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Motivation

Typical problem

Comparing holiday packages

# of travel category distance . cultural
cost . fi .
days time of hotel to beach interest
A 200€ 15 12h EREE 45 km Y 4
B 425€ 18 15h EREEE 0km N ——
C 150€ 4 7h EE 250 km N +
D 300€ 5 10h ERE 5km Y —

Central problems

@ helping a DM choose between these packages

@ helping a DM structure his/her preferences
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Introduction

Motivation

e careful analysis of objectives
e careful analysis of attributes
e careful selection of alternatives

e availability of the DM

@ no analysis of objectives
e attributes as available
e alternatives as available

@ limited access to the user

\

Introduction

Motivation

S

@ additive value function model
&€ r>\_./ Yy ~ Z Vi\ Ty

i=1
x,y : alternatives
xX; .

V; (332) .

number

“evaluation” of alternative x on attribute 7
e underlies most existing MCDM techniques

Underlying theory: conjoint measurement

e Economics (Debreu, 1960)

e Psychology (Luce & Tukey, 1964)

@ tool to help structure preferences

Ay



Part 1

Classical theory: conjoint measurement

Measurement in Physics

Aside: measurement of physical quantities

Lonely individual on a desert island

@ no tools, no books, no knowledge of Physics

e wants to rebuild a system of physical measures

A collection a rigid straight rods

e pre-theoretical intuition

@ problem: measuring the length of these rods
o length

e softness, beauty

@ comparing objects

@ creating and comparing new objects
e creating standard sequences

Ay



Measurement in Physics

Step 1: comparing objects

@ experiment to conclude which rod has “more length”
@ place rods side by side on the same horizontal plane J

a>=>b a~b

10 = = =
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Measurement in Physics

Comparing objects

@ a > b: extremity of rod a is higher than extremity of rod b

@ a ~ b: extremity of rod a is as high as extremity of rod b

Expected properties

earba~borb>a

@ > is asymmetric Summary of experiments

@ ~ is symmetric @ 7 => U~ is a weak order
@ > is transitive o complete (a ZZbor b a)
o ~ is transitive o transitive (a Z b and b7 c =
. . azc)
@ > and ~ combine “nicely” ‘
ear-bandb~c=a>c
ea~bandb>c=a>c )
11 = 5 = z E Q@



Measurement in Physics
Comparing objects

=~ = > U~ is a weak order
@ associate a real number ®(a) to each object a

@ the comparison of numbers faithfully reflects the results of experiments

a>b<s d(a) > d(b)

a~bs dla) =d(b)
@ the function ® defines an ordinal scale

same properties

e applying an increasing transformation to ® leads to a scale that has the
transformation

e any two scales having the same properties are related by an increasing

12

Measurement in Physics

A
Step 2: creating and comparing new objects

@ use the available objects to create new ones

@ concatenate objects by placing two or more rods “in a row”

aob

cod

aob>=cod

Ay



Measurement in Physics

Concatenation

Constraints induced by concatenation
e we want to be able to deduce ®(a o b) from ®(a) and P(b)

@ simplest requirement

B(aob) = b(a) + d(b)

@ monotonicity constraints

a-bandc~d=aoc>=bod

14 = = = E
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Measurement in Physics

Step 3: creating and using standard sequences

@ choose a standard rod
@ be able to build perfect copies of the standard

@ concatenate the standard rod with its perfects copies

S8

S7
S6

zz S(8) = a > S(7)
s3 P(s)=1=7<P(a) <8

S2

51
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Measurement in Physics

Convergence

First method

@ choose a smaller standard rod

@ repeat the process

Second method
@ prepare a perfect copy of the object
@ concatenate the object with its perfect copy

@ compare the “doubled” object to the original standard sequence
@ repeat the process

16
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Measurement in Physics

Summary

Extensive measurement

e Krantz, Luce, Suppes & Tversky (1971, chap. 3)

4 Ingredients

@ well-behaved relations > and ~
© concatenation operation o
@ comnsistency requirements linking >, ~ and o

@ ability to prepare perfect copies of some objects in order to build standard
sequences

v

Neglected problems

@ many!

17
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Question

Measurement in Physics

Can this be applied outside Physics?

@ no concatenation operation
o intelligence!
e pain!

18

Measurement in Physics

Ay

What is conjoint measurement?

Conjoint measurement

e mimicking the operations of extensive measurement

e when there are no concatenation operation readily available
e when several dimensions are involved
Seems overly ambitious

@ let us start with a simple example
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An example: even swaps

Example: Hammond, Keeney & Raiffa, 1999

e five locations have been identified
e five attributes are being considered
Commute time (minutes)

Clients: percentage of clients living close to the office
Services: ad hoc scale

o A (all facilities), B (telephone and fax), C' (no facility)
Size: square feet (~ 0.1 m?)
Cost: $ per month

e Clients is a proxy attribute

e Commute, Size and Cost are natural attributes

@ Services is a constructed attribute

21

An example: even swaps

Ay

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900
Hypotheses and context

1750
@ a single cooperative DM

@ choice of a single office

@ ceteris paribus reasoning seems possible
Commute: decreasing  Clients: increasing
Services: increasing

Cost: decreasing

Size: increasing
@ dominance has meaning

22
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An example: even swaps

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750
@ b dominates alternative e

@ dis “close” to dominating a

@ divide and conquer: dropping alternatives
e drop a and e

23

An example: even swaps

Ay

b c d
Commute 25 20 25
Clients 80 70 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900
@ no more dominance

@ assessing tradeoffs

e all alternatives except ¢ have a common evaluation on Commute
@ modify c in order to bring it to this level

e starting with ¢, what is the gain on Clients that would exactly compensate
a loss of 5 min on Commute?

e difficult but central question

e bracketing

24
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An example: even swaps

c
Commute

c
20 25
Clients 70 70+ 9
Services C C
Size 500 500
Cost 1500 1500

find § such that ¢ ~ ¢

e for § = 8, I am indifferent between ¢ and ¢
@ replace ¢ with ¢/

25

An example: even swaps

DA
b c d
Commute 25 25 25
Clients 80 78 85
Services B C A
Size 700
Cost

500

1700 1500

950
1900

e all alternatives have a common evaluation on Commute

e divide and conquer: dropping attributes
e drop attribute Commute

b c d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500
26
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An example: even swaps

b c d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900
@ check again for dominance
@ unfruitful

@ assess new tradeoffs

e neutralize Services using Cost as reference

27

An example: even swaps

Da o
b c d
Clients Q0 78 )
Services B C
Size

A
700 500
Cost

950
1700 1500 1900
e what maximal increase on Cost would you be prepared to pay to go from
C to B on Services for ¢'?
o answer: 250 $

Services for d?

e what minimal decrease on Cost would you ask if we go from A to B on
o answer: 100 $

b c c’ d d’
Clients 80 78 78 85 85
Services B C B A
Size 700 500 500
Cost 1700 1500

B
950
1500 + 250

950
1900 1900 — 100

O
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An example: even swap

e replacing ¢’ with ¢”
e replacing d with d’

e dropping Services

b C// d/
Clients 80 78 85

Size 700 500 950
Cost 1700 1750 1800

@ checking for dominance: ¢’ is dominated by b
e ¢’ can be dropped

|

An example: even swaps

T wac
e dropping ¢” )
b d’
Clients 80 85
Size 700 950
Cost 1700

@ no dominance

1800

@ question: starting with b what is the additional amount on Cost that you
would be prepared to pay to increase Size by 2507
o answer: 250 $

b b’ d’
Clients 80 80 85
Size 700 950 950

Cost 1700 1700 + 250

1800
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An example: even swaps

e replace b with ¢’

e drop Size J
b/ d/
Clients 80 85
Size 950 950
Cost 1950 1800
b/ d/
Clients 80 85
Cost 1950 1800
@ check for dominance

@ d’ dominates b’

@ Recommend d as the final choice \
31

Summary

An example: even swaps

DA
Remarks

@ very simple process
@ process entirely governed by > and ~
@ no question on “intensity of preference”

@ notice that importance is not even mentioned

Problems

v
e set of alternative is small
e many questions otherwise
@ output is not a preference model

e if new alternatives appear, the process should be restarted
@ what are the underlying hypotheses?

e it is there but in a more complex form than just “weights”
@ why be interested in something more complex?

