
Let (R1,R2, . . . ,Rk) be a family of relations from the finite set A to the finite set
Z. This family has a real chain->-representation f1, f2, . . . , fk and g1, g2, . . . , gk if
and only if it is a nested family of biorders.

Any nested family of biorders admits some real >-representation which is both
special and trace-compatible.

It is clear that the desired real representation in Proposition 4 implies that
(R1,R2, . . . ,Rk) is a nested family of biorders. The proof of the converse implica-
tion in Subsection 4.3 relies on the following lemma.

Lemma 3
Let R and S be two biorders from the finite set A to the finite set Z such that
S \ {p} = R for some pair p in S \ R. Assume the real-valued functions f on A
and g on Z are such that for all b in A, y in Z,

b R y ⇔ f(b) > g(y), (19)

and suppose furthermore that the >-representation f , g is special and trace-compa-
tible.

Then there are also real-valued functions f ∗ on A and g∗ on Z such that, for
all b in A, y in Z,

b S y ⇔ f ∗(b) > g∗(y), (20)

f ∗(b) ≥ f(b), (21)

g(y) ≥ g∗(y), (22)

and moreover the >-representation f ∗, g∗ of S is special and trace-compatible.
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The following subsection collects the proofs.

4.3 Proofs

The proof of Lemma 3 which we now give focuses on the representations them-
selves. Some additional comments of combinatorial nature appear after the proof.

Proof of Lemma 3
Assume p = (a, x), with thus R ∪{(a, x)} = S. We are given a special representa-
tion (f, g) of R which respects the traces of R. If b ∈ A\{a} and y ∈ Z \{z}, then
(b, y) ∈ R if and only if (b, y) ∈ S; we are thus tempted to set f ∗(b) = f(b) and
g∗(y) = g(y), which we do. In view on the assumptions on f and g, the required
inequalities (20)–(22) are satisfied for all b ∈ A \ {a} and y ∈ Z \ {z}.

There remains only to assign values to f ∗(a) and g∗(x). To this aim, select
some c in A and some z in Z such that

f(c) = min{f(b) : b ∈ A and f(b) > g(x)} = min f(Rx), (23)

g(z) = max{g(y) : z ∈ Z and f(a) > g(z)} = max g(aR). (24)

Notice that c is well defined in A except if Rx is empty, and similarly z is well
defined in Z except if aR is empty. We leave to the reader the two cases Rx = ∅
and aR = ∅, and in the sequel assume that c and z are well defined. Notice
g(z) < f(a) < g(x) < f(c). There is more to be said on the values of f and g
(compare with Figure 2).

R

R

g(z)

f(a)

g(x)

f(c)

g(aR)

f(Rx)

g(aR)

f(Rx)

Figure 2: Illustration of the proof of Lemma 3.

No value f(b), for b ∈ A, can be in the interval ] f(a), f(c) [ . Indeed: (i) if
we had f(a) < f(b) < g(x), there would exist some y in Z such that f(a) <
g(y) < f(b) (because f respects the trace on A we must have a �A

R b). Then a R

y R−1 b R x contradicts the assumption that R ∪{(a, x)} is a biorder; (ii) f(b) =
g(x) contradicts that f , g is a special >-representation; (iii) g(x) < f(b) < f(c)
would give b ∈ Rx in contradiction with the definition of f(c). Because the >-
representation f , g respects the traces, we derive that {b ∈ A : f(b) = f(c)} is

13



the equivalence class just above the one of a in A w.r.t. the trace %A
R (the class of

a is just above the class of b when a �A
R b and for no element c in A do we have

a �A
R c �A

R b).
Similarly, no value g(y), for y ∈ Z, can be in ] g(z), g(x) [ . Indeed, (i) g(z) <

g(y) < f(a) would contradict the definition of z; (ii) g(y) = f(a) cannot hold
because the >-representation f , g is special; (iii) f(a) < g(y) < g(x) would imply
the existence of b in A such that y R−1 b R x which together with a R y contradicts
that R ∪{(a, x)} is a biorder. Consequently, {y ∈ Z : g(y) = g(z)} is the equiva-
lence class just below the one of x in Z (w.r.t. the trace %Z

R).
Because S differs from R only by the addition of the pair (a, x), we must assign

values to f ∗(a) and g∗(x) in such a way that g(z) ≤ g(x) < f(a) ≤ f(c); moreover,
all pairs (a, y) and (b, x), for b ∈ A and y ∈ Z, are then correctly represented.
Hence any such assignment of f ∗(a) and g∗(x) delivers a >-representation f ∗,
g∗ of S. However, to make sure that the representation respects the traces of
S, we must take care. Remember that the trace %A

R reflects comparisons among
themselves of the subsets bR of Z—see Equation (1); also, %Z

R reflects comparisons
among themselves of the subsets Ry of A. The addition of (a, x) to R modifies
only two such sets, namely aR to which x is added, and Rx to which a is added.
For the element c defined in Equation (23), we derive that aS = aR∪ {x} forms a
subset of cR = cS, but we can have either aS = cS or aS ( cS.

