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Abstract

In the context of multiple attribute decision making, preference models making use
of reference points in an ordinal way have recently been introduced in the literature.
This text proposes an axiomatic analysis of such models, with a particular emphasis on
the case in which there is only one reference point. Our analysis uses a general conjoint
measurement model resting on the study of traces induced on attributes by the preference
relation and using conditions guaranteeing that these traces are complete. Models using
reference points are shown to be a particular case of this general model. The number
of reference points is linked to the number of equivalence classes distinguished by the
traces. When there is only one reference point, the induced traces are quite rough,
distinguishing at most two distinct equivalence classes. We study the relation between
the model using a single reference point and other preference models proposed in the
literature, most notably models based on concordance and models based on a discrete
Sugeno integral.
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1. Introduction

In a series of papers, Rolland (2003, 2006a,b, 2008, 2013) (see also Perny and Rolland
2006, in the related context of decision making under uncertainty) has suggested to
use reference points1 in an ordinal way to build preference models for multiattributed
alternatives. This idea can be traced back to Fargier and Perny (1999) and Dubois et al.
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Patrice Perny, Antoine Rolland, and anonymous referees for their very helpful comments on earlier drafts
of this text. The usual caveat applies.
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1The notion of “reference point” is unfortunately used in the literature with many different meanings.
The interpretation of the reference points in the models studied in this paper is discussed below. These
reference points have little to do with the reference point used in prospect theory to distinguish gains
from losses (Kahneman and Tversky 1979, Tversky and Kahneman 1992) or from the reference points
used as a crucial element in the framing of decisions (Tversky and Kahneman 1986).
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(2003, p. 247). In these models, the preference between alternatives x and y rests on a
comparison in terms of “importance” of the sets of attributes for which x and y are above
the reference points. Rolland has analyzed the interest of such models and has proposed
axioms that could characterize them. Most of his axiomatic analysis supposes that the
reference points are known beforehand2. Including reference points in the primitives
of the model is a strong hypothesis and raises observational questions. Moreover, he
invokes conditions that seem to be quite specific to models using reference points. It is
therefore not easy to use them in order to compare these models with other ones that
have been proposed and characterized in the literature.

The aim of this text is to propose an axiomatic analysis of preference models with ref-
erence points using the traditional primitives of conjoint measurement, i.e., a preference
relation on the set of alternatives. Our analysis uses a general conjoint measurement
model resting on the study of traces induced on attributes by the preference relation
and using conditions guaranteeing that these traces are complete (Bouyssou and Pirlot
2004b). We show that preference models with reference points are a particular case of
this general model. This will allow us to characterize preference models with reference
points using conditions that will facilitate their comparison with other preference models
proposed in the literature.

We put a special emphasis on preference models that use a single reference point.
On each attribute, these models induce traces that are quite rough, distinguishing at
most two distinct equivalence classes. Our characterization of these models allows us to
compare them with other types of preference models introduced in the literature. In par-
ticular, we will show that they are a particular case of models based on a discrete Sugeno
integral and study their relations with models based on the notion of concordance.

Our general strategy will be similar to the one used in Bouyssou and Pirlot (2005b,
2007) to analyze models based on the notion of concordance (see also Bouyssou et al.
1997, Greco et al. 2001, and Bouyssou and Pirlot 2002b). They have shown that such
models could be seen as particular cases of the general conjoint measurement models
developed in Bouyssou and Pirlot (2002a, 2004a) that generate complete traces on dif-
ferences between levels in which these traces are “rough”, i.e., only distinguishing a
limited number of equivalence classes. We show here that models using reference points
are a particular case of models inducing complete traces on levels developed in Bouyssou
and Pirlot (2004b) in which these traces are “rough” (for a general overview of preference
models based on different kinds of traces, we refer to Bouyssou and Pirlot 2005a).

The paper is organized as follows. Section 2 introduces our notation and setting.
Section 3 formalizes and illustrates preference models using a single reference point.
Section 4 recalls the main ingredients of the general conjoint measurement models intro-
duced in Bouyssou and Pirlot (2004b). Section 5 characterizes preference models using
a single reference point. Section 6 studies the links between preference models using a
single reference point and other preference models introduced in the literature. Section 7
is devoted to the study of preference models using a single reference point that are weak

2For exceptions, see Rolland (2003, Th. 3) and Rolland (2008, Section 2.1.2).
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orders. It also outlines an elicitation technique of the parameters of the model. Section 8
extends our results to preference models using several reference points. A final section
discusses our findings. For space reasons and with apologies to the reader, most proofs
are relegated to the supplementary material to this paper.

2. Background

2.1. Binary relations

A binary relation K on a set A is a subset of A×A. We often write a K b instead of
(a, b) ∈ K. We define the symmetric and asymmetric parts of K as is usual.

An equivalence is a reflexive (a K a), symmetric (a K b ⇒ b K a) and transitive
([a K b and b K c] ⇒ a K c) binary relation on A. An equivalence relation partitions A
into equivalence classes. The set of equivalence classes induced by the equivalence K is
denoted by A/K.

A weak order is a complete (a K b or b K a) and transitive binary relation. When
K is a weak order on A, it is clear that the symmetric part of K is an equivalence. We
often abuse terminology and speak of equivalence classes of the weak order K instead
of the equivalence classes of its symmetric part. In this case, we also speak of the first,
second, . . . , last equivalence class of K.