A\



An example: even swaps

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

e >: preference, ~: indifference

e we have implicitly supposed that they combine nicely
Recommendation: d

@ we should be able to prove that d > a,d > b, d > cand d > €
@ dominance: b > e and d > a

o tradeoffs + dominance: b >~ ¢”’, ¢’ ~ ¢, ~c,d ~d, b ~b, d =V

d>a,b>e
d'~c,d~e b=’
=b>=c
d~d,b~b,d =V
=d>b
33 =] & = = E DHAQ
An example: even swaps
Monsieur Jourdain doing conjoint measurement
OK... but where are the standard sequences?
@ hidden... but really there!
e standard sequence for length: objects that have exactly the same length
e tradeoffs: preference intervals on distinct attributes that have the same
length
o c~c
o [25,20] on Commute has the same length as [70, 78] on Client
c c f 1!
Commute 20 25 20 25
Clients 70 78 78 82
Services C C C C
Size 500 500 500 500
Cost 1500 1500 1500 1500
34

[70, 78] has the same length [78,82] on Client



Notation

Setting

N ={1,2,...,n} set of attributes
X;: set of possible levels on the ith attribute

X =i, Xi: set of all conceivable alternatives

e X include the alternatives under study... and many others

J C N: subset of attributes

Xy =1lies X Xy =1l¢s X;
(xg,y—g) € X

(i, y—:i) € X

> binary relation on X: “at least as good as”
e x>y < x 7y and Notly 7 x]
er~ysxoyandy D

36 = = =
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Notation

What will be ignored today

Important issues ignored

@ structuring of objectives
e from objectives to attributes

e adequate family of attributes

@ risk, uncertainty, imprecision

37 = = =
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Notation

Marginal preference and independence

Marginal preferences
e J C N: subset of attributes
e ~; marginal preference relation induced by = on X
vy Zyys e (Ty,2-7) 5 (Wr,2-5), forall z_; € X_;
Independence

e J is independent for - if

(xy,2—75) = (yg,2—7), forsome z_; € X_j| = x5 75y

@ common levels on attributes other than J do not affect preference

38

= (s
Independence

Notation

DA
Definition

e for all i € N, {i} is independent, = is weakly independent

e for all J C N, J is independent, 77 is independent
Proposition (Folk)

Let 7 be a weakly independent weak order on X =[], X;. Then:
@ =, is a weak order on X;
o [x; 7,y foralli e N = x 7y

o [x; i yi, for alli € N and z; > y; for some j € N| = x >y
for all z,y € X

39

@ as soon as I have a weakly independent weak order
@ dominance arguments apply
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Notation

Independence
@ it is easy to imagine examples in which independence is violated
e Main course and Wine example

(Fish, WW) > (Meat, WW)

(Meat, RW) > (Fish, RW)

Independence in practice

@ it is nearly hopeless to try to work if weak independence is not satisfied

e some (e.g., R. L. Keeney) think that the same is true for independence

e in all cases if independence is violated, things get complicated

40

Additive value functions: outline of theory

Qv
The case of 2 attributes

@ suppose I can “observe” =~ on X = X; x X,
e asking questions to the DM

e what must be supposed to guarantee that I can represent =~ in the
additive value function model

Outline of theory: 2 attributes

V1 :X1 — R
vy 1 Xo > R
(1, m2) Z (y1,92) © vi(1) +v2(T2) > v1(Y1) + v2(Y2)

@ ~ must be an independent weak order

e try building standard sequences and see if it works!
42
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Additive value functions: outline of theory