Let us now define f ∗(a) (see Figure 3): if aS = cS, then a and c become
equivalent in the trace %A

S of S, and we set f ∗(a) = f(c); otherwise, we set f ∗(a) =
(f(a) + 2 g(x))/3. In a similar way, if Sx = Sz, we set g∗(x) = g(z), otherwise
g∗(x) = (2 f(a) + g(x))/3.

f ∗(a)

g∗(x)

R

R

g(z)

f(a)

g(x)

f(c)

g(aR)

f(Rx)

g(aR)

f(Rx)

Figure 3: Assignations of f ∗(a) and g∗(x) in the proof of Lemma 3.

With the above assignments of f ∗(a) and of g∗(x), the >-representation f ∗,
g∗ respects the traces of S. Moreover, the representation is special in view of
the assumption that the >-representation f , g is special and the use of strict
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inequalities in the definitions of f ∗(a) and g∗(x). 2

The above proof takes care of the evolution of the collection of equivalence
classes when the biorder R changes into the biorder S=R ∪{(a, x)}. Note that
only four classes are susceptible of modification: the class of a and the class just
above it in A, the class of x and the class just below it in Z (the meaning of “just
above” is explained in the proof). The next example illustrates various ways in
which these four classes can evolve.

a

b

x

y

z

a

b
x

y

z

c

a
x

y

z

c

a

x

y

z

b

a

c

x

y

b

a

c
x

y

Figure 4: Three examples of evolution of the equivalence classes of the traces,
when the addition of the single pair (a, x) to the upper biorder produces the lower
biorder (Example 1).

Example 1
On the upper part of Figure 4 there are three biorders. The addition of the single
pair (a, x) produces the corresponding biorders on the lower part. 3

Proof of Proposition 4
Let R1, R2, . . . , Rk be a nested family of biorders from a finite set A to a finite
set Z. We may assume R1= ∅, because otherwise we may add ∅ as the very first
biorder (and renumber the other biorders). If |Ri+1 \ Ri| > 1, we apply Lemma 2
and insert a new biorder in between Ri and Ri+1. Repeating the construction
while it remains possible, we end up with a nested family of biorders such that
two consecutive biorders differ by exactly one pair (finiteness comes into play here);
all biorders R1= ∅, R2, . . . , Rk belong to the constructed family.

Clearly, there exists a trivial real >-representation of the empty biorder that
is special and trace-compatible (for an example, take f1(b) = 0 for all b ∈ A,

15



and g1(y) = 1 for all y ∈ Z). Then repeated applications of Lemma 3 produces
a real chain->-representation of the constructed family, thus also a real chain-
>-representation of the given family R1, R2, . . . , Rk. Moreover, the resulting
representation is special and trace-compatible. 2

4.4 Remarks and extensions

As announced above, we observe that Proposition 4 offers an alternative proof
of the fact that any biorder R from a finite set A to a finite set Z has a real
representation which is special and trace-compatible. This is obvious observing
that the single biorder R forms a nested family of biorder(s), to which Proposition 4
applies. As a matter of fact, we do not even need Lemma 2 here: it suffices to
check that each nonempty biorder R from A to Z contains at least one pair (a, x)
such that R \{(a, x)} is again a biorder (in other words, the inner fringe of R

is nonempty). To get such a pair (a, x), first select in A any element a with aR
minimal for the left trace among the nonempty sets bR, where b ∈ A (minimal for
the trace means minimal for the inclusion), and next pick any element x in aR:
that R \{(a, x)} is again a biorder follows at once from Proposition 1(ii).

This new proof for the existence of a real representation is quite different from
the previous ones given in the literature: it is in some sense “algorithmic”, the
representation with the desired property being built up step by step, with the
number of steps equal to the number of pairs in R.