A semiorder is a reflexive (a K a), Ferrers ([a K b and c K d] imply [a K d or c K b])
and semitransitive ([a K b and b K c] imply [a K d or d K c]) binary relation. If K is
a semiorder, it is well known (see, e.g., Aleskerov et al. 2007, pp. 208 & 224) that the
relation K◦ defined letting, for all a, b, c ∈ A,

a K◦ b⇔
[
[b K c⇒ a K c] and [c K a⇒ c K b]

]
,

is a weak order.

2.2. Notation

In this paper, % will always denote a binary relation on a setX =
∏n
i=1Xi with n ≥ 2.

Elements of X will be interpreted as alternatives evaluated on a set N = {1, 2, . . . , n}
of attributes and % as an “at least as good as” relation between these alternatives. We
denote by � (resp. ∼) the asymmetric (resp. symmetric) part of %. A similar convention
holds when % is starred, superscripted and/or subscripted.

For any nonempty subset J of the set of attributes N , we denote by XJ (resp. X−J)
the set

∏
i∈J Xi (resp.

∏
i∈N\J Xi). When x, y ∈ X, with customary abuse of notation,

(xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J and wi = yi otherwise.
We sometimes omit braces around sets. For instance, when J = {i} we write X−i and
(xi, y−i).

We say that attribute i ∈ N is influential (for %) if there are xi, yi, zi, wi ∈ Xi and
a−i, b−i ∈ X−i such that (xi, a−i) % (yi, b−i) and (zi, a−i) 6% (wi, b−i) and degenerate
otherwise. A degenerate attribute has no influence whatsoever on the comparison of the
elements of X and may be suppressed from N . As in Bouyssou and Pirlot (2005b), in
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order to avoid unnecessary minor complications, we suppose henceforth that all attributes
in N are influential.

Let J ⊂ N be a proper nonempty subset of attributes. We say that % is independent
(see, e.g., Wakker 1989, p. 30) for J if, for all xJ , yJ ∈ XJ ,

(xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ⇒
(xJ , w−J) % (yJ , w−J), for all w−J ∈ X−J .

If % is independent for all proper nonempty subsets of N , we say that % is independent.
It is clear that % is independent iff % is independent for N \ {i}, for all i ∈ N .

A capacity on N is a real valued function µ on 2N such that, for all A,B ∈ 2N ,
A ⊇ B ⇒ µ(A) ≥ µ(B). The capacity µ on N is normalized if, furthermore, µ(∅) = 0
and µ(N) = 1. All capacities used in this text will be normalized.

The Möbius inverse of a capacity is the the real valued function m on 2N such that,
for all S ⊆ N , m(S) =

∑
T⊆S(−1)|S\T |µ(T ) (see, e.g., Chateauneuf and Jaffray 1989).

A capacity is said to be k-additive (Grabisch 1997) if its Möbius inverse is null for all
subsets containing k + 1 elements or more. Capacities that are 2-additive are known to
be of manageable complexity, whereas already allowing much flexibility w.r.t. additive
capacities, (i.e., 1-additive capacities, see Grabisch 1997, Marichal and Roubens 2000).

3. Preference models with a single reference point

3.1. Motivation

The model that we study was introduced by Rolland (2003, 2006a,b, 2008, 2013). It
has close connections with ELECTRE TRI (Roy and Bouyssou 1993, Chap. 6). Remem-
ber that ELECTRE TRI is a technique used to assign alternatives to ordered categories.
Suppose that there are only two categories: A and U , A being the best category. The
limit between these two categories is indicated by a profile p that is at the same time the
lower limit of A and the upper limit of U . In the pessimistic version of ELECTRE TRI,
an alternative x ∈ X belongs to category A iff this alternative is declared at least as
good as p. The central originality of ELECTRE TRI lies in the definition of this “at least
as good as” relation that is based on the notions of concordance and non-discordance.
Ignoring here the non-discordance condition, an alternative x ∈ X is “at least as good
as” the profile p if a “sufficient majority” of attributes support this assertion. When
preference and indifference thresholds are equal, this is done as follows. A semiorder
Ti is defined on each attribute. The set of attributes supporting the proposition that
x ∈ X is at least as good as p is simply T (x) = {i ∈ N : xi Ti pi}. A positive weight
wi is assigned to each attribute. These weights are supposed to be normalized so that∑n

i=1wi = 1. The test for deciding whether the subset of attributes T (x) is “sufficiently
important” is done comparing

∑
i∈T (x)wi to a majority threshold λ ∈ [0.5, 1]. We have:

x ∈ A ⇔
∑
i∈T (x)

wi ≥ λ.

4



Ordered partitions 〈A ,U 〉 of this type have been studied and characterized in Bouyssou
and Marchant (2007a). For the sequel, it will be useful to note that the concordance
condition for testing if x is “at least as good as” p only distinguishes two kind of at-
tributes: the ones for which xi Ti pi and the ones for which this is not true. It does not
make further distinctions among the attributes and, in particular, does not make use
of the preference difference between xi and pi. Hence, the assignment of an alternative
mainly rests on “ordinal considerations”.

3.2. Definition

The model defined below is close to ELECTRE TRI. The main difference with ELEC-
TRE TRI is that the aim of this model is to compare alternatives rather than assigning
them to ordered categories. In this model, there is a semiorder Si on each attribute.
In order to compare the alternatives x and y, we first compare each of them to a “ref-
erence point” π only using “ordinal considerations”. Hence, we compute the subsets of
attributes S(x) = {i ∈ N : xi Si πi} and S(y) = {i ∈ N : yi Si πi}. The comparison
of x and y is based on the comparison of the subsets S(x) and S(y). This comparison
uses an “importance relation” that is only required to be monotonic w.r.t. inclusion.
The following definition, inspired by Rolland (2003, 2006a,b, 2008, 2013), formalizes this
idea.