Uniqueness

The case of 2 attributes

Important observation

Suppose that there are v; and v, such that

(x1,22) Z (y1,y2) © vi(x1) + va2(z2) > v1(y1) + v2(y2)
Take a, 81,82 € R with a > 0

w; = av; + B w2 = avy + B
is also a valid representation

V.
Consequences

o fixing vy (x1) = va(x2) = 0 is harmless

o fixing v1(y1) = 1 is harmless if y; =1 1

43
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Additive value functions: outline of theory

Standard sequences

The case of 2 attributes

Preliminaries

o choose arbitrarily two levels 29, 21 € X3
e make sure that 21 = 2

o choose arbitrarily one level 23 € X5

o (29,29) € X is the reference point (origin)

o the preference interval [z{, 1] is the unit

44

u]
0y
|

u

Ay



Additive value functions: outline of theory

The case of 2 attributes

Building a standard sequence on X
e find a “preference interval” on X5 that has the same “length” as the
reference interval [z9, z1]
e find z3 such that

(21, 23)

(1, 23)
v1(2?) + va(23) = vi(27) + va()) so that
va(x3) — va(x3) = va(w1) — v (a})
@ the structure of X5 has to be “rich enough”

Additive value functions: outline of theory

Standard sequences

Qv
The case of 2 attributes

(xlaxz) ( )
vo(x3) — v2(23) = vy

Ty) = (

@ it can be supposed that

1) —vi(a?)

=1

46
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Additive value functions: outline of theory

The case of 2 attributes

(21, 73) ~ (21, 22)
(21, 23) ~ (21, 23)
(a7, 23) ~ (a1, 23)
(a,25) ~ (21,257")
va(23) — va(zy) = vi(2]) —v1(2f) =1
2 2\4L2 141 1{Lq
va(23) — va(w3) = vi(x7) — i (af) = 1
va(23) — va(23) = vi(a1) — va(2}) =1
va(5) —va(x5 ™) = vi(wg) — i (a}) = 1
= vg(23) = 2,v0(x3) = 3,...,v(xh) =k
jm] = = =
X
75
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Additive value functions: outline of theory

Standard sequence

The case of 2 attributes

e implicit hypothesis for length
e the standard sequence can reach the length of any object

Ve,y e R,dn e N:ny >z

@ a similar hypothesis has to hold here
@ rough interpretation

o there are not “infinitely” liked or disliked consequences

v
49

Additive value functions: outline of theory

Building a standard sequence on X;

Qv
The case of 2 attributes

(21, 23) ~ (271, 23)
(1,25) ~ (27, 23)
(a7, )

va(23) — va(xg) =1
U1<$1) — 27/01(3::{) — 37 cet 7U1(ajlf) =k

Ay
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5
z3
L3
?
3
73 0 3 4 X1
L1 L1 L1 L1 L1
Additive value functions: outline of theory
Thomsen condition

The case of 2 attributes

($1,$2) ~ (y1>y2)
and

(Y1, 22) ~ (21, 72)

= (21,22) ~ (21, y2)

Xo
z2
y2 \
o
X1
Y1 1 21
Consequence

@ there is an additive value function on the grid

Ay
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Lo
3
Ta
T3
3 0 1 3 4 5 X1
a1 Ly I3 L1 Ty L1

Additive value functions: outline of theory

The case of 2 attributes

e we have defined a “grid”
@ there is an additive value function on the grid

@ iterate the whole process with a “denser grid”
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Additive value functions: outline of theory
Hypotheses

The case of 2 attributes

@ Archimedean: every strictly bounded standard sequence is finite
@ essentiality: both >; and >9 are nontrivial
@ restricted solvability

57 O =) = = = Har
X2
(21,2’2)
[ )
(wl,CUQ) (ylaxQ)
Io @
($1,$2) e
X4
X1 n

(y1,z2) > (21, 22)
(21, 22) = (x1,22)

} = Jw; such that (z1,22) ~ (w1, x2)
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Additive value functions: outline of theory

Basic result

The case of 2 attributes

Theorem (2 attributes)
If

@ restricted solvability holds

@ cach attribute is essential
then

the additive value function model holds
if and only if

conditions
The representation is unique up to scale and location

59

>~ is an independent weak order satisfying the Thomsen and the Archimedean

O
Additive value functions: outline of theory
General case

More than 2 attributes

Good news

e entirely similar. ..

@ with a very nice surprise: Thomsen can be forgotten

e if n = 2, independence is identical with weak independence

e if n > 3, independence is much stronger than weak independence

Ay
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Basic result

Additive value functions: outline of theory

More than 2 attributes

Theorem (more than 2 attributes)
If

@ restricted solvability holds

@ at least three attributes are essential
then

the additive value function model holds
if and only if

>~ is an independent weak order satisfying the Archimedean condition
The representation is unique up to scale and location

61

Additive value functions: outline of theory

Independence and even swaps

Qv
More than 2 attributes

Even swaps technique

@ assessing tradeoffs. ..

e after having suppressed attributes

Implicit hypothesis

e what happens on these attributes do not influence tradeoffs
@ this is another way to formulate independence

Ay
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Additive value functions: implementation

Assessing value functions

Direct techniques

@ check independence
@ build standard sequences
o “weights” (importance) has no explicit role

e do not even pronounce the word!!
Problems

v
(Pobles |
@ many questions
@ questions on fictitious alternatives
@ rests on indifference judgments
°
°

discrete attributes

propagation of “errors”

N

Additive value functions: implementation

Indirect techniques

Qv
Indirect techniques

@ select a number of reference alternatives that the DM knows well
e rank order these alternatives
function

@ test, using LP, if this information is compatible with an additive value

e if yes, present a central one

@ interact with the DM
e if not

e apply the resulting function to the whole set of alternatives
@ interact with the DM

Ay



Additive value functions: implementation Indirect techniques

UTA: decision variables

@ assess v, V2,...,Up

@ normalization

T+ worst level on attribute ¢

x;: best level on attribute ¢

v1(215) = v2(x24) = ... = Vp(Tpx) =0
> i vi(zi) =1

e if the attribute is discrete

e take as many variables as there are levels
e if the attribute is not discrete

e consider a piecewise linear approximation

_4
e discrete attribute
o X; = {xi,xs,x2,..., 2., 27}
@ continuous attribute
e choose the number of linear pieces r; + 1
° [xi*a x':tl]a [aj':Lla $3], °oooyg [x:i_17 x:Z]) [x:z’x:] )
66 O =) = = = Har
vi(x;)
vi (T7)
vi(x)
vi(x7)
vi(z})
. | T
V; (CUz*) Tin xl xz x3 e 7
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U'L(xz*)

Additive value functions
UTA: constraints

implementation

Indirect techniques

Using these conventions

the > 7 (r; + 1) variables

o for all z, v(z) = > | vi(x;) can be expressed as a linear combination of

x =y <) >o(y)

v(z) —o(y) + o (zy) —o (xy) > e

Ay



Additive value functions: implementation Indirect techniques

UTA: LP

minimize Z = Z ot (zy) + o~ (xy)

constraints

s.t.

one constraint per pair of compared alternatives

normalization constraints

70
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Additive value functions: implementation Indirect techniques

UTA: analyzing results

IftzZ*=0
@ there is one additive value function compatible with the given information

@ there are infinitely many (identically normalized) compatible additive
value functions v € V

@ use post-optimality analysis and/or interaction to explore V

ItZ*>0

| A

@ there is no additive value function compatible with the given information
@ interact

e increase the number of linear pieces

e decrease ¢

e modify ranking

e diagnostic a failure of independence

e use approximate function

A\
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Help
 [Fiat Tipo a] || Add | [cost
|Alfa 33 |ACCEL
- |Nissan Sunny : |PICKUP

Mazda 323 | Delete | |InRAKE
- |Mitsubishi Colt : |ROAD
Toyota Corolla f E dit
Honda Civic =
Opel Astia
- |Ford Escort
' |Renault 19 = Done

Fiat Tipo x|

Main
Values for criteria:

Change name
e
ACCEL 30.70
PICKUP 37.20
BRAKE 2.33 Prev
ROAD 3.00
Hext

Additive value functions: implementation Indirect techniques

Summary

Conjoint measurement

@ highly consistent theory

@ together with practical assessment techniques

Why consider extensions?

@ hypotheses may be violated

@ assessment is demanding

o time
e cognitive effort
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User's ranking of reference alternatives I
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Part 11

A glimpse at possible extensions

Additive value function model

@ requires independence

@ requires a finely grained analysis of preferences
Two main types of extensions

@ models with interactions

@ more ordinal models

Ay
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Interactions

Models with interactions

e additive value function model
e independence
@ decomposable model

e only weak independence

$c>y<:>Z’Uz$z ZZ yz
rZy e Flui(z),...on(w)] > F[vl(yl) - Un(Yn)]

78

o -
Models with interactions
Decomposable models

Ay

2y < Flui ()

Un<l'n)] Z F[Ul(yl), ce
F' increasing in all arguments

Un(Yn)]

in the decomposable model

Under mild conditions, any weakly independent weak order may be represented
Problem

e all possible types of interactions are admitted

@ assessment is a very challenging task

Ay




Models with interactions

Two main directions

Extensions

Q@ work with the decomposable model
e rough sets

@ find models “in between additive” and decomposable
o CP-nets, GAI

o fuzzy integrals

80

Ay

Models with interactions Rough sets

Rough sets

Basic ideas

e work within the general decomposable model

@ use the same principle as in UTA

@ replacing the numerical model by a symbolic one
@ infer decision rules

IF

T1 > G1y...yXTj > Qjy...,Ty > Ay and

y1Sbl,...,yigbi,...,yngbn
THEN

Ty

@ many possible variants

e Greco, Matarazzo, Stowinski J

81
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Models with interactions GAI networks

GAI: Example

Choice of a meal: 3 attributes
X1 = {Steak, Fish}

X2 = {Red, White}

X3 = {Cake, sherBet}

Preferences

et =(S,R,C) 2= (S,R,B) z*>=(S,W,C) az*=(S,
25 = (F,R,C) 2°=(F,R,B) z' =(F,W,C) 2®=(F,

e S A LN VL L L

@ the important is to match main course and wine
o I prefer Steak to Fish

@ I prefer Cake to sherBet if Fish
o I prefer sherBet to Cake if Steak

82
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Models with interactions GAI networks

Example

e S LN NV N S L L

Independence

' = 2° = v (9) > v (F)
" = 2% = v (F) > v1(9)

Grouping main course and wine?

z” = 28 = v3(C) > v3(B)
2?2 = z' = v3(B) > v3(0O)

83
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Models with interactions

GAI networks

e S A LN NV N SR L L
Model

T Y < uia(, x2) + uis(xr, x3) > wi2(y1, y2) + wis(yr, y3)

ulg(S,R) =6 Ulg(F, W) =4 U12<S, W) =2 ulg(F, R) =0
U13(S, C) =0 ulg(S,B) =1 U13(F, C)

84

=1 U13(F,S) =0

Models with interactions

Generalized Additive Independence

Qv
GAI networks

GAI (Gonzales & Perny)
@ axiomatic analysis

e if interdependences are known

e assessment techniques

o efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

@ the attribute “richness” of meal is missing

classical theory

@ interdependence within a framework that is quite similar to that

e powerful generalization of recent models in Computer Science




Models with interactions
Fuzzy integrals

Fuzzy integrals

@ decision making under uncertainty
e homogeneous Cartesian product
e mathematics

e integrating w.r.t. a non-additive measure
@ game theory

e cooperative TU games
e multiattribute decisions

e generalizing the weighted sum

86

Example

=)
Models with interactions

Fuzzy integrals

Ay

Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12

13

a>=b d=c
Preferences

a is fine for Engineering d is fine for Economics
Interpretation: interaction
@ having good grades in both

e Math and Physics or

e Maths and Economics

@ better than having good grades in both

e Physics and Economics

u
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Models with interactions
Weighted sum

Fuzzy integrals

Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17
d 5

8
12

13
a>=b= 18w; + 12wy + 6ws > 18w + Twy + 11wz = wy > w3

d > c = dwi + 1Tws + 8wz > dwi + 12ws + 13wz = w3 > wo

88

= 5
Models with interactions
Choquet integral

Fuzzy integrals

Ay

Capacity

w2V —[0,1]
(@) =0, u(N) =

1
AC B = u(A) < u(B)

IA

Ay



Models with interactions Fuzzy integrals

Choquet integral

1y —zo) w({(1),(2),3),4)...,(n)})
T(2) — T(1) 1({(2),(3),(4)...,(n)})
T(3) — T(2) pn({(3),(4)...,(n)})

Z(n) ~ L(n—1) p({(n)})

=> [zw — z6-1)] M(Aw)

=1

Ay =10, (@ +1),...,(n)}
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Models with interactions

Fuzzy integrals

Application
Physics Maths Economics
a 18 12 6
b 18 7 11
c 5) 17 8
d 5 12 13
u(M)=0.1,u(P)=0.5,u(E)=0.5
p(M,P) =1> p(M) + p(P)
(M, E) =1> p(M) + p(E)
p(P, E) =0.6 < pu(P) + p(E)

Cu(a) =6 x 1+ (12 —6) x 1+ (18 — 12) x 0.5 = 15.0
Cu(b) =7+ (11 —=7) x 0.6 + (18 — 11) x 0.5 = 12.9
Culc) =5+ (8=5) x 1+ (17—8) x 0.1 =8.9
Co(d) =5+ (12 —5) x 1+ (13 —12) x 0.5 = 12.5
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Models with interactions Fuzzy integrals

Choquet integral in MCDM

@ monotone, idempotent, continuous

@ preserves weak separability

e tolerates violation of independence

@ contains many other aggregation functions as particular cases

Fascinating mathematical object:
@ Mobius transform
e Shapley value

@ interaction indices

A

it
S
Jel
0

Models with interactions Fuzzy integrals

Questions

Hypotheses

@ I can compare z; with z;

o attributes are (level) commensurable

Classical model

o I can indirectly compare [z;, y;] with [z, y;]

Central research question

o how to assess u : |J;_; X; — R so that the levels are commensurate?
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Models with interactions
Choquet integral

Fuzzy integrals

@ variety of mathematical programming based approaches \
e Choquet integral with a reference point (statu quo)
@ Sugeno integral (median)
e axiomatization as aggregation functions

e k-additive capacities

94

Observations

Ordinal models

Ay

Classical model
e deep analysis of preference that may not be possible
e preference are not well structured
e several or no DM
e prudence

@ it is not very restrictive to suppose that levels on each X; can be ordered
e aggregate these orders

@ possibly taking importance into account

Social choice

preference
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e aggregate the preference orders of the voters to build a collective

Ay



Ordinal models
Outranking methods

x 7y if

Concordance a “majority” of attributes support the assertion

Discordance the opposition of the minority is not “too strong”

Ty S

Problem

Notly; V; z;|,Vi e N
@ 7~ may not be complete

@ 7~ may not be transitive

@ > may have cycles
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Ordinal models

O =)
Condorcet’s paradox

Ay

1:x1>1y1>121
2:z2>2x2>2y2

3:Ys >3 23 >3 T3

x = (21, T2, x3)

Y = (y1,Y2,93)

2= (Zl, 29, 23)
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Arrow’s theorem

Ordinal models

The only ways to aggregate weak orders while remaining ordinal are not very
attractive. ..
o dictator (weak order)

e oligarchy (transitive >)

e veto (acyclic >)
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Ways out

Ordinal models

Ay

Accepting intransitivity

e find way to extract information in spite of intransitivity
o ELECTRE I, II, III, IS
e PROMETHEE I, II

Do not use paired comparisons

e only compare x with carefully selected alternatives
o ELECTRE TRI

e methods using reference points
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Ordinal models

Conclusion

Fascinating field

@ theoretical point of view
e measurement theory
e decision under uncertainty
e social choice theory

@ practical point of view

e rating firms from a social point of view
e evaluating Ha-propelled cars
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