Notice that, because our method of proof starts with the empty biorder to end
up with the given biorder by addition of a single pair at each step, it also applies
to interval orders. Indeed, an interval order P is nothing but a biorder from a set
X to the same set X that is irreflexive. Our proof builds the real representation
of the interval order P by forging the real representation of the biorder R from
X ′ to X ′′ which is the duplication of P (remember Remark 1). Because the pairs
(x′, x′′), for x ∈ X, are outside of both biorders ∅ and R, they are never added to
the current biorder (in terms of X, the pairs (x, x) are never added and the proof
works only with irreflexive biorders).

For the record, we spell out the following:

Proposition 5
Let (P1,P2, . . . ,Pk) be a family of relations on the finite set X. There are real-
valued functions f1, f2, . . . , fk on A and g1, g2, . . . , gk on Z such that, for all x, y ∈
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X and i ∈ {1, 2, . . . , k},

x Pi y ⇔ fi(x) > gi(y),

fk(x) ≥ fk−1(x) ≥ · · · ≥ f1(x),

g1(x) ≥ g2(x) ≥ · · · ≥ gk(x),

fi(x) ≤ gi(x),

if and only if (P1,P2, . . . ,Pk) is a nested family of interval orders on X.
For a nested family of interval orders, there always exists a real >-representa-

tion which is special and trace-compatible.

Semiorders are the particular interval orders which are semitransitive, or equiv-
alently the interval orders for which the left and right traces are never contradic-
tory (Aleskerov, Bouyssou, and Monjardet, 2007, Monjardet, 1978). The following
proposition immediately follows from Proposition 5.

Proposition 6
Let (S1, S2, . . . , Sk) be a family of relations on the finite set X. There are real-valued
functions f1, f2, . . . , fk on A and g1, g2, . . . , gk on Z such that, for all x, y ∈ X and
i ∈ {1, 2, . . . , k},

x Si y ⇔ fi(x) > gi(y),

fk(x) ≥ fk−1(x) ≥ · · · ≥ f1(x),

g1(x) ≥ g2(x) ≥ · · · ≥ gk(x),

fi(x) ≤ gi(x),

fi(x) > fi(y)⇒ gi(x) ≥ gi(y)

if and only if (S1, S2, . . . , Sk) is a nested family of semiorders.
For any nested family of semiorders, the mappings f1, f2, . . . , fk and g1, g2,

. . . , gk can be selected in order to moreover form a special >-representation which
respects the traces.

A more difficult question asks whether any nested family of semiorders on a
finite set admits some representation ‘with no nesting’ (Aleskerov et al., 2007,
Fishburn, 1970a). The latter means a representation as in Proposition 6 which
furthermore satisfies fi(x) ≥ fi(y) ⇒ gi(x) ≥ gi(y), for all x, y ∈ X and i ∈
{1, 2, . . . , k}. An even more advanced question asks for the existence of some
representation with constant thresholds, in the sense that gi = fi + τi for some
positive constant τi, for i = 1, 2, . . . , k (Scott and Suppes, 1958). While we know
that any semiorder defined on a denumerable set admits a representation with
no nesting, and also that a semiorder defined on a finite set admits a constant
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threshold representation, extending the results to the case of nested families of
semiorders looks as a delicate problem. We leave the latter questions on semiorders
for further study. Crucial steps leading to positive answers would be proofs of
lemmas similar to Lemma 3.

5 The Infinite Case

5.1 Definitions

When the sets A and Z are not restricted to be finite as in the preceding section,
the situation becomes more difficult. Observe first that biorders can form finite or
infinite families, which we now call ‘chains of biorders’ to emphasize the fact that
they generalize the finite families studied until here. The notation BO designates
again the collection of all biorders from A to Z.

Definition 6 (Chain of biorders)
A chain of biorders from A to Z consists in a nonempty index set I and a mapping
from I to the collection BO, which we denote as (Ri)i∈I , such that for all i, j in
I, either Ri ⊃ Rj or Rj ⊃ Ri. y

Clearly, when I is finite, a chain a biorders is nothing more than a nested family
of biorders (up to an adequate renumbering of the biorders).

Definition 7 (Chain >-Representations)
A chain representation (fi, gi)i∈I of a chain (Ri)i∈I of biorders consists in a linearly
ordered set (E,≥) and, for each i in I, in two mappings fi : A→ E and gi : Z → E
such that

1. for all i in I, a in A and z in Z:

a Ri z ⇔ fi(a) > gi(z);

2. for all i, j in I,
Ri ⊆ Rj ⇒ fj ≥ fi and gi ≥ gj.