Definition 1. A binary relation % is a Relation with a Single Reference Point (or, more
briefly, is a RSRP) if:

• for all i ∈ N , there is a semiorder Si on Xi (with symmetric part Ii and asymmetric
part Pi),

• there is an element π ∈ X,

• there is a binary relation D on 2N (with symmetric part , and asymmetric part
B), that is monotonic w.r.t. inclusion, i.e., for all A,B,C,D ⊆ N ,

A D B ⇒ C D D,

whenever, C ⊇ A, B ⊇ D, and there are x, y, z, w ∈ X such that S(x) = A,
S(y) = B, S(z) = C, and S(w) = D,

such that, for all x, y ∈ X,
x % y ⇔ S(x) D S(y), (RSRP)

where S(x) = {i ∈ N : xi Si πi}.

The above model uses three parameters: the reference point π, the semiorders Si, i =
1, 2, . . . , n, and the importance relation D. Although this presentation allows to easily
grasp the intuition of the model, it is possible to reformulate it using less parameters.
Indeed, define, for all i ∈ N , Ai = {xi ∈ Xi : xi Si πi}. It is clear that, for all x ∈ X, we
have S(x) = {i ∈ N : xi ∈ Ai}. Hence, we can alternatively write the above model only
using the following parameters: the sets Ai, i = 1, 2, . . . , n, and the importance relation
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D. In this reformulation, alternative x is at least as good as alternative y if the subset of
attributes for which x has an evaluation that is “acceptable” (i.e., attributes i such that
xi ∈ Ai) is “more important” (according to the relation D) than the subset of attributes
for which y has an evaluation that is acceptable. In Section 8, we generalize this model
to include multiple reference points.

3.3. Elementary properties

The following lemma shows that a RSRP has a unique representation in terms of the
sets Ai and the importance relation D. It makes use of the fact that all attributes have
been supposed influential3.

Lemma 1. A RSRP has a unique representation in terms of the sets Ai, i ∈ N , and
the relation D. In this representation we have, for all i ∈ N , ∅ ( Ai ( Xi.

Proof. See Section A1 in the supplementary material.

Lemma 2. Let % be RSRP with representation Ai, i ∈ N , and D.

1. % is reflexive iff D is reflexive,

2. % is complete iff D is complete,

3. % is transitive iff D is transitive,

4. % is independent iff, for all i ∈ N and all A,B ⊆ N such that i /∈ A and i /∈ B,
A D B iff A ∪ {i} D B ∪ {i}.

Proof. See Section A2 in the supplementary material.

Suppose that % is a RSRP that is a weak order. It follows from the above lemma
that D must be a weak order. Moreover, since D is monotonic w.r.t. inclusion and N is
finite, there is a normalized capacity µ on N such that A D B ⇔ µ(A) ≥ µ(B). Hence,
we have x % y ⇔ µ(S(x)) ≥ µ(S(y)). This shows that a RSRP being a weak order has
at most 2n distinct equivalence classes.

3.4. Example

We illustrate the above model using an example that draws on a similar one presented
in Marichal and Roubens (2000) who study a different problem related to the possibility
to represent weak ordered preferences with the help of a Choquet integral w.r.t. to a
2-additive capacity.

Four alternatives are evaluated on three criteria as follows:

3Observe that the lemma implies that, for all A ∈ 2N , there is x ∈ X such that S(x) = A. Hence, we
could have omitted the qualification “there are x, y, z, w ∈ X such that S(x) = A, S(y) = B, S(z) = C,
and S(w) = D” from Definition 1.
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1 2 3

x α1 α2 α3

y β1 β2 α3

z β1 β2 β3
w α1 α2 β3

The preference information given by the decision-maker is in the form of a linear
order:

x � y � z � w.

This preference information is easily seen to be compatible with our model. In-
deed, take the reference point π = (α1, β2, α3) ∈ X. Moreover, consider the following
semiorders (remembering that Pi is the asymmetric part of Si): α1 P1 β1, β2 P2 α2, and
α3 P3 β3. This leads to: A1 = {α1}, A2 = {β2}, and A3 = {α3}. Moreover, let the
importance relation D be the following weak order:[

{1, 2, 3} , {1, 3}
]
B
[
{2, 3} , {3}

]
B
[
{1, 2} , {2}

]
B
[
{1} , ∅

]
,

(remembering that , and B denote the symmetric and asymmetric part of D).
We obtain S(x) = {1, 3}, S(y) = {2, 3}, S(z) = {2}, and S(w) = {1}, which clearly

allows to recover the linear order given by the decision maker. For instance, we have
x � y since S(x) = {1, 3}, S(y) = {2, 3}, and {1, 3} B {2, 3}.

Observe that the above importance relation can be represented by a 2-additive capac-
ity (Grabisch 1997) such that: µ({1, 2, 3}) = µ({1, 3}) = 1, µ({2, 3}) = µ({3}) = 2/3,
µ({1, 2}) = µ({2}) = 1/3, µ({1}) = µ(∅) = 0, with the corresponding Möbius inverse:
m({2}) = 1/3, m({3}) = 2/3, m({1, 3}) = 1/3, and m({2, 3}) = −1/3, all other terms
being null.

It is easy to check that the information given by the decision maker violates indepen-
dence. Indeed, we have x � y while x and y share a common evaluation on attribute 3.
Changing this common evaluation from α3 to β3 should not affect preference in case in-
dependence holds. This fails here since we obtain z � w, whereas going from x to w and
from y to z amounts to going from α3 to β3 on attribute 3. This failure of independence
is reflected by the fact that the representing capacity exhibited above is not additive
since we have µ({1, 3}) > µ({2, 3}) but µ({2}) > µ({1}), in line with the conclusion of
Lemma 2.4.

4. Models using traces on levels

Our central tool for the analysis of RSRP will be the models introduced in Bouyssou
and Pirlot (2004b) that induce complete traces on levels on each attribute (see also
Greco et al. 2004). We recall here the essential elements of these models.
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Definition 2. Let % be a binary relation on a set X =
∏n
i=1Xi. We define the binary

relations %+
i , %−i and %±i on Xi letting, for all xi, yi ∈ Xi,

xi %
+
i yi ⇔ ∀a, b ∈ X, [(yi, a−i) % b⇒ (xi, a−i) % b],

xi %
−
i yi ⇔ ∀a, b ∈ X, [a % (xi, b−i)⇒ a % (yi, b−i)],

xi %
±
i yi ⇔ [xi %

+
i yi and xi %

−
i yi].

The relations %+
i , %−i and %±i are traces on the levels of attribute i ∈ N generated by

the relation %. It is easy to check that these relations are always reflexive and transitive.
As shown below, the traces on levels combine nicely with the relation %.

Lemma 3 (Bouyssou and Pirlot 2004b, Lemma 2). For all i ∈ N and x, y, z, w ∈ X:

[x % y, zi %
+
i xi]⇒ (zi, x−i) % y, (1)

[x % y, yi %
−
i wi]⇒ x % (wi, y−i), (2)

[zi %
±
i xi, yi %

±
i wi]⇒


x % y ⇒ (zi, x−i) % (wi, y−i),
and
x � y ⇒ (zi, x−i) � (wi, y−i),

(3)

[xi ∼±i zi, yi ∼
±
i wi for all i ∈ N ]⇒


x % y ⇔ z % w,
and
x � y ⇔ z � w.

(4)

The following conditions4 will imply the completeness of marginal traces on levels.

Definition 3. We say that % satisfies:

AC 1i if
(xi, a−i) % c

and
(yi, b−i) % d

⇒


(yi, a−i) % c
or

(xi, b−i) % d,

AC 2i if
c % (yi, a−i)

and
d % (xi, b−i)

⇒


c % (xi, a−i)
or

d % (yi, b−i),

AC 3i if
(xi, a−i) % c

and
d % (xi, b−i)

⇒


(yi, a−i) % c
or

d % (yi, b−i),

for all a, b, c, d ∈ X and all xi, yi ∈ Xi. We say that % satisfies AC 1 (resp. AC 2, AC 3)
if it satisfies AC 1i (resp. AC 2i, AC 3i) for all i ∈ N .

4These conditions are named following Bouyssou and Pirlot (2004b). The rationale for these names
is that these conditions are intrA attribute Cancellation conditions. This explains the names AC 1,
AC 2, and AC 3. The conditions AC 1∗, AC 2∗, AC 3∗, AC 4∗, AC 1∗∗, AC 2∗∗, AC 3∗∗, and AC 4∗∗

introduced later in the paper follow this naming scheme. It may have the virtue of avoiding any unwanted
interpretation that would possibly come with more intuitive names.
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Lemma 4 (Bouyssou and Pirlot 2004b, Lemma 3). We have:

1. AC 1i ⇔ %+
i is complete ⇔ [Not[yi %

+
i xi]⇒ xi %

+
i yi].

2. AC 2i ⇔ %−i is complete ⇔ [Not[yi %
−
i xi]⇒ xi %

−
i yi].

3. AC 3i ⇔ [Not[yi %
+
i xi]⇒ xi %

−
i yi] ⇔ [Not[xi %

−
i yi]⇒ yi %

+
i xi].

4. [AC 1i, AC 2i and AC 3i] ⇔ %±i is complete.

5. In the class of all semiorders on X (and, therefore, in any class of relations con-
taining this class), AC 1, AC 2 and AC 3 are independent conditions.

The following shows the consequences of having complete traces on each attribute in
terms of numerical representation.

Proposition 1 (Bouyssou and Pirlot 2004b, Theorem 2). Let % be a binary relation on
a set X =

∏n
i=1Xi. Suppose that, for all i ∈ N , the set Xi/∼±i is at most countably

infinite. Then there are real-valued functions ui on Xi and a real-valued function F on
[
∏n
i=1 ui(Xi)]

2 such that, for all x, y ∈ X:

x % y ⇔ F (u1(x1), u2(x2), . . . , un(xn), u1(y1), u2(y2), . . . , un(yn)) ≥ 0, (M)

where F is increasing in its first n arguments and decreasing in its last n arguments iff
% satisfies AC 1, AC 2 and AC 3.

We refer to Bouyssou and Pirlot (2004b) for the analysis of model (M) in the general
case, i.e., when the set Xi/∼±i can be uncountable (this requires conditions guaranteeing
that the relations %±i have a numerical representation). This will not be useful here.
Indeed, a characteristic feature of the models studied here is that they generate com-
plete traces %±i that are “rough”, only distinguishing a very limited number of distinct
equivalence classes.

Let us conclude with a brief analysis of the very particular situation in which % is a
weak order.

Definition 4. Let % be a weak order on X. Attribute i ∈ N is said to be weakly
separable if (xi, a−i) � (yi, a−i) for some xi, yi ∈ Xi and some a−i ∈ X−i implies
(xi, b−i) % (yi, b−i), for all b−i ∈ X−i. The relation % is said to be weakly separable if
all attributes i ∈ N are weakly separable.

The following lemma shows that for weak orders, the three conditions AC 1i, AC 2i,
and AC 3i are equivalent. Furthermore, they are equivalent to requiring that attribute
i ∈ N is weakly separable.

Lemma 5 (Bouyssou and Pirlot 2004b, Lemma 5). Let % be a weak order on X. Con-
ditions AC 1i, AC 2i and AC 3i are equivalent. They hold iff attribute i ∈ N is weakly
separable.

When % is a weakly separable weak order, i.e., a weak order satisfying AC 1, AC 2
and AC 3, it is possible to further specify the numerical representation given by model
(M). The following appears in Bouyssou and Pirlot (2004b, Proposition 8) and Greco
et al. (2004, Theorem 1):
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Proposition 2. Let % be a weak order on a set X =
∏n
i=1Xi such that the set X/∼ is at

most countably infinite. Then there are real-valued functions ui on Xi and a real-valued
function U on

∏n
i=1 ui(Xi) such that, for all x, y ∈ X:

x % y ⇔ U(u1(x1), u2(x2), . . . , un(xn) ≥ U(u1(y1), u2(y2), . . . , un(yn), (U)

with U is nondecreasing in each of its arguments iff % is weakly separable.

5. Results

5.1. A characterization of RSRP

Our analysis of RSRP is based on the following two lemmas.

Lemma 6. If % is a RSRP, then, for all i ∈ N , the relation %±i is a weak order having
two distinct equivalence classes.

Proof. See Section A3 in the supplementary material.

Remark 1. Lemmas 4 and 6 imply that a RSRP satisfies AC 1, AC 2 and AC 3. Further-
more all sets Xi/∼±i are finite, having two distinct elements. Hence, a RSRP also has a
representation in (M). It is not difficult to figure out the particular form of model (M)
that leads to a RSRP. Indeed, it suffices to consider, on each i ∈ N , a function ui such
that, for all xi ∈ Xi,

ui(xi) =

{
1 if xi ∈ Ai,
0 if xi /∈ Ai.

With the above definition, we clearly have ui(xi) ≥ ui(yi)⇔ xi %
±
i yi.

We define the function F letting:

F ([ui(xi)]; [ui(yi)]) =

{
+ exp(

∑n
i=1 (ui(xi)− ui(yi))) if x % y,

− exp(
∑n

i=1 (ui(yi)− ui(xi))) otherwise.

Using the definition of the functions ui and the fact that D is monotonic w.r.t. inclusion,
it is easy to show, using (4), that F is well defined and increasing (resp. decreasing) in
its first (resp. last) n arguments.

Lemma 7. If % is a relation on X such that, for all i ∈ N , the relation %±i is a weak
order having two distinct equivalence classes, then % is a RSRP.

Proof. See Section A4 in the supplementary material.

In view of the above two lemmas, a characterization of RSRP will be at hand if we
impose conditions guaranteeing that all relations %±i are weak orders having two distinct
equivalence classes.

10



Definition 5 (Conditions AC 1∗, AC 2∗, AC 3∗, AC 4∗). We say that % satisfies:

AC 1∗i if
(xi, a−i) % c

and
(yi, b−i) % d

⇒


(yi, a−i) % c
or

(zi, b−i) % d,

AC 2∗i if
c % (yi, a−i)

and
d % (zi, b−i)

⇒


c % (xi, a−i)
or

d % (yi, b−i),

AC 3∗i if
(xi, a−i) % c

and
d % (zi, b−i)

⇒


(yi, a−i) % c
or

d % (yi, b−i),

AC 4∗i if
c % (yi, a−i)

and
(yi, b−i) % d

⇒


c % (xi, a−i)
or

(zi, b−i) % d,

for all a, b, c, d ∈ X and all xi, yi, zi ∈ Xi. We say that % satisfies AC 1∗ (resp. AC 2∗,
AC 3∗, AC 4∗) if it satisfies AC 1∗i (resp. AC 2∗i , AC 3∗i , AC 4∗i ) for all i ∈ N .

The interpretation of the above condition will become clear considering their con-
sequences on the relations %+

i , %−i , and %±i (see Lemma 8 below). Take, for instance,
condition AC 1∗i . Suppose that (xi, a−i) % c and that (yi, a−i) % c does not hold. This
is an indication that it is not true that yi %

+
i xi. Condition AC 1∗i then implies that yi

is below all other elements of Xi w.r.t. the relation %+
i , i.e., that (yi, b−i) % d implies

(zi, b−i) % d. Condition AC 2∗i says a similar thing considering now the relation %−i : if
it is not true that yi %

−
i xi then yi is below all other elements of Xi w.r.t. the relation

%−i . Conditions AC 3∗i and AC 4∗i connects what happens with the relations %+
i and %−i .

Consider, for instance, condition AC 3∗i . Suppose that (xi, a−i) % c, while (yi, a−i) % c
does not hold. This is an indication that it is not true that yi %

+
i xi. Condition AC 3∗i

then implies that yi is below all other elements of Xi w.r.t. the relation %−i , i.e., that
d % (zi, b−i) implies d % (yi, b−i). This intuition is formalized below.

Lemma 8. For all xi, yi, zi ∈ Xi,

1. AC 1∗i ⇔ [Not[yi %
+
i xi]⇒ zi %

+
i yi],

2. AC 2∗i ⇔ [Not[yi %
−
i xi]⇒ zi %

−
i yi],

3. AC 3∗i ⇔ [Not[yi %
+
i xi]⇒ zi %

−
i yi],

4. AC 4∗i ⇔ [Not[yi %
−
i xi]⇒ zi %

+
i yi].

Proof. See Section A5 in the supplementary material.

The following lemma shows that the above four conditions hold for a RSRP.

Lemma 9. If % is a RSRP then it satisfies AC 1∗, AC 2∗, AC 3∗, and AC 4∗.

Proof. See Section A6 in the supplementary material.
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Combining Lemmas 4 and 8 proves the following.

Lemma 10.

1. AC 1∗i ⇒ AC 1i,

2. AC 2∗i ⇒ AC 2i,

3. AC 3∗i ⇒ AC 3i,

4. AC 4∗i ⇒ AC 3i.

A crucial consequence of the combination of AC 1∗, AC 2∗, AC 3∗ and AC 4∗ is pre-
sented below.

Lemma 11. The relation % satisfies AC 1∗i , AC 2∗i , AC 3∗i , and AC 4∗i iff the binary
relation %±i is a weak order having two distinct equivalence classes.

Proof. See Section A7 in the supplementary material.

Our first characterization of RSRP is as follows.

Theorem 1. Let % be a binary relation on a set X =
∏n
i=1Xi. The relation % is a

Relation with a Single Reference Point iff it satisfies AC 1∗, AC 2∗, AC 3∗, and AC 4∗.

Proof. Necessity results from Lemma 9. Sufficiency results from Lemmas 7 and 11.

The conditions used in the above theorem are independent in a class of well behaved
relations on X, as shown in the following lemma.

Lemma 12. In the class of all semiorders on X (and, therefore, in any class of relations
containing this class), conditions AC 1∗, AC 2∗, AC 3∗, and AC 4∗ are independent.

Proof. See Section A8 in the supplementary material.

5.2. An alternative characterization of RSRP

We have seen above a RSRP is characterized by the conjunction of conditions AC 1∗i ,
AC 2∗i , AC 3∗i and AC 4∗i . A drawback of this result is that it does not explicitly use
conditions AC 1i, AC 2i and AC 3i that characterize model (M). We show here how to
weaken conditions AC 1∗i , AC 2∗i , AC 3∗i , AC 4∗i so as to make them independent from
conditions AC 1i, AC 2i and AC 3i. This will allow us to exactly state what must be
added to the conditions characterizing model (M) to obtain RSRP.

Definition 6 (Conditions AC 1∗∗, AC 2∗∗, AC 3∗∗, AC 4∗∗). We say that % satisfies:

AC 1∗∗i if

(xi, a−i) % c
and

(yi, b−i) % d
and

(xi, b−i) % d

⇒


(yi, a−i) % c
or

(zi, b−i) % d,

12



AC 2∗∗i if

c % (yi, a−i)
and

d % (zi, b−i)
and

c % (zi, a−i)

⇒


c % (xi, a−i)
or

d % (yi, b−i),

AC 3∗∗i if
(xi, a−i) % c

and
d % (zi, b−i)

⇒


(yi, a−i) % c
or

d % (yi, b−i)
or

d % (xi, b−i),

AC 4∗∗i if

c % (yi, a−i)
and

(yi, b−i) % d
and

(xi, b−i) % d

⇒


c % (xi, a−i)
or

(zi, b−i) % d,

for all a, b, c, d ∈ X and all xi, yi, zi ∈ Xi. We say that % satisfies AC 1∗∗ (resp. AC 2∗∗,
AC 3∗∗, AC 4∗∗) if it satisfies AC 1∗∗i (resp. AC 2∗∗i , AC 3∗∗i , AC 4∗∗i ) for all i ∈ N .

The interpretation of these four new conditions is similar to that of conditions AC 1∗i ,
AC 2∗i , AC 3∗i and AC 4∗i . Indeed, AC 1∗∗i , AC 2∗∗i , and AC 4∗∗i (resp. AC 3∗∗i ) are obtained
from AC 1∗i , AC 2∗i , and AC 4∗i by the addition of a new premise (resp. from AC 3∗i by the
addition of a new possible conclusion). Take, for instance, condition AC 1∗∗i . Suppose
that (xi, a−i) % c and that (yi, a−i) % c does not hold. This is an indication that it
is not true that yi %

+
i xi. Condition AC 1∗∗i then implies that, whenever (xi, b−i) % d

holds, yi is below all other elements of Xi w.r.t. the relation %+
i i.e., that (yi, b−i) % d

implies (zi, b−i) % d.
The relation between these four new conditions and the ones used earlier is detailed

below.

Lemma 13. Let % be a binary relation on X. We have:

1. % satisfies AC 1∗i iff it satisfies AC 1i and AC 1∗∗i ,

2. % satisfies AC 2∗i iff it satisfies AC 2i and AC 2∗∗i ,

3. % satisfies AC 3∗i iff it satisfies AC 3i and AC 3∗∗i ,

4. % satisfies AC 4∗i iff it satisfies AC 3i and AC 4∗∗i .

Proof. See Section A9 in the supplementary material.

Combining the above lemma with Theorem 1 proves the following:

Theorem 2. Let % be a binary relation on a set X =
∏n
i=1Xi. The relation % is a

Relation with a Single Reference Point iff it satisfies AC 1, AC 2, AC 3, AC 1∗∗, AC 2∗∗,
AC 3∗∗, and AC 4∗∗.
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The conditions used in the above theorem are independent in a class of well behaved
relations on X, as shown in the following lemma.

Lemma 14. In the class of all semiorders on X (and, therefore, in any class of rela-
tions containing this class), conditions AC 1i, AC 2i, AC 3i, AC 1∗∗, AC 2∗∗, AC 3∗∗, and
AC 4∗∗ are independent.

Proof. See Section A10 in the supplementary material.

6. Relation to other preference models

In the previous section, we have introduced conditions that characterize preference
models using a single reference point. One possible virtue of this analysis is that it allows
to relate, in a simple way, these preference models with other preference models that
have been introduced in the literature.

6.1. Relation to concordance relations

The idea of concordance is vital in the ELECTRE methods (see, e.g., Figueira et al.
2005, 2010, Roy 1991, Roy and Bouyssou 1993). We make use here of literature on the
axiomatic analysis of concordance relations (Bouyssou and Pirlot 2002b, 2005b, 2007,
Bouyssou et al. 1997, Greco et al. 2001) to relate this type of comparison to RSRP.

In view of Lemma 2.4, it is easy to build examples showing that a RSRP does not
have to be independent. It is well known that concordance relations are independent
(Bouyssou and Pirlot 2005b, 2007). Using this observation, Rolland (2003, 2006a, 2008)
has concluded that models using reference points were more “flexible” than concordance
relations. This section is devoted to a precise analysis of the links between concordance
relations and RSRP. These links are more complex than what was suggested by Rolland.

We first recall the definition of a concordance relation with attribute transitivity
(Bouyssou and Pirlot 2005b, 2007) when % is reflexive (since a concordance relation is
independent, it is easy to check that it is either reflexive or irreflexive).

Definition 7. Let % be a reflexive binary relation on X. We say that % is a concordance
relation with attribute transitivity (or, more briefly, that % is a CR-AT) if there are:

• a semiorder Ti on each Xi (i = 1, 2, . . . , n),

• a binary relation DC between subsets of N having N for union that is monotonic
w.r.t. inclusion, i.e., for all A,B,C,D ⊆ N such that A∪B = N and C ∪D = N ,

[A DC B,C ⊇ A,B ⊇ D]⇒ C DC D, (5)

such that, for all x, y ∈ X,

x % y ⇔ T (x, y) DC T (y, x), (6)

where T (x, y) = {i ∈ N : xi Ti yi}.
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Hence, when % is a CR-AT, the preference between x and y only depends on the
subsets of attributes favoring x or y in terms of the semiorder Ti. It does not depend on
preference differences between the various levels on each attribute besides the distinction
between levels indicated by Ti.

Definition 8. Let % be a binary relation on a set X =
∏n
i=1Xi. We define the binary

relations %∗i and %∗∗i on X2
i letting, for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %
∗
i (zi, wi)⇔

[for all a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i)⇒ (xi, a−i) % (yi, b−i)],

(xi, yi) %
∗∗
i (zi, wi)⇔ [(xi, yi) %

∗
i (zi, wi) and (wi, zi) %

∗
i (yi, xi)].

It is clear that the relations %∗i and %∗∗i are always reflexive and transitive.
Bouyssou and Pirlot (2005b, 2007) have shown that CR-AT are reflexive relations

that are characterized by the fact that, for all i ∈ N , the relation %∗∗i is a weak order
having at most three distinct equivalence classes and %±i is a weak order. They have
given necessary and sufficient conditions on % ensuring that this happens.

We are now in position to analyze the relations between CR-AT and RSRP. We start
with a result showing that there are CR-AT that are not RSRP. This result exploits the
fact that in a CR-AT the weak orders %±i may have more than two distinct equivalence
classes. This cannot be the case in a RSRP.

Lemma 15. A CR-AT may fail to be a RSRP.

Proof. See Section A11 in the supplementary material.

Our next result shows that a reflexive RSRP that is independent is a CR-AT.

Lemma 16. If a reflexive RSRP is independent then it is a CR-AT.

Proof. See Section A12 in the supplementary material.

Observe finally that an independent relation being a RSRP is a very particular CR-
AT since, in this case, all relations %±i have only two distinct equivalence classes.

Summarizing, there are CR-AT that are not RSRP (the ones in which the relations
%±i have more than two equivalence classes) and there are reflexive RSRP that are not
CR-AT (the ones that are not independent).

6.2. Relation to noncompensatory sorting models

In Bouyssou and Marchant (2007a), we study a sorting model called the “noncom-
pensatory sorting model”. This model was conceived so as to have close links with
ELECTRE TRI. Hence, it is not surprising that it also has links with RSRP. We briefly
study them below.

The following definition is taken from Bouyssou and Marchant (2007a).
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Definition 9. We say that a partition 〈A ,U 〉 of X has a representation in the non-
compensatory sorting model if:

• for all i ∈ N there is a set Ai ⊆ Xi,

• there is a subset F of 2N such that, for all I, J ∈ 2N ,

[I ∈ F and I ⊆ J ]⇒ J ∈ F , (7)

such that, for all x ∈ X,

x ∈ A ⇔ {i ∈ N : xi ∈ Ai} ∈ F . (8)

In this case, we say, that 〈F ,A1,A2, . . . ,An〉 or, for short, 〈F , 〈Ai〉i∈N 〉 is a repre-
sentation of 〈A ,U 〉 in the noncompensatory sorting model. When there is no risk of
confusion on the underlying sets Ai, we write A(x) instead of {i ∈ N : xi ∈ Ai}. In this
section, we write Ui = Xi \Ai.

Suppose that we have a twofold partition 〈A ,U 〉 of X that has a representation
〈F , 〈Ai〉i∈N 〉 in the noncompensatory sorting model. Let us show that it is possible to
build a RSRP that models this twofold partition in the following sense. The relation
% is a weak order having two equivalence classes; the first equivalence class contains
all elements in A , while the second contains all elements in U . Notice that in this
interpretation all elements in A (resp. U ) are judged indifferent, which is not required
in the noncompensatory sorting model.

Define, for all i ∈ N , Ai = Ai. The relation D is defined as follows. For all A,B ∈ 2N

such that A,B ∈ F or A,B /∈ F , we have A , B. For all A,B ∈ 2N such that A ∈ F
and B /∈ F , we have A B B. It is simple to check that this defines a weak order D on
2N . Since F satisfies (7), it is clear that this weak order is monotonic w.r.t. inclusion.
By construction, we have x ∼ y ⇔ S(x) , S(y) and x � y ⇔ S(x) B S(y).

Conversely, consider a weak order % that is a RSRP. Take any a ∈ X and define
A = {x ∈ X : x % a} and U = {x ∈ X : a � x}. Whenever a does not belong to the
last equivalence class of %, this defines a partition 〈A ,U 〉 of X.

Let us show that this induced twofold partition has a representation in the noncom-
pensatory sorting model. Define, for all i ∈ N , Ai = Ai. Let S(a) = A and define
F = {B ∈ 2N : B D A}. Because D is monotonic w.r.t. inclusion, it is simple to check
that F satisfies (7). Suppose that x ∈ A . By construction, this means that x % a,
so that S(x) D S(a) which implies S(x) = {i ∈ N : xi ∈ Ai} ∈ F . Conversely if
{i ∈ N : xi ∈ Ai} ∈ F , we know that S(x) D S(a) so that a ∈ A .

A weak order % on X that is a RSRP can be interpreted as a nested family of twofold
partitions that all have a representation in the noncompensatory sorting model. Indeed,
we know that the weak order % can only have a finite number of equivalence classes:
C1, C2, . . . , Ck. We have shown above that there is a twofold partition 〈A ,U 〉 such that
A = C1 and U =

⋃k
j=2C

k that has a representation in the noncompensatory sorting

model. Similarly, there is a twofold partition 〈A ′,U ′〉 such that A ′ = C1 ∪ C2 and
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U ′ =
⋃k
j=3C

k that also has a representation in the noncompensatory sorting model.
Using the above construction, for all i ∈ N , we have Ai = A ′i = Ai. The only change
happens with the sets F and F ′ that are such that F ⊂ F ′. Hence a weak order that
is a RSRP can be obtained using an noncompensatory sorting model by keeping the sets
Ai fixed and progressively enlarging the set F , i.e., be less and less strict on the size of
the coalition of attributes that is sufficiently important to conclude that an alternative
is “acceptable”.

Ordered partitions admitting such a representation have been studied in Bouyssou
and Marchant (2007b, Proposition 31). They are a particular case of the general non-
compensatory sorting model for r-fold partitions studied in Bouyssou and Marchant
(2007b, Theorem 22).

7. The case of weak orders

7.1. Results

Although all the conditions needed to characterize RSRP are independent in the class
of all semiorders on X, the situation is vastly different when we turn to weak orders.
Indeed, we know from Lemma 5 that conditions AC 1i, AC 2i, and AC 3i are equivalent
for weak orders. The same turns out to be true for conditions AC 1∗i , AC 2∗i , AC 3∗i and
AC 4∗i .

Lemma 17. Let % be a weak order on a set X. Then conditions AC 1∗i , AC 2∗i , AC 3∗i
and AC 4∗i are equivalent.

Proof. See Section A13 in the supplementary material.

We have shown above that AC 1∗i (resp. AC 2∗i , AC 3∗i , AC 4∗i ) was equivalent to the
conjunction of AC 1i and AC 1∗∗i (resp. AC 2i and AC 2∗∗i , AC 3i and AC 3∗∗i , AC 3i and
AC 4∗∗i ). The independence of conditions AC 1i and AC 1∗∗i is discussed in the following
lemma.

Lemma 18. In the class of all weak orders on X, conditions AC 1i and AC 1∗∗i are
independent.

Proof. See Section A14 in the supplementary material.

Summarizing the above observations, we have:

Proposition 3. Let % be a weak order on X. It is a Relation with a Single Reference
Point iff it satisfies AC 1∗ iff it satisfies AC 1 and AC 1∗∗.

On the basis of Lemmas 5, 13 and 17 and building obvious variations of Lemma 18,
it is possible to formulate many alternative equivalent results for the case of weak orders.
We leave the details to the interested reader.
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7.2. Relation to models based on a discrete Sugeno integral

We have shown in Section 3 that a RSRP that is a weak order has a numerical
representation such that:

x % y ⇔ µ(S(x)) ≥ µ(S(y))

where µ is a normalized capacity on N .
This representation is reminiscent of representation of weak orders based on a discrete

Sugeno integral. This model was proposed in Sugeno (1974). It was axiomatically studied
in the context of MCDM by Greco et al. (2004) and Bouyssou et al. (2009). We show
below that a RSRP that is a weak order always has a representation using a discrete
Sugeno integral.

The following definitions are taken from Bouyssou et al. (2009).

Definition 10. Let β = (β1, β2, . . . , βp) ∈ [0, 1]p. The discrete Sugeno integral of the
vector (β1, β2, . . . , βp) ∈ [0, 1]p w.r.t. the normalized capacity ν on P = {1, 2, . . . , p} