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Abstract

ELECTRE TRI-nB is a method designed to sort alternatives evaluated
on several attributes among ordered categories. It is an extension of ELEC-
TRE TRI-B that uses several limiting profiles, instead of one, to delimit
each category. In a companion paper we have characterized the partitions
that can be obtained with ELECTRE TRI-nB, using a simple axiom called
linearity. The simplicity of this characterization crucially depends on the
possibility to use as many limiting profiles as we like to delimit a category.
This is not completely realistic and there is a need to study models in which
the number of limiting profiles delimiting each category is restricted. This
note starts such a study. We investigate the case of ELECTRE TRI-nB
models based on unanimity and using no more than two limiting profiles
per category. Our results show that the constraints on the number of limit-
ing profiles make the problem difficult.
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1 Introduction

This paper is about ELECTRE TRI (often abbreviated as ETRI in what follows).
The original method called ETRI-B (Roy and Bouyssou, 1993, Yu, 1992) uses one
limiting profile to delimit each category. Fernández, Figueira, Navarro, and Roy
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(2017) have suggested an extension of this method, called ETRI-nB, that uses
several limiting profiles to delimit each category1.

In a companion paper (Bouyssou, Marchant, and Pirlot, 2020), we have given
a theoretical look at ETRI-nB. We presented a simple characterization of the
partitions that can be obtained using the pseudo-conjunctive version of ETRI-nB
(ETRI-nB-pc). This characterization uses a condition, linearity, that is familiar
(Bouyssou and Marchant, 2007, Goldstein, 1991, Greco, Matarazzo, and S lowiński,
2001, S lowiński, Greco, and Matarazzo, 2002) in the study of sorting models and
that has a transparent interpretation. This allowed us to precisely position ETRI-
nB-pc within the larger family of sorting model for alternatives evaluated on several
attributes.

A limitation of the analysis in Bouyssou et al. (2020) is that the simple char-
acterization is obtained when there is no restriction on the number of profiles
delimiting each category. If practical applications of ETRI-nB are sought for, this
is problematic. Hence, it is useful to study models in which the number of profiles
used to delimit each category is constrained. Such constraints will surely facilitate
the elicitation of the parameters of the model (Fernández, Figueira, and Navarro,
2019). This is the purpose of this note.

Our initial aim was to study the expressiveness gain brought by increasing
the size of the set of profiles in ETRI-nB. When there are two categories, going
from a single profile, the case studied in Bouyssou and Marchant (2007), to an
arbitrarily large number of profiles, the case studied in Bouyssou et al. (2020),
leads to a huge expressiveness gain. We are interested to know whether this gain
is already present going from one to a small number of profiles. The problem
turns out to be more difficult than the one studied in Bouyssou et al. (2020). We
have no complete answer at this time. We will illustrate these difficulties with the
study of “unanimous” ETRI-nB models (meaning that the only winning coalition
is the set of all attributes; such models are obviously without discordance) with
two categories.

The rest of this text is organized as follows. Section 2 introduces our notation
and framework. Section 3 presents some background results on ETRI-B and ETRI-
nB. Section 4 presents our main results. A final section discusses our findings.

2 Notation and framework

As in Bouyssou et al. (2020), we restrict our attention to the case of two categories.
This allows us to use a simple framework while not concealing any important
difficulty. For the same reasons, we suppose throughout that the set of objects

1In the rest of this text, we write “profile” instead of “limiting profile”. All the profiles used
below are limiting profiles.
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to be sorted is finite. Our setting and vocabulary is exactly as in Bouyssou et al.
(2020)

2.1 The setting

Let n ≥ 2 be an integer and X = X1 × X2 × · · · × Xn be a finite set of objects.
Elements x, y, z, . . . of X are interpreted as alternatives evaluated on a set N =
{1, 2, . . . , n} of attributes. For x, y ∈ X, i ∈ N and J ⊆ N , we use XJ , X−J , Xi,
X−i, (xJ , y−J), and (xi, y−i), as is usual.

Our primitives consist in a twofold partition 〈A,U〉 of the set X. We interpret
the set A as containing sAtisfactory objects, while U contains Unsatisfactory ones.

We say that an attribute i ∈ N is influential for 〈A,U〉 if there are xi, yi ∈ Xi

and a−i ∈ X−i such that (xi, a−i) ∈ A and (yi, a−i) ∈ U . We say that an attribute is
degenerate if it is not influential. Suppressing, if necessary, degenerate attributes,
it is not restrictive to suppose that all attributes are influential for 〈A,U〉. We do
so in what follows.

Remark 1
Suppose that I is a proper nonempty subset of N and i ∈ I. It is clear that, if
i ∈ N is influential, then I is influential, i.e., there are xI , yI ∈ XI and a−I ∈ X−i
such that (xI , a−I) ∈ A and (yI , a−I) ∈ U . Our hypothesis concerning the influence
of each attribute i ∈ N therefore implies that all proper nonempty subsets I of
attributes are influential. •

A twofold partition 〈A,U〉 induces on each i ∈ N a binary relation defined
letting, for all i ∈ N and all xi, yi ∈ Xi,

xi ∼i yi if
[
∀a−i ∈ X−i, (yi, a−i) ∈ A ⇔ (xi, a−i) ∈ A

]
.

This relation is always reflexive, symmetric and transitive, i.e., is an equivalence 2.
As in Bouyssou et al. (2020), it is not restrictive to suppose that all equivalence
classes of ∼i are trivial, i.e., reduced to a single element.

2.2 Models (E), (Ec), and (Eu)

The following definition is taken from Bouyssou et al. (2020, Def. 6).

Definition 2
We say that a partition 〈A,U〉 has a representation in Model (E) if:

2Our conventions concerning binary relations are standard. They are exactly as in Bouyssou
et al. (2020).
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• for all i ∈ N , there is a semiorder Si on Xi (with asymmetric part Pi and
symmetric part Ii),

• for all i ∈ N , there is a strict semiorder Vi on Xi that is included in Pi and
is the asymmetric part of a semiorder Ui,

• for all i ∈ N , (Si, Ui) is a homogeneous nested chain of semiorders and
Wi = Swo

i ∩ Uwo
i is a weak order that is compatible with both Si and Ui,

• there is a set of subsets of attributes F ⊆ 2N such that, for all I, J ∈ 2N ,
[I ∈ F and I ⊆ J ] ⇒ J ∈ F ,

• there is a binary relation S on X (with symmetric part I and asymmetric
part P ) defined by:

x S y ⇔ [S(x, y) ∈ F and V (y, x) = ∅] ,

• there is a finite set P = {p1, . . . , pk} ⊆ X of profiles, such that for all p, q ∈ P ,
Not [p P q],

such that

x ∈ A ⇔

{
x S p for some p ∈ P and

Not [q P x] for all q ∈ P ,
(E)

where,
S(x, y) = {i ∈ N : xi Si yi},

and
V (x, y) = {i ∈ N : xi Vi yi}.

We then say that 〈(Si, Vi)i∈N ,F ,P〉 is a representation of 〈A,U〉 in Model (E).
Model (Ec) is the particular case of Model (E), in which there is a representation
that shows no discordance effects, i.e., in which all relations Vi are empty. Model
(Eu) is the particular case of Model (E), in which there is a representation that
requires unanimity, i.e., such that F = {N}.

We say that a partition 〈A,U〉 can be represented in Model (E≤k) (resp. (Ek))
if it has a representation in Model (E) that uses no more than k (resp. exactly k)
profiles. We define Models (Ec

≤k), (Ec
k), (Eu

≤k) and (Eu
k ) accordingly. y

The relations between Model (E) and ETRI-nB-pc were analyzed in detail in
Bouyssou et al. (2020, Remarks 8 and 17). To keep this note short, we do not
repeat this analysis here.

Ideally we would like to characterize Model (E≤k) for all “small” values of k.
Clearly, we expect models using a small number of profiles to be assessed more
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easily than models using a larger number of profiles. Moreover, our hope is that
this characterization would help us understand the expressiveness gain that is
obtained when using 1, 2, 3, . . . profiles. Unfortunately, we are still far from this
objective. In the sequel we will characterize Model (Eu

≤2), i.e., the particular case
of Model (E) based on unanimity and using no more than two profiles. Before we
do so, it will be useful to recall a number of background results.

3 Background results

This section presents a few existing results that will later be helpful.

3.1 A characterization of Model (E)

Following Bouyssou et al. (2020), we define on each Xi the binary relation %i

letting, for all xi, yi ∈ Xi,

xi %i yi if [for all a−i ∈ X−i, (yi, a−i) ∈ A ⇒ (xi, a−i) ∈ A].

This relation is, by construction, reflexive and transitive. The symmetric part of
the relation %i clearly coincides with the relation ∼i defined above.

We say that the partition 〈A,U〉 is linear on attribute i ∈ N (condition i-linear)
if, for all xi, yi ∈ Xi and all a−i, b−i ∈ X−i,

(xi, a−i) ∈ A
and

(yi, b−i) ∈ A

⇒


(yi, a−i) ∈ A,
or

(xi, b−i) ∈ A.
(i-linear)

The partition is said to be linear if it is i-linear, for all i ∈ N . This condition
was first proposed in Goldstein (1991) and generalized in Greco et al. (2001) and
S lowiński et al. (2002). It is easy to check that a partition 〈A,U〉 is i-linear iff the
relation %i is complete.

Let us define the relation % on X letting, for all x, y ∈ X,

x % y ⇔ xi %i yi, for all i ∈ N.

Let A∗ = Min(A,%) be the set of minimal elements in A for %.
The main result in Bouyssou et al. (2020) is as follows.

Proposition 3
Let X =

∏n
i=1Xi be a finite set and 〈A,U〉 be a twofold partition of X. The parti-

tion 〈A,U〉 has a representation in Model (E) iff it is linear. This representation
can always be taken to be 〈(%ii∈N ,F = {N},P = A∗〉. Hence, Models (E), (Ec)
and (Eu) are equivalent.
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The logic of the proof of this result is simple. The relation % is a partial
order, being reflexive, antisymmetric and transitive. Because X is finite and A
is nonempty, we know that the set A∗ is nonempty. Our proof consists in taking
P = A∗ and F = {N}. All elements inA∗ are taken as profiles. But the cardinality
of this set may be may be high (Bouyssou, Marchant, and Pirlot, 2019). Hence,
it would be interesting to have a characterization of model (E) with a limited
number of profiles.

3.2 A characterization of Models (E1), (Ec
1) and (Eu

1 )

Models (E1), (Ec
1) and (Eu

1 ) have been studied in Bouyssou and Marchant (2007).
Model (E1) is the noncompensatory sorting model with veto. Model (Ec

1) is the
noncompensatory sorting model. Model (Eu

1 ) is the particular case of the non-
compensatory sorting model in which F = {N}, called the conjunctive sorting
model.

3.2.1 Model (Ec
1)

We say that a partition is strongly 2-graded on attribute i ∈ N (condition i-s-2-
graded) if

(xi, a−i) ∈ A
and

(yi, b−i) ∈ A

⇒


(xi, b−i) ∈ A
or

(zi, a−i) ∈ A,
(i-s-2-graded)

for all xi, yi, zi ∈ Xi and all a−i, b−i ∈ X−i.
Bouyssou and Marchant (2007) have shown that condition i-s-2-graded implies

i-linearity and the fact that the relation %i has at most two equivalence classes
(and, hence, two equivalence classes, since a relation %i with a single equivalence
class means that this attribute is not influential). They also show how to factorize
this condition so as to make i-linearity appear explicitly. We will not use this
factorization in the present paper.

Bouyssou and Marchant (2007, Th. 21, p. 230) have shown the following.

Proposition 4
A partition 〈A,U〉 has a representation in the noncompensatory sorting model (Ec

1)
iff it is strongly 2-graded on all i ∈ N .

3.2.2 Model (E1)

We say that the partition 〈A,U〉 is strongly 3-graded with veto on attribute i ∈ N
(condition i-s-3v-graded) if, for all xi, yi, zi ∈ Xi and all a−i, b−i, ci ∈ X−i,
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(xi, a−i) ∈ A
and

(zi, c−i) ∈ A
and

(yi, b−i) ∈ A

⇒


(xi, b−i) ∈ A
or

(zi, a−i) ∈ A
(i-s-3v-graded)

for all xi, yi, zi ∈ Xi and all a−i, b−i, ci ∈ X−i.
Bouyssou and Marchant (2007) have shown that condition i-s-3v-graded implies

i-linearity and the fact that the relation %i has at most three equivalence classes.
When the relation %i has exactly three equivalence classes, the last one acts as
a veto, i.e., when an object has an evaluation in this equivalence class, it cannot
belong to A. They also show how to factorize this condition so as to make i-
linearity appear explicitly. This factorization will not be useful here.

The following definition, taken from Bouyssou and Marchant (2007), will be
useful.

Definition 5
Let

Zi = {xi ∈ Xi : (xi, a−i) ∈ U , for all a−i ∈ X−i}.
Let Yi = Xi\Zi. Consider the set Y =

∏n
i=1 Yi and letA′ = A∩Y and U ′ = U∩Y . y

Since 〈A,U〉 is a partition, we have A 6= ∅ so that Y cannot be empty. It is
easy to see that if condition i-s-3v-graded holds for 〈A,U〉 on X, then condition
i-s-2-graded holds for the partition 〈A′,U ′〉 of Y .

Bouyssou and Marchant (2007, Th. 35, p. 237) have shown the following.

Proposition 6
A partition 〈A,U〉 has a representation in the noncompensatory sorting model with
veto (E1) iff it is strongly 3v-graded on all i ∈ N .

3.2.3 Model (Eu
1 )

We say 〈A,U〉 is i-strongly∗-conjunctive (condition i-s∗-conj) if

(xi, a−i) ∈ A
and

(yi, b−i) ∈ A

⇒


(xi, b−i) ∈ A
and

(yi, a−i) ∈ A

for all xi, yi, zi ∈ Xi and all a−i, b−i ∈ X−i.
Bouyssou and Marchant (2007) have shown that this condition implies i-linear

and i-s-2-graded. They also show how to factorize this condition so as to make
i-linearity appear explicitly. This factorization will not be useful here.

Bouyssou and Marchant (2007, Prop. 32, p. 235) prove the following:
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Proposition 7
A partition 〈A,U〉 has a representation in the conjunctive sorting model (Eu

1 ) iff
it satisfies i-s∗-conj, for all i ∈ N .

4 A characterization of Model (Eu
≤2)

Proposition 3 shows that, if k is taken large enough, a partition 〈A,U〉 that has
a representation in model (Ec) or, more generally, in model (E), also has a repre-
sentation in model (Eu

≤k). This seems to call for the study of models (Eu
≤k) with

small values of k. We start here with k = 2.

4.1 Observations and conventions

In Model (Eu
1 ), all relations %i have at most two equivalence classes. The second

equivalence class plays the role of a veto: an alternative that has an evaluation
belonging to the second equivalence class on any attribute cannot belong to A. In
Model (Eu

1 ), it is easy to see that it is not restrictive to take Si = %i.
In Model (Eu

2 ), all relations %i can have at most three equivalence classes: (i)
strictly below the two profiles, (ii) above the lower profile and strictly below the
upper profile (iii) above the upper profile. Moreover, when the relation %i has
three distinct equivalence classes, the last class acts as a veto: an object that is
below the two profiles on some attribute cannot belong to A. In Model (Eu

2 ), it is
easy to see that it is not restrictive to take Si = %i.

In Model (Eu
2 ), it is easy to check that, on each attribute i ∈ N , the following

three situations may happen:

1. the relation %i has exactly three distinct equivalence classes. This means that
the two profiles have distinct (i.e., not belonging to the same equivalence class
of ∼i) values on attribute i and that something is below the lower profile.

2. the relation %i has exactly two distinct equivalence classes and the last class
does not correspond to a veto. This means that the two profiles have distinct
values on attribute i but that there is nothing below the lower profile.

3. the relation %i has exactly two distinct equivalence classes and the last class
corresponds to a veto. This means that the two profiles have identical values
on attribute i.

The treatment of the third case (in view of our convention regarding ∼i, if p
and q are the two profiles, the third case corresponds to an attribute for which
pi = qi) is not difficult but it complicates things. Henceforth, we suppose that the
third case does not happen. To avoid any misunderstanding, let us call (Eu∗

2 ) the
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particular case of Model (Eu
2 ) in which case 3 is excluded. Model (Eu∗

≤2) is defined
accordingly as either Model (Eu

1 ) or Model (Eu∗
2 ).

Using notation introduced in Definition 5, working with (Eu∗
2 ) instead of (Eu

2 )
implies that all attributes are influential for the partition 〈A′,U ′〉 of Y .

Suppose that 〈A,U〉 has a representation in Model (Eu∗
2 ) with P = {p, q}. This

defines a partition of the set of all attributes into Np = {i ∈ N : pi �i qi}, the
set of attribute for which p is above q and N q = {i ∈ N : qi �i pi}, the set of
attributes for which q is above p. We have Np 6= ∅, N q 6= ∅, Np ∩ N q = ∅ and
Np ∪N q = N .

Remark 8
As already mentioned, our main motivation for studying Model (Eu

2 ) is linked to
the fact that Model (Eu) is equivalent to Model (E), when the number of profiles
is not constrained. Besides this theoretical motivation, Model (Eu

2 ) may have an
interest in itself because it relates to already familiar models.

For instance, a partition that can be represented in the noncompensatory sort-
ing model (Model (Ec

1), using the notation of this paper) studied in Bouyssou and
Marchant (2007) can sometimes be represented in Model (Eu

≤2).
In Model (Ec

1), all relations %i have two distinct equivalence classes. Define
F∗ = Min(F ,⊇) as the set of all minimal winning coalitions w.r.t. set inclusion.
When |F∗| = 2, such a model can also be represented in Model (Eu

≤2). A simple
example of such a situation is the following. Take N = {1, 2, 3, 4} and, for all
i ∈ N , Xi = {0, 10}. Let x ∈ A iff xi = 10 on, at least, either the first two or the
last two attributes. This partition has a representation in Model (E1) with the
profile p = (10, 10, 10, 10), F∗ = {{1, 2}, {3, 4}}, and Si = ≥, for all i ∈ N . It can
also be represented in Model (Eu

≤2), keeping the same relations Si, with F = {N}
and the two profiles (10, 10, 0, 0) and (0, 0, 10, 10).

However, it is clear there are partitions that can be represented in Model (Ec
1)

but that cannot be represented in Model (Eu
≤2), see Example 35 below. This

happens, in particular, when |F∗| > 2.
Let us finally observe that there are some noncompensatory sorting models

with veto, as defined in Bouyssou and Marchant (2007) (Model (E1), using the
notation in the present paper) that can be represented in Model (Eu

≤2). A simple
example of such a situation is the following. Take N = {1, 2, 3, 4} and, for all
i ∈ N , Xi = {0, 5, 10}. Let x ∈ A iff xi ≥ 10 on either the first two or the last
two attributes and, for all i ∈ N , xi 6= 0. This partition has a representation in
Model (E1) with the profile p = (10, 10, 10, 10), F∗ = {{1, 2}, {3, 4}}, Si = ≥,
for all i ∈ N , and 10 Vi 0, for all i ∈ N . It can also be represented in Model
(Eu∗
≤2), keeping the same relations Si and Vi, with F = {N} and the two profiles

(10, 10, 5, 5) and (5, 5, 10, 10), •
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4.2 Axioms

We introduce several conditions that are simple adaptations of already encountered
conditions to the case of a nonempty subset I ⊆ N of attributes, instead of just a
single attribute i ∈ N .

4.2.1 I-linearity

We say that 〈A,U〉 satisfies I-linearity (condition I-linear) if

(xI , a−I) ∈ A
and

(yI , b−I) ∈ A

⇒


(xI , b−I) ∈ A
or

(yI , a−I) ∈ A
(I-linear)

for all xI , yI ∈ XI and all a−I , b−I ∈ X−I .
This condition is familiar (e.g., Bouyssou and Marchant, 2009, 2010, Vind,

1991, 2003). Its interpretation is similar to that of condition i-linear. It ensures
that on the Cartesian product of the sets Xi for the attributes i belonging to I,
one can define a weak order that is compatible with the partition. The relation
%I on XI is defined letting

xI %I yI ⇔ [(yI , a−I) ∈ A ⇒ (xI , a−I) ∈ A] ,

for all xI , yI ∈ XI and all a−I ∈ X−I . We use �I and ∼I as is usual.
It is clear that the relation %I is always transitive but may not be complete.

We leave to the reader the simple proof of the following lemma.

Lemma 9
A partition is I-linear iff %I is complete.

4.2.2 I-s-3v-graded

We say that 〈A,U〉 is strongly 3-graded with veto on I (condition I-s-3v-graded)
if

(xI , a−I) ∈ A
and

(yI , b−I) ∈ A
and

(zI , c−I) ∈ A

⇒


(xI , b−I) ∈ A
or

(zI , a−I) ∈ A
(I-s-3v-graded)

for all xI , yI , zI ∈ XI and all a−I , b−I ∈ X−I .
The interpretation of this condition is exactly similar to that of condition i-s-

3v-graded. When I-s-3v-graded holds, the relation %I is a weak order that can
have at most three equivalence classes. When it has three equivalence classes, the
bottom class acts as a veto: an object that has on the attributes in I an evaluation
belonging to this equivalence class cannot be in A.
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Remark 10
Following the analysis in Bouyssou and Marchant (2007), it is easy to factorize
Condition I-s-3v-graded so as to make I-linear appear explicitly. This factorization
will not be used in the present paper. •

We leave to the reader the simple proofs of the following two lemmas.

Lemma 11
Condition I-s-3v-graded implies Condition I-linear.

Lemma 12
Condition I-s-3v-graded is equivalent to saying that %I is a weak order having
at most three equivalence classes and that, moreover, if %I has exactly three dis-
tinct equivalence classes and if xI belongs to the last equivalence class of %I then
(xI , a−I) ∈ U , for all a−I ∈ X−I .

Let us also notice the following: when I and J partition N , their roles are
symmetric in the expression of I-s-3v-graded.

Lemma 13
Let I, J be a partition of N . The partition 〈A,U〉 satisfies Condition I-s-3v-graded
iff it satisfies Condition J-s-3v-graded.

Proof
Suppose that I-s-3v-graded is violated. Hence, we have, for some xI , yI , zI ∈ XI

and some aJ , bJ , cJ ∈ XJ , (xI , aJ) ∈ A, (yI , bJ) ∈ A, (zI , cJ) ∈ A, (xI , bJ) ∈ U ,
(zI , aJ) ∈ U . This implies cJ �J aJ �J bJ , while bJ is not a veto level. This is
equivalent to saying that J-s-3v-graded is violated, as shown in Lemma 12. 2

4.2.3 I-s-2-graded

We say that 〈A,U〉 is strongly 2-graded on I (condition I-s-2-graded) if

(xI , a−I) ∈ A
and

(yI , b−I) ∈ A

⇒


(xI , b−I) ∈ A
or

(zI , a−I) ∈ A
(I-s-2-graded)

for all xI , yI , zI ∈ XI and all a−I , b−I ∈ X−I .
The interpretation of this condition is exactly similar to that of condition i-s-

2-graded. When I-s-2-graded holds, the relation %I is a weak order that can have
at most two equivalence classes.

Remark 14
Following the analysis in Bouyssou and Marchant (2007), it is easy to factorize
Condition I-s-2-graded so as to make I-linear appear explicitly. This factorization
will not be used in the present paper. •
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We leave to the reader the simple proof of the following two lemmas.

Lemma 15
Condition I-s-2-graded implies Condition I-s-3v-graded and, hence, I-linear.

Lemma 16
A partition 〈A,U〉 satisfies I-s-2-graded iff %I is a weak order with at most two
equivalence classes.

Remark 17
Let us notice here that Lemma 13 does not hold when I-s-3v-graded is replaced
with I-s-2-graded. It is easy to build examples such that I-s-2-graded holds but
J-s-2-graded fails while J-s-3v-graded holds. •

4.2.4 I-s-conj

We say that 〈A,U〉 is I-strongly-conjunctive (condition I-s-conj) if

(xi, zJ , a−I) ∈ A
and

(yi, wJ , a−I) ∈ A

⇒


(yi, zJ , a−I) ∈ A
and

(xi, wJ , a−I) ∈ A
(I-s-conj)

for all i ∈ I (and defining J = I \ {i}), for all xi, yi ∈ Xi, all zJ , wJ ∈ XJ , and all
a−I ∈ X−I .

Notice that Condition N -s-conj is nothing but condition i-s∗-conj, for all i ∈ N ,
as defined above.

4.3 Main result

Theorem 18 will use conditions I-s-3v-graded, I-s-conj and J-s-conj for a given
partition I, J of N . The logic of the proof will be as follows. First we show
that veto effects on I only occur if there is a veto effect on i ∈ I. Restricting
our attention to the case in which there are no veto effects, we show that the
aggregation within the attributes in I is conjunctive. The same is true for the
attributes in J . Hence, it remains to study how the aggregation of the attributes
in I and J is performed. This is easily done.

Our main result is as follows.

Theorem 18
Let X =

∏n
i=1Xi be a finite set and 〈A,U〉 be a twofold partition of X. The

partition 〈A,U〉 has a representation in Model (Eu∗
≤2) iff there is a partition I, J of

N such that 〈A,U〉 satisfies I-s-3v-graded, I-s-conj and J-s-conj.
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The proof appears below in 4.6 and 4.7, after some preparatory lemmas in 4.4
and 4.5. The independence of our conditions is discussed in 4.8. Notice that our
conditions involve an existential statement (“there is a partition I, J of N such
that”). Hence, they may not be easy to test. This is discussed below in 4.9.

4.4 Lemmas with I-s-3v-graded and I-s-conj

In all lemmas in 4.4 and 4.5, I is a proper nonempty subset of N . The common
premise of all lemmas in 4.4 is that Conditions I-s-3v-graded and I-s-conj hold.

Lemma 19
If i ∈ I, the partition is i-linear.

Proof
Take J = I\{i}. Suppose that (xi, aJ , a−I) ∈ A, (yi, bJ , b−I) ∈ A, (yi, aJ , a−I) ∈ U ,
(xi, bJ , b−I) ∈ U , violating i-linearity. Since I-s-3v-graded implies I-linear, we have
either (xi, aJ) %I (yi, bJ) or (yi, bJ) %I (xi, aJ).

In the first case, (yi, bJ , b−I) ∈ A implies (xi, aJ , b−I) ∈ A. We now apply I-s-
conj to the pair (yi, bJ , b−I) ∈ A and (xi, aJ , b−I) ∈ A. This implies (xi, bJ , b−I) ∈
A, a contradiction.

In the second case, (xi, aJ , a−I) ∈ A implies (yi, bJ , a−I) ∈ A. We now ap-
ply I-s-conj to the pair (yi, bJ , a−I) ∈ A and (xi, aJ , a−I) ∈ A. This implies
(yi, aJ , a−I) ∈ A, a contradiction. 2

Lemma 20
If i ∈ I, the partition satisfies i-s-3v-graded.

Proof
Take J = I\{i}. Suppose that (xi, aJ , a−I) ∈ A, (yi, bJ , b−I) ∈ A, (zi, cJ , c−I) ∈ A,
(xi, bJ , b−I) ∈ U , and (zi, aJ , a−I) ∈ U , violating i-s-3v-graded. Using I-s-3v-
graded, (xi, aJ , a−I) ∈ A, (yi, bJ , b−I) ∈ A, (zi, cJ , c−I) ∈ A, imply (xi, aJ , b−I) ∈
A, or (zi, cJ , a−I) ∈ A.

If (xi, aJ , b−I) ∈ A, (yi, bJ , b−I) ∈ A together with I-s-conj imply (xi, bJ , b−I) ∈
A, a contradiction. If (zi, cJ , a−I) ∈ A, (xi, aJ , a−I) ∈ A together with I-s-conj
imply (zi, aJ , a−I) ∈ A, a contradiction. 2

Since I-s-3v-graded holds, we know that %I has at most three equivalence
classes. Its last equivalence class may correspond to a veto situation. Since i-s-
3v-graded holds, for all i ∈ I, the same is true for %i. Let us now show that the
class of %I corresponding to a veto is exclusively composed of all elements cI , for
which we know that, for some i ∈ I, ci corresponds to a veto.

Let TI = {xI ∈ XI : (xI , a−I) ∈ U , for all a−I ∈ X−I}. Remember (see
Definition 5) that we have Zi = {xi ∈ Xi : (xi, a−i) ∈ U , for all a−i ∈ X−i}.
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Lemma 21
xI ∈ TI ⇔ xi ∈ Zi, for some i ∈ I.

Proof
[⇐]. Take J = I \ {i}. It is clear that if xi ∈ Zi, then (xi, aJ) ∈ TI , for all
aJ ∈ XJ .

[⇒]. Suppose that xI ∈ TI and, for all i ∈ I, xi /∈ Zi, i.e., (xi, aJ , a−I) ∈ A,
for some aJ ∈ XJ , a−I ∈ X−I . It is easy to check that repeated applications of
I-s-conj and I-linear, which is implied by I-s-3v-graded, lead to the desired result.

Let us sketch the proof in the particular case in which I = {i, j, k}. By con-
struction, we know that (xi, αj, αk, α−I) ∈ A, (βi, xj, βk, β−I) ∈ A, (γi, γj, xk,
γ−I) ∈ A, for some βi, γi ∈ Xi, some αj, γj ∈ Xj and some αk, βk ∈ Xk.

Because (xi, αj, αk, α−I) ∈ A and (βi, xj, βk, β−I) ∈ A, using I-linear, we obtain
either (xi, αj, αk, β−I) ∈ A or (βi, xj, βk, α−I) ∈ A.

1. Suppose first that (xi, αj, αk, β−I) ∈ A. Using I-s-conj and (βi, xj, βk, β−I) ∈
A, we obtain (xi, xj, αk, β−I) ∈ A. Using (xi, xj, αk, β−I) ∈ A and (γi, γj,
xk, γ−I) ∈ A, I-linearity implies either (xi, xj, αk, γ−I) ∈ A or (γi, γj, xk,
β−I) ∈ A.

If (xi, xj, αk, γ−I) ∈ A, using I-s-conj and (γi, γj, xk, γ−I) ∈ A, we obtain
(xi, xj, xk, γ−I) ∈ A, violating the fact that xI ∈ TI .
If (γi, γj, xk, β−I) ∈ A, using I-s-conj and (xi, xj, αk, β−I) ∈ A, we obtain
(xi, xj, xk, β−I) ∈ A, violating the fact that xI ∈ TI .

2. Suppose now that (βi, xj, βk, α−I) ∈ A. Using I-s-conj and (xi, αj, αk, α−I) ∈
A, we obtain (xi, xj, βk, α−I) ∈ A. Using (xi, xj, βk, α−I) ∈ A and (γi, γj,
xk, γ−I) ∈ A, I-linearity implies either (xi, xj, βk, γ−I) ∈ A or (γi, γj, xk,
α−I) ∈ A.

If (xi, xj, βk, γ−I) ∈ A, using I-s-conj and (γi, γj, xk, γ−I) ∈ A, we obtain
(xi, xj, xk, γ−I) ∈ A, violating the fact that xI ∈ TI .
If (γi, γj, xk, α−I) ∈ A, using I-s-conj and (xi, xj, βk, α−I) ∈ A, we obtain
(xi, xj, xk, α−I) ∈ A, violating the fact that xI ∈ TI . 2

Remark 22
Let SI = XI \TI . It follows from the above lemma that, using notation introduced
in Definition 5, we have:

SI =
∏
i∈I

Yi.

It is easy to check that the relation %I on SI is a weak order having at most two
indifference classes. Indeed, we know that %I can have at most three equivalence
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classes and, by construction, xI ∈ SI implies that (xI , a−I) ∈ A, for some a−I ∈
X−I , so that xI cannot belong to the third equivalence class. •

Our next result generalizes Lemma 20 to subsets of attributes included in I.

Lemma 23
Let J ⊆ I. Condition J-s-3v-graded holds.

Proof
Suppose that I-s-3v-graded and I-s-conj hold. Let J,K be a partition of I. Sup-
pose that J-s-3v-graded is violated, so that (xJ , aK , a−I) ∈ A, (yJ , bK , b−I) ∈ A,
and (zJ , cK , c−I) ∈ A, while (xJ , bK , b−I) ∈ U and (zJ , aK , a−I) ∈ U .

Using I-s-3v-graded, (xJ , aK , a−I) ∈ A, (yJ , bK , b−I) ∈ A, and (zJ , cK , c−I) ∈
A, imply (xJ , aK , b−I) ∈ A or (zJ , cK , a−I) ∈ A.

Suppose first that (xJ , aK , b−I) ∈ A. Using (yJ , bK , b−I) ∈ A and (xJ , aK ,
b−I) ∈ A, repeated uses of I-s-conj imply (xJ , bK , b−I) ∈ A, a contradiction.

Suppose now that (zJ , cK , a−I) ∈ A. Using (xJ , aK , a−I) ∈ A and (zJ , cK ,
a−I) ∈ A repeated uses of I-s-conj imply (zJ , aK , a−I) ∈ A, a contradiction. 2

Remark 24
The above lemma implies that, for all J ⊆ I, Condition J-linear holds. Hence,
under the hypothesis that I-s-3v-graded and I-s-conj hold, we know that for all
partition J,K of I, J-linearity and K-linearity hold, so that both %J and %K are
weak orders. It is easy to check that these three weak orders combine as expected,
e.g.,

(xK , xJ) %I yI and zK %K xK ⇒ (zK , xJ) %I yI ,

(xK , xJ) ∼I yI and zK ∼K xK ⇒ (zK , xJ) ∼I yI ,

(xK , xJ) �I yI and zK %K xK ⇒ (zK , xJ) �I yI .

We will use such implications freely in what follows.
The proof of these implications is easy. For instance, suppose that (xK , xJ) %I

yI , so that, for all a−I ∈ X−I , (yI , a−I) ∈ A implies (xJ , xK , a−I) ∈ A. Since
zK %K xK , (xK , xJ , a−I) ∈ A implies (zK , zJ , a−I) ∈ A, so that (zK , xJ) %I yI . •

4.5 Lemmas with I-s-2-graded and I-s-conj

The common premise of all lemmas in 4.5 is that Conditions I-s-2-graded and
I-s-conj hold.

Lemma 25
For all J ⊆ I, %J is a weak order that has at most two equivalence classes, so that
J-s-2-graded holds.
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Proof
Suppose that I-s-2-graded and I-s-conj hold. Let J,K be a partition of I. Suppose
that xJ �J yJ and yJ �J zJ .

Hence, there are aK , bK ∈ XK and a−I , b−I ∈ X−I such that (xJ , aK , a−I) ∈ A,
(yJ , aK , a−I) ∈ U , and (yJ , bK , b−I) ∈ A, (zJ , bK , b−I) ∈ U .

Because I-s-2-graded holds, we know that %I has at most two equivalence
classes. Hence, we know that both (xJ , aK) and (yJ , bK) belong to the first
equivalence class of %I . Hence, we have (xJ , aK) ∼I (yJ , bK), so that we have
(yJ , bK , a−I) ∈ A and (xJ , aK , b−I) ∈ A. Repeated uses of I-s-conj allows to per-
mute aK and bK between the expressions (yJ , bK , a−I) ∈ A and (xJ , aK , b−I) ∈ A.
This leads to (yJ , aK , a−I) ∈ A, a contradiction. 2

The next lemma is crucial. It shows how the information is aggregated with
the attributes in I.

Lemma 26
Let xI ∈ XI . Then xI belongs to the first equivalence class of %I iff xi belongs to
the first equivalence class of %i, for all i ∈ I.

Proof
Proving that if xi belongs to the first equivalence class of %i, for all i ∈ I, then
xI belongs to the first equivalence class of %I is easy. Indeed, with i ∈ I and
J = I \ {i}, if xi %i yi then we have (xi, zJ) %I (yi, zJ), for all zJ ∈ XJ . Let us
prove the reverse implication.

Let i ∈ I and J = I \ {i}. In the rest of this proof, we use the convention that
on each i ∈ N , we have ai �i bi. It is clear that (aJ , ai) is a top element of %I and
that (bJ , bi) is a bottom element of %I . This follows from the fact that %I has two
equivalence classes and the monotonicity relations noted in Remark 24.

Suppose, in contradiction with the thesis, that (aJ , ai) ∼I (aJ , bi), for some
i ∈ I and letting J = I \ {i}.

Since ai �i bi, we have (xJ , ai, x−I) ∈ A and (xJ , bi, x−I) ∈ U , for some xJ ∈ XJ

and some x−I ∈ X−I . This implies (xJ , ai) �I (xJ , bi).
It is impossible that xJ ∼J aJ because we have supposed that (aJ , ai) ∼I

(aJ , bi). Hence, we know that xJ ∼J bJ , so that (bJ , ai, x−I) ∈ A and (bJ , bi, x−I) ∈
U .

Because aJ �J bJ , we know that (aJ , yi, y−I) ∈ A and (bJ , yi, y−I) ∈ U , for
some yJ ∈ XJ and some yi ∈ Xi. This implies that (aJ , yi) is a top element of %I ,
so that (aJ , yi) ∼I (aJ , bi). By hypothesis, (bJ , bi) is a bottom element. Hence, we
obtain (aJ , bi, y−I) ∈ A and (bJ , bi, y−I) ∈ U .

Since we have (aJ , bi, y−I) ∈ A and (bJ , ai, x−I) ∈ A, I-linearity implies (bJ , ai,
y−I) ∈ A or (aJ , bi, x−I) ∈ A.

It is impossible to have (bJ , ai, y−I) ∈ A since I-s-conj, together with (aJ , bi,
y−I) ∈ A, imply (bJ , bi, y−I) ∈ A, a contradiction.
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Similarly, it is impossible to have (aJ , bi, x−I) ∈ A, since I-s-conj, together with
(bJ , ai, x−I) ∈ A imply (bJ , bi, x−I) ∈ A, a contradiction. 2

Using Lemma 26, we know that if I-s-2-graded and I-s-conj hold, %I has two
equivalence classes, %i has two equivalence classes, for all i ∈ I, and that the
aggregation of %i into %I is conjunctive.

4.6 Proof of Theorem 18: necessity

Lemma 27
Suppose that 〈A,U〉 has a representation in Model (Eu

1 ). Let I, J be any partition
of N . Then 〈A,U〉 satisfies Conditions I-s-3v-graded, I-s-conj, and J-s-conj.

Proof
By hypothesis, we know that x ∈ A ⇔ [xi %i pi, for all i ∈ N ].

Suppose that (xI , a−I) ∈ A, (yI , b−I) ∈ A, (zI , c−I) ∈ A, while (xI , b−I) ∈ U
and (zI , a−I) ∈ U . By construction, (xI , b−I) ∈ U implies that either pi �i xi,
for some i ∈ I or pj �j bj, for some j /∈ I. This implies either (xI , a−I) ∈ U or
(yI , b−I) ∈ U , a contradiction. Hence, I-s-3v-graded holds.

Suppose now that (xi, zJ , a−I) ∈ A, (yi, wJ , a−I) ∈ A, and (yi, zJ , a−I) ∈ U (the
case in which (xi, wJ , a−I) ∈ U is dealt with similarly). Now, (xi, zJ , a−I) ∈ A,
and (yi, zJ , a−I) ∈ U imply that xi %i pi, while pi �i yi. But this contradicts
(yi, wJ , a−I) ∈ A. Hence, I-s-conj holds. A similar proof shows that J-s-conj
holds. 2

The following lemma makes use of the sets Np and N q partitioning N that
were defined at the end of Section 4.1.

Lemma 28
Suppose that 〈A,U〉 has a representation in Model (Eu∗

2 ). Let I, J be the partition
of N induced by the two profiles p and q, i.e., I = Np and J = N q. Then 〈A,U〉
satisfies I-s-3v-graded, I-s-conj, and J-s-conj.

Proof
Suppose that (xI , aJ) ∈ A, (yI , bJ) ∈ A, (zI , cJ) ∈ A, while (xI , bJ) ∈ U and
(zI , aJ) ∈ U . By hypothesis, we know that xi %i qi, yi %i qi and zi %i qi, for all
i ∈ I. Similarly, we know that aj %j pj, bj %j pj and cj %j pj, for all j ∈ J .

If aj %j qj, for all j ∈ J , this would imply (zI , aJ) ∈ A, a contradiction.
Hence, it must be true that xi %j pi, for all i ∈ I. This contradicts the fact that
(xI , bJ) ∈ U . Hence, 〈A,U〉 satisfies I-s-3v-graded.

Let K = I \ {i} and suppose that (xi, zK , aJ) ∈ A, (yi, wK , aJ) ∈ A, together
with either (yi, zK , aJ) ∈ U , or (xi, wK , aJ) ∈ U . By hypothesis, we know that
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xi %i qi and yi %i qi. Moreover, zk %k qk and wk %k qk, for all k ∈ K. Similarly,
we know that aj %j pj, for all j ∈ J .

We have either (yi, zK , aJ) ∈ U , or (xi, wK , aJ) ∈ U . Suppose that (yi, zK , aJ) ∈
U , the other case being similar. It is clearly impossible that aj %j qj, for all j ∈ J .
Hence, we must have: xi %i pi, yi %i pi, zk %k pk and wk %k pk, for all k ∈ K.
This implies (yi, zK , aJ) ∈ A and (xi, wK , aJ) ∈ A, a contradiction. Hence, 〈A,U〉
satisfies I-s-conj. A similar proof shows that J-s-conj holds. 2

4.7 Proof of Theorem 18: sufficiency

Suppose that there is a partition I, J of N such that 〈A,U〉 satisfies I-s-3v-graded,
I-s-conj and J-s-conj. Using Lemma 13, we know that J-s-3v-graded holds.

As above, define Zi = {xi ∈ Xi : (xi, a−i) ∈ U , for all a−i ∈ X−i}, Yi = Xi \Zi,
TI = {xI ∈ XI : (xI , a−I) ∈ U , for all a−I ∈ X−I} and TJ = {xJ ∈ XJ :
(xJ , a−J) ∈ U , for all a−J ∈ X−J}. SI = XI \ TI and SJ = XJ \ TJ .

We know from Lemma 21 that SI =
∏

i∈I Yi and SJ =
∏

j∈J Yj. Consider the
set Y =

∏n
i=1 Yi and let A′ = A ∩ Y and U ′ = U ∩ Y .

By construction, Condition I-s-2-graded and J-s-2-graded hold for 〈A′,U ′〉. Let
us show that 〈A′,U ′〉 has a representation in Model (Eu∗

≤2), which will complete
the proof.

Using Lemma 26, we know that both %I and %J are weak orders having at most
two equivalence classes. Moreover, we know that xI belongs to the first equivalence
class of %I iff xi belongs to the first equivalence class of %i, for all i ∈ I, a similar
conclusion holding for J . Our conventions imply that all attributes are influential
for 〈A′,U ′〉.

We use the convention that on each i ∈ N , we have ai �i bi.
There are two types of elements in XI and two types of elements in XJ . We

know (see Lemma 26) that a top element of %I (resp. %J) consists exclusively of
top elements of %i, for all i ∈ I (resp. j ∈ J). Hence, there are four cases to
consider, using the convention that aI (resp. bI) is a top element of %I , a similar
convention holding for J .

1. (aI , aJ) ∈ A′, (aI , bJ) ∈ A′, (bI , aJ) ∈ A′, (bI , bJ) ∈ U ′. This is exactly Model
(Eu∗

2 ), with p (resp. q) consisting of any element in the first (resp. second)
equivalence class of %i, for i ∈ I and the second (resp. first) equivalence class
of %j, for j ∈ J .

2. (aI , aJ) ∈ A′, (aI , bJ) ∈ U ′, (bI , aJ) ∈ U ′, (bI , bJ) ∈ U ′. This is exactly Model
(Eu

1 ), with p consisting of any element in the first equivalence class of each
%i.
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3. (aI , aJ) ∈ A′, (aI , bJ) ∈ A′, (bI , aJ) ∈ U ′, (bI , bJ) ∈ U ′. The attributes in J
are not influential for 〈A′,U ′〉, which is impossible.

4. (aI , aJ) ∈ A′, (aI , bJ) ∈ U ′, (bI , aJ) ∈ A′, (bI , bJ) ∈ U ′. The attributes in I
are not influential for 〈A′,U ′〉, which is impossible.

This completes the proof. 2

4.8 Independence of the axioms: examples

The following examples show that the three conditions used in Theorem 18 are
independent.

Example 29
Let N = {1, 2, 3, 4} and Xi = {a, b}, for all i ∈ N . Consider the partition given
below, abusing notation in an obvious way:

aaaa ∈ A, abaa ∈ A, baaa ∈ A, bbaa ∈ A,
aaab ∈ A, abab ∈ A, baab ∈ U , bbab ∈ U ,
aaba ∈ A, abba ∈ U , baba ∈ U , bbba ∈ U ,
aabb ∈ A, abbb ∈ U , babb ∈ U , bbbb ∈ U .

It is easy to check that both {1, 2}-s-conj and {3, 4}-s-conj are satisfied. {1, 2}-
s-3v-graded (and, consequently, {3, 4}-s-3v-graded) is violated since we have, using
obvious notation, aa �12 ab �12 [ba ∼12 bb], while (b, b, a, a) ∈ A (see Lemma 12).

Notice that this example also shows that we cannot replace in our characteri-
zation I-s-3v-graded by i-s-3v-graded, for all i ∈ I. Indeed, in the above example,
i-s-3v-graded trivially holds, for all i ∈ N (since each Xi has only 2 elements). 3

The next example shows that I-s-3v-graded, J-s-3v-graded and J-s-conj do
not imply I-s-conj. A similar example shows that the same conclusion holds,
permuting the role of I and J .

Example 30
Let N = {1, 2, 3, 4, 5, 6} and Xi = {a, b}, for all i ∈ N . Let I = {1, 2, 3} and
J = {4, 5, 6}. The partition 〈A,U〉 is such that x ∈ A iff xj = a, for all j ∈ J or
|{i ∈ I;xi = a}| ≥ 2.

It is clear that J-s-3v-graded holds: either an element of XJ is a top element
of %J (being a top element of %j, for all j ∈ J) or not. The same is true for
I-s-3v-graded: either an element of XI is a top element of %I (being a top element
of %i, for at least two elements i ∈ I) or not. Condition J-s-conj clearly holds.
Condition I-s-conj is violated since (a, a, b, b, b, b) ∈ A, (a, b, a, b, b, b) ∈ A, while
(a, b, b, b, b, b) ∈ U . 3
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4.9 Testing the conditions

The conditions used in Theorem 18 involve an existential clause: “there is a par-
tition I, J of N such that 〈A,U〉 satisfies I-s-3v-graded, I-s-conj and J-s-conj”.
Testing such conditions may not be easy. The following results aim at simplifying
this test.

Lemma 31
Suppose that 〈A,U〉 satisfies I-s-conj and let J = I \ {i}. Then 〈A,U〉 satisfies
J-s-conj.

Proof
J-s-conj applies to all pairs of alternatives that have common evaluations on N \J .
But since J ( I, having common evaluation on N \ J implies having common
evaluations on N \ I. Hence I-s-conj implies J-s-conj. 2

Lemma 32
Condition {i}-s-conj is trivial.

Proof
Condition {i}-s-conj says that (xi, a−i) ∈ A and (yi, a−i) ∈ A imply (xi, a−i) ∈ A
and (yi, a−I) ∈ A. 2

Lemma 33
Suppose that 〈A,U〉 has a representation in Model (Eu∗

2 ) with the two profiles p and
q. Let I = Np and J = N q. Let j ∈ J . Then 〈A,U〉 does not satisfy I∪{j}-s-conj.

Proof
In this proof, we use the convention that on each i ∈ N , we have ai �i bi �i ci.
Consider the following two alternatives: (aI , bj, bK) and (bI , aj, aK), with K =
J \ {j}. These two alternatives are in A. Indeed, by construction, (aI , bj, bK)
dominates the profile p and (bI , aj, aK) dominates the profile q. However, it is
clear that (bI , bj, aK) ∈ U , since it does not dominate p and q. Hence, condition
I ∪ {j}-s-conj is violated. 2

Lemma 34
Suppose that 〈A,U〉 has a representation in Model (Eu∗

2 ) with the two profiles p
and q. Let I = Np and J = N q. Let i ∈ I and j ∈ J . Then 〈A,U〉 does not satisfy
{i, j}-s-conj.

Proof
In this proof, we use the convention that on each i ∈ N , we have ai �i bi �i ci.
Consider the following two alternatives: (aK , ai, bj, aL) and (aK , bi, aj, aL), with
K = I \ {i} and L = J \ {j}. While both alternatives are in A, it is clear that
(aK , bj, bi, aL) ∈ U , so that {i, j}-s-conj is violated. 2
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Hence the test of I-s-conj could proceed as follows in a greedy-like way. Choose
a pair {i, j} of attributes such that {i, j}-s-conj holds. If such a pair does not exist,
Model (Eu∗

≤2) does not hold. If such a pair exists, try to iteratively enlarge it until
this is no longer possible. This gives rise to a maximal set I such that I-s-conj
holds. If I = N , then Model (Eu

1 ) applies (remember that N -s-conj implies i-s∗-
conj, for all i ∈ N , see Proposition 7). Otherwise, test if (N \ I)-s-conj holds. If
yes both conditions I-s-conj and J-s-conj are satisfied. Otherwise, Model (Eu∗

≤2)
does not hold (see Lemma 28).

A similar reasoning does not apply starting with the test of I-s-3v-graded.
Hence, after having applied the above procedure, we test if I-s-3v-graded applies
with the set I that we have obtained above. If not, Model (Eu∗

≤2) does not hold. If
yes, then the conditions of Theorem 18 are satisfied and Model (Eu∗

≤2) holds.

5 Discussion

Using classical tools from conjoint measurement, we have proposed a characteri-
zation of Model (Eu

≤2). For the time being, we have no useful results for (Eu
≤k),

for k = 3, 4, . . . . Similarly, we have no interesting results for (E≤k) and (Ec
≤k), for

k = 2, 3, 4, . . . . Hence, we are still far from our initial objective of understanding
how the increase in the number of profiles leads to an expressiveness gain.

Comparing Theorem 18 with Propositions 3 and 7 shows that the case of at
most two limiting profiles is more complex than the case of many limiting profiles
(Proposition 3) and the case of one profile (Proposition 7). Moreover 3, it seems
difficult to extend our results to cover the case of Model (Ec

≤2). Indeed, as shown
below, the conditions we use seem to be quite specific to Model (Eu∗

≤2) (or (Eu
≤2)).

Example 35
The example has n = 4 and X1 = X2 = X3 = X4 = {0, 5, 10}. The partition is
built in Model (Ec

≤2) with the following two profiles (10, 10, 5, 5) and (5, 5, 10, 10)
together with F = {{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}, {1, 2, 3, 4}}.

It is simple to check that on all attributes, we have 10 �i 5 �i 0. For instance,

3Although this case has little practical importance (see Fernández et al., 2017, p. 216, 2nd
col., beginning of Sect. 2.1 or Roy, 1996, p. 235), more powerful results can be obtained when
n = 2. It is easy to devise a condition equivalent to requiring, together with i-linear, that %i has
at most ` ≥ 2 equivalence classes. Imposing that each relation %i has at most ` + 1 equivalence
classes is necessary if 〈A,U〉 has a representation in Model (Ec

≤`). When n = 2, this requirement
is not only necessary but also sufficient to guarantee the existence of a representation in Model
(Ec

≤`). Since this case is of little importance, we leave the easy proof of this fact to the interested
reader. Simple examples show that the result does not generalize to the case n ≥ 3.
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we have with i = 1,

(10, 0, 5, 10) ∈ A, (5, 0, 5, 10) ∈ U ,
(5, 0, 10, 10) ∈ A, (0, 0, 10, 10) ∈ U ,

The two profiles partition the set of attributes into two subsets I = {1, 2} and
J = {3, 4}.

Observe that i-s-3v-graded does not hold since 0 is not a veto level. Indeed, we
have, e.g., (0, 5, 10, 10) ∈ A, (10, 0, 5, 10) ∈ A, (10, 5, 0, 10) ∈ A, and (10, 5, 10, 0) ∈
A.

On I = {1, 2}, the partition is not I-s-3v-graded. Indeed, we have, using
obvious notation,

(10, 10) �12 [(10, 5), (5, 10)] �12 (5, 5) �12 [(5, 0), (0, 5)] �12 (0, 0).

Indeed, we have
(10, 10, 5, 0) ∈ A, (10, 5, 5, 0) ∈ U ,
(10, 5, 5, 5) ∈ A, (5, 5, 5, 5) ∈ U ,
(5, 5, 10, 0) ∈ A, (5, 0, 10, 0) ∈ U ,

(5, 0, 10, 10) ∈ A, (0, 0, 10, 10) ∈ U .
It is simple to find similar examples for J .

Finally, it is clear that I-s-conj does not hold. We have, e.g., (10, 0, 5, 10) ∈ A
and (0, 10, 5, 10) ∈ A, while (0, 0, 5, 10) ∈ U . It is simple to find similar examples
for J .

This shows that the axioms used for the characterization of Model (Eu∗
≤2) do

not hold with (Ec
≤2), i.e., when we have two profiles but F 6= {N}. 3

Hence, the study of the particular cases of Models (E), (Ec) and (Eu) with
constraints on the number of limiting profiles is not an easy task. Our analysis of
the case of two limiting profiles coupled with unanimity shows that it is unlikely
that a purely axiomatic investigation will allow us to obtain clear answers to this
question. Hence, this is also a plea to combine axiomatic work with other types
of work, e.g., based on computer simulation.
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