The representation is real when (E,≥) = (R,≥). The definition of chain ≥-
representations is similar (with ≥ instead of >). y

We first characterize chains of biorders that admit a chain >-representation in
some linearly ordered set (E,≥). For real representations we have more questions
than answers. From now on we concentrate on chain >-representations (results on
≥-representations are easily derived).
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5.2 Chain representations in a linearly ordered set

According to Proposition 3, any biorder admits a representation in some linearly
ordered set (E,≥). Hence, it is natural to ask whether the same holds for any
chain of biorders. To derive a positive answer in Proposition 7 below, we introduce
techniques different from the ones in Section 4.3 (in the finite case, we handled
nested families of biorders with the crucial tool of weak gradedness). The need
for a new technique can be grasped from the following counterexample showing
that several statements on finite biorders in Doignon and Falmagne (1997) do not
extend to the infinite setting.

Example 2
Here is a biorder whose inner and outer fringes are both empty. Let A = Z = Q.
Take any three real numbers which are linearly independent over Q, for instance
1,
√

2 and
√

3. Setting f(a) =
√

2 a +
√

3 for a ∈ A, and g(z) = z for z ∈ Z,
we obtain the biorder R = {(a, z) ∈ A × Z :

√
2 a +

√
3 > z} for which (f, g)

is a >-representation in (Q,≥). Let us prove that the inner fringe RI is empty.
For any pair (a, z) in R, we have

√
2 a +

√
3 > z. There thus exist some rational

number y such that
√

2 a +
√

3 > y > z and then some rational number b such
that y ≥

√
2 b +

√
3 > z. This gives (a, y) ∈ R, (b, y) /∈ R, (b, z) ∈ R. We obtain

(a, z) ∈ RR
−1
R, and thus RI = ∅. One proves in a similar way RO = ∅. 3

Proposition 7
Any chain of biorders has a chain >-representation in some linearly ordered set.

Proof
Let (Ri)i∈I be a chain of biorders from A to Z. To build a chain >-representation
(fi, gi)i∈I in the linearly ordered set (E,≥), we first specify a set E and, for each
i in I, two mappings fi : A→ E and gi : Z → E by letting

E = (A× I) ∪ (Z × I),

fi(a) = (a, i), for a ∈ A,
gi(z) = (z, i), for z ∈ Z.

It remains to equip E with an adequate linear ordering. To this end, consider first
the following set of pairs of E:

X = {((a, j), (a, i)) : a ∈ A, Ri ( Rj} ∪
{((z, i), (z, j)) : z ∈ Z, Ri ( Rj} ∪
{((a, i), (z, i)) : a Ri z} ∪

{((z, i), (a, i)) : a Ri
−1
z}.
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Remark that X consists exactly of the pairs forced in the linear ordering ≥ of E by
any representation of the given chain in (E,≥). Now we check that X is acyclic,
that is, X has no cycle. Here we view a cycle of X as a finite sequence e1, e2, . . . ,
ek of elements in E such that (e1, e2), (e2, e3), . . . , (ek−1, ek), (ek, e1) are all in X.
The length of the latter cycle is its number k of elements.

Here are properties of such a cycle C, where we always assume a, b ∈ A and y,
z ∈ Z:

(i) no four successive elements of C can have a same second component i: if
not, we would meet, say, either (a, i), (y, i), (b, i) and (z, i) along the cycle,
or (y, i), (a, i), (z, i) and (b, i) along the cycle. In the first case we have

a Ri y R
−1
b Ri z which implies a Ri z and we could shorten the cycle by

replacing (a, i), (y, i), (b, i) and (z, i) with (a, i), (z, i), a contradiction. A
similar contradiction occurs in the second case.

(ii) no three successive elements of C can have a same second component i: if
not, we would meet, say, either (a, i), (z, i) and (b, i) along the cycle, or
(y, i), (a, i) and (z, i) along the cycle. In the first case, by (i), we must have
some (a, j), with Rj ⊃ Ri, before (a, i) in the cycle and some (b, h) with
Ri ⊃ Rh after (b, i) in the cycle. Then replacing (a, j), (a, i), (z, i), (b, i)
(b, h) with (a, i), (z, j), (z, h), (b, h) shortens the cycle, a contradiction.
The second case also leads to a contradiction.

(iii) if (a, i) and (z, i) are successive elements of the cycle C, then by (ii) the
cycle contains successive elements (a, j), (a, i), (z, i) and (z, k) with Rj ⊃
Ri and Rk ⊃ Ri. We must then have j = k, otherwise the cycle could be
shortened (use (a, k) or (z, j)).

(iv) similarly, if (z, i) and (b, i) are successive elements in C, then we have also
successive elements (z, h), (z, i), (b, i) and (b, h) in the cycle.

Properties (i)–(iv) of C imply that C must be of the form (a, j), (a, i), (z, i), (z, k),
(a, j) with Rk⊃Ri, which is impossible. So we have proved that X is an acyclic
relation on E. By the following lemma, there exists a strict linear ordering > on
E extending X. After taking the reflexive closure of >, we obtain a linear order
≥. Then (fi, gi)i∈I is a chain >-representation of the chain (Ri)i∈I of biorders in
(E,≥). 2

The following lemma is a well-known fact. We sketch its proof for completeness.

Lemma 4
Let X be an irreflexive relation on an arbitrary nonempty set E. There exists a
strict linear ordering > on E extending X (that is, x X y implies x > y) if and
only if the relation X is acyclic.
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Proof
Necessity being obvious, we prove only sufficiency. First define a relation R (the
transitive closure of X) by letting, for a, b in E,

a R b⇔ there exist n in N and c1, c2, . . . , cn in E such that

a X c1, c1 X c2, c2 X c3, . . . , cn−1 X cn, cn X b.

The acyclicity of X implies that R is a strict partial order on E. By the main
result of Szpilrajn (1930), R is contained in some strict linear ordering of E. 2

Here is an easy reinforcement of Proposition 7.

Corollary 1
Any chain (Ri)i∈I of biorders from A to Z has a chain >-representation in some
linearly ordered set, such that the representation of any biorder Ri in the chain is
special and trace-compatible.

Proof
In the proof of Proposition 7, we modify the definition of E. Using the equivalence
classes and quotient sets of the equivalence relations ∼A

Ri
and ∼Z

Ri
for each biorder

Ri in the chain, we let

E =
⋃
i∈I

(A/∼A
Ri
, i) ∪ (Z/∼Z

Ri
× I),

fi(a) = (∼A
Ri
a, i), for a ∈ A,

gi(z) = (∼Z
Ri
z, i), for z ∈ Z.

The definition of the relation X on E is now

X = {((∼A
Rj
a, j), (∼A

Ri
a, i)) : a ∈ A, Ri ( Rj} ∪

{((∼Z
Ri
z, i), (∼Z

Rj
z, j)) : z ∈ Z, Ri ( Rj} ∪

{((∼A
Ri
a, i), (∼Z

Ri
z, i)) : a Ri z} ∪

{((∼Z
Ri
z, i), (∼A

Ri
a, i)) : a Ri

−1
z}.

The rest of the proof is similar to the one of Proposition 7. 2

Proposition 7 is quite general since it covers any chain of biorders (the index
set I may be finite, countably infinite or uncountable), defined from any set A to
any set Z. Now, if we restrict attention to denumerable chains of nested biorders
with A and Z denumerable sets, it is clear that the set E built in the proof of
Proposition 7 is denumerable. Then in the statement we may replace E with R.
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Corollary 2
Any denumerable chain of biorders from a denumerable set to another denumerable
set has a real chain >-representation which is special and trace-compatible.

Proof
The domain of the linearly ordered set (E,≥) built in the proof of Corollary 1 is
the disjoint union of copies of A∪Z, and the number of copies is just the number
of biorders in the actual chain. Hence for any denumerable chain of biorders on
denumerable sets A and Z, the set E is itself denumerable. Consequently, there
is an order embedding of (E,≥) in (R,≥) and by composing the >-representation
from Proposition 7 with the embedding we get a real >-representation. 2

Notice that the way we obtained Corollary 2 provides another proof of Propo-
sition 4, a proof which moreover applies to the countable case. Also, Corollary 1
does not extend to all chains of biorders on countable domains. The reason lies in
the existence of uncountable chains of biorders on infinite countable domains, as
the following example shows.

Example 3
Here is an uncountable chain of biorders on countable domains (a similar example
thus exists for any pair of countable domains). As in Example 2, let A = Z = Q.
Then, for any r in R, set fr(a) = a and gr(z) = z+r (where a ∈ A and z ∈ Z). The
pair (fr, gr) of real-valued mappings defines the biorder Rr = {(a, z) ∈ A×Z : a >
z + r}. Notice that if the real numbers r and s differ, then Rr 6= Rs (in geometric
terms: given two parallel lines in the real plane, there are points with rational
coordinates lying strictly in between the two lines). We conclude that the biorders
Rr, for r ∈ R, form an uncountable chain. 3

5.3 Real chain representations

We now turn to the study of real chain >-representations of chains of biorders in
the general case. Having few results, we mainly offer examples and open problems.
It is useful to examine first the existence of real representations of a single biorder
in the general case.

5.3.1 Single biorders

Proposition 3 shows that any biorder has a special >-representation respecting the
traces in some linearly ordered set (E,≥). This is clearly no more true when we
take E to be R. Indeed, a special >-representation is also a ≥-representation. But
there are biorders on R having a >-representation and no ≥-representation and,
hence, no special representation.

22



Example 4
Let A = Z = R, after taking adequate disjoint duplications, and R = {(a, z) ∈
A × Z : a ≥ z}. The relation R is a biorder which does not admit any real >-
representation. That R is a biorder is clear because it admits a ≥-representation.
Now suppose that R admits some real >-representation in (R,≥) using functions
f and g, that is a ≥ z ⇔ f(a) > g(z) (for all a in A and z in Z). Notice that
with a = z we get f(a) > g(a). Moreover, two open intervals ]f(a), g(a)[ and
]f(b), g(b)[, where a, b ∈ R with a 6= b, are disjoint. Indeed, if a < b, we get a R b,
and so f(a) ≤ g(b). Now selecting some rational number qa in ]f(a), g(a)[, we
form a collection (qa)a∈R of distinct rational numbers, in contradiction with the
countability of Q. 3

Here is a necessary condition for real ≥-representability. It is taken from
Doignon et al. (1984) (other equivalent conditions can be found in Nakamura,
2002).

Definition 8
Let R be a relation from A to Z. A countable subset M∗ of A∪Z is widely dense
for R when, for all a in A and x in Z, there follows from a R x the existence of
some m∗ ∈M∗ such that

m∗ ∈ Z, a R m∗, and m∗ %Z
R x,

or

m∗ ∈ A, a %A
R m

∗, and m∗ R d. y

The following statement is Proposition 9 in Doignon et al. (1984).

Proposition 8
A biorder R has a real ≥-representation if and only if there is a countable subset
M∗ of A∪Z that is widely dense for R. This representation can always be chosen
so as to respect the traces.

The proof of Proposition 8 in Doignon et al. (1984) uses a construction that
differs from (but resembles) the one used in Proposition 3 with the relation Qm on
A ∪ Z. This is because the relation Qm always produces a special representation,
and any real special representation is at the same time a >-representation and a
≥-representation. But there are biorders having a >-representation while having

no ≥-representation (take R
−1

with R as in Example 4). Now the proof of Doignon
et al. (1984) uses a different construction dating back to Bouchet (1981) and Cogis
(1982a,b). Let R be a relation (not necessarily a biorder here) from A to Z.
Among all quasi orders (that is, reflexive and transitive relations) W on A ∪ Z
such that W ∩ (A × Z) = R, there is one which includes all the other ones; it is
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Table 1: The four parts of the maximum quasi order QM attached to a relation R.

QM A Z

A R R−1 R

Z R−1 R R−1 R−1 R

the maximum quasi order QM attached to R. Then QM is the union of the four
relations in the cells of Table 1. Moreover, the quasi order QM is complete if and
only if the relation R is a biorder. The proof of Proposition 8 by Doignon et al.
(1984) then consists in showing that the existence of a widely dense subset for R

implies that QM has a real representation h : A×Z → R as a weak order (meaning
α QM β ⇔ h(α) ≥ h(β)). This directly leads to a real ≥-representation f , g of
R respecting the traces (just take for f and g the restrictions of h to respectively
A and Z). Observe that the representation f , g is in general not special: we may
have f(a) = g(x), which happens exactly when the pair (a, x) is in the outer fringe

of R
−1

as is easily checked. To obtain a real >-representation, it suffices to apply

the same process to R
−1

instead of R.
Bosi, Candeal, Induráin, Oloriz, and Zudaire (2001) compare methods for es-

tablishing real representations of interval orders (the latter are particular cases of
biorders).

5.3.2 Chains of biorders on infinite sets: open problems

We now turn to the investigation of real chain representations of nested families of
biorders in the infinite case. Notice that this means not only that the sets A and
Z may be infinite, but also that the chain may contain infinitely many biorders.

We have almost no result here, even under the assumption that the chain of
biorders is finite (in other words, it is a nested family of biorders). We will simply
illustrate the difficulty of the problem by giving two (related) examples. Our first
example is a chain of biorders for which all relations in the chain have empty
fringes.

Example 5
Here is a chain of biorders which all have empty inner fringes. Let A = Z = R
and, for r ∈ R, set fr(a) = a and gr(z) = z+ r (where a ∈ A and z ∈ Z). The pair
(fr, gr) of real-valued mappings defines the biorder Rr= {(a, z) ∈ A×Z : a > z+r}.
For any pair (a, z) in Rr, there are real numbers y and b such that a > y+r > z+r,
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and then y + r ≥ b > z + r, and so (a, y) ∈Rr, (b, y) /∈Rr, (b, z) ∈Rr. We obtain

(a, z) ∈ RrRr
−1
Rr, thus RIr = ∅. For r, s ∈ R, notice Rr ( Rs if and only if r > s.

Thus (Rr)r∈R is a chain of biorders, all satisfying Rr = ∪{Rs : s ∈ R, r > s}.
However (Rr)r∈R, even after the addition of the empty and the full biorders, is not
a maximal chain (see next example). 3

A

Z

Rr

A

Z

Rr,s

A

Z

R+
r,s

A

Z

R+
r

Figure 5: Some biorders from the chain in Example 6.

It is not difficult to show that any chain of biorders is included in some maximal
chain of biorders (refering to the Axiom of Choice). Working with maximal chains
families does not change the picture revealed by the preceding example, as shown
below.

Example 6
We build one of the (infinitely many) maximal chains of biorders containing the
family (Rr)r∈R from the preceding example. A geometric viewpoint is helpful here.
Each biorder Rr, consisting of pairs (a, z) from A×Z, is a subset of R2 (remember
A = Z = R); more precisely, Rr is the open half-plane defined by the inequality
a > z + r (we keep the letters a and z to denote the two coordinates of the point
(a, z) in R2). Now consider the additional following subsets, where (r, s) ∈ R2 (see
Figure 5 for an illustration):

Rr,s = Rr ∪ {(a+ r, a) : a < s},
R+

r,s = Rr,s ∪ {(s+ r, s)},
R+

r = Rr ∪ {(a+ r, a) : a ∈ R}.

It is easily checked that the whole collection {Rr, Rr,s, R
+
r,s, R

+
r : (r, s) ∈ R2} is a

chain of biorders. Moreover, augmented by the empty and the full biorders, the
chain becomes a maximal chain. 3

Although all biorders forming the chain in Example 5 have a real representation,
this is not true for all biorders in the extended, maximal chain in Example 6
(remember Example 4). Because of the last fact, it seems difficult to find conditions
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for the real representability of infinite chains of biorders—even for those chains of
biorders which all admit individually a real representation.

Also for the apparently simpler question of characterizing finite nested chains
of biorders having a real representation, we have no clear answer. An important
open problem is the following: given a nested finite family of biorders all having
a real >-representation, what are the conditions allowing to build a real chain
representation of this nested family?

This will eventually lead us to work out a notion of weak gradedness (or
well-gradedness) in more details on infinite sets. Some results on a type of well-
gradedness on infinite sets are available in Doignon and Falmagne (2011, Ch. 4).

6 Discussion

We summarize the (apparently) new results established above and list open prob-
lems for further investigation. All results concern the existence of chain represen-
tations of nested families, or more generally chains, of biorders; they fall into two
types.

Any chain of biorders from a set A to a set Z has a chain >-representation
in some adequately chosen linearly ordered set (E,≥) (Proposition 7). The proof
builds an acyclic relation on the union of disjoint duplications of A and Z, as
many duplication as there are biorders in the chain. Applied to the special family
(∅,R, A× Z) of biorders, it delivers a new argument for the existence of a >-
representation (or ≥-representation) of any biorder R in some linearly ordered
set (E,≥) (Proposition 3, established in Subsection 4.4); the argument is quite
different from the ones existing in the literature (as for instance in Doignon et al.,
1984, 1987).

Assume now that the target (E,≥) is the linearly ordered set of the reals, and
that biorders are from a finite set A to a finite set Z. Each nested family of biorders
has a real representation (Proposition 4). The proof is based on the notion of weak
gradedness (a weakening of well-gradedness, Doignon and Falmagne, 1997). Weak
gradedness asserts that for any two biorders R and S from A to Z such that
R(S, there is a sequence of elementary transformations, each one consisting of
the addition of a single pair, which transforms R into S while producing a biorder
at each step (weak gradedness follows from Lemma 3). For a single biorder from
A to Z, the argument for the existence of a real representation in Subsection 4.4
is quite different from those in the literature (Doignon et al., 1984, Ducamp and
Falmagne, 1969). Exactly as for a nested family of biorders, it is a constructive
argument. The proof directly extends to the construction of a chain representation
for any nested family of interval orders or semiorders (Propositions 5 and 6) again
on finite sets; in the case of semiorders, the representations obtained are without
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proper nesting (Aleskerov et al., 2007).
Quite a few problems are left unsolved. Here are the most intriguing ones in

our view.

(i) Working with chain representations of chains of biorders benefits from a bet-
ter understanding of the collection of all representations of a single biorder.
We obtained several results on the structure of the collection, whether or not
the representations are required to be special and/or to respect the traces.
More remains to be done however.

(ii) Among the chain representations of a nested family of semiorders (as in
Proposition 6), do there exist representations which, for each of the semi-
orders, avoid proper nesting, and even are constant threshold representa-
tions? See Aleskerov et al. (2007), Doignon et al. (1987) for the latter notions
in the case of a single semiorder.

(iii) Finally, we do not have much knowledge about real chain representations in
the general case (that is, with no restrictions on the cardinalities of the sets
A and Z), even for finite nested families of biorders. We repeat an important
open question: let (R1,R2, . . . ,Rk) be a nested family of k ≥ 1 biorders from
the set A to the set Z. Suppose furthermore that each of these biorders has a
real >-representation (or ≥-representation). When is it true that this finite
family of nested biorders has a chain representation?

As far as we know, papers on nested families of relations assume that the left
or the right traces are compatible (meaning that the intersection of the traces is
complete, see for instance Doignon et al., 1988). Working without any compatibil-
ity assumption proves to be more difficult but also quite rewarding: for instance,
new proofs for the existence of a representation for a single relation are important
by-products of our investigations.

Appendix

A Binary relations on a set

A binary relation S on a set X is a subset of X×X. For x, y ∈ X, we often write,
as is usual, x S y instead of (x, y) ∈ S. Whenever the symbol % denotes a binary
relation, � stands for its asymmetric part (x � y ⇔ x % y and Not [y % x]) and ∼
stands for its symmetric part (x ∼ y ⇔ x % y and y % x). A similar convention
holds when subscripts or superscripts appear to %.

A binary relation S on X is
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(i) reflexive if x S y,

(ii) irreflexive if Not [x S y],

(iii) complete if x S y or y S x,

(iv) symmetric if x S y implies y S x,

(v) asymmetric if x S y implies Not [y S x],

(vi) antisymmetric if x S y and y S x imply x = y,

(vii) transitive if x S y and y S z imply x S z,

(viii) Ferrers if [x S y and z S w]⇒ [x S w or z S y],

(ix) semitransitive if [x S y and y S z]⇒ [x S w or w S z],

for all x, y, z, w ∈ X.
We list below a number of remarkable structures. A binary relation S on X is

(i) a quasi order if it is reflexive and transitive,

(ii) a weak order or a complete preorder if it is complete and transitive,

(iii) a linear order if it is an antisymmetric weak order,

(iv) a strict linear order if it is the asymmetric part of a linear order,

(v) an equivalence if it is reflexive, symmetric, and transitive,

(vi) a strict partial order if it is irreflexive and transitive,

(vii) interval order if it is irreflexive and Ferrers;

(viii) semiorder if it is irreflexive, Ferrers and semitransitive.

It is well known that an equivalence relation S partitions the set X into equiv-
alence classes. The equivalence class of an element x of X is denoted Sx. The set
X/S of all equivalence classes of X under S is the quotient of X by S. Any weak
order S on X leads to the equivalence relation S ∩ S−1 on X, whose classes are
also the classes of S.

A relation S generates a left trace %`
S and a right trace %r

S on X, which are
the binary relations on X such that

x %`
S y ⇔ [y S z ⇒ x S z],

x %r
S y ⇔ [z S x⇒ z S y]
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for all x, y, z ∈ X. It is clear that %`
S and %r

S are always quasi orders.
A characteristic feature of interval orders combines their irreflexivity with the

facts that their left and right traces are complete (and therefore weak orders).
A characteristic feature of semiorders is that they are interval orders with

noncontradictory left and right traces. The last condition requires that x �`
S y

and y �r
S x never occur together, or equivalently that the relation defined as

%S = %`
S ∩%r

S is complete. The relation %S is thus a weak order, called the trace
of the semiorder.

A characteristic feature of weak orders is that they are identical to their trace.
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Scientifique et Médicale de Grenoble, Grenoble, France, 1981.

D. Bouyssou and Th. Marchant. Biorders with frontier. Order, 28(1):53–87, 2011.

D. S. Bridges and G. B. Mehta. Representations of Preferences Orderings. Number
422 in Lecture Notes in Economics and Mathematical Systems. Springer-Verlag Berlin
Heidelberg, 1st edition, 1995.

G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers. Dover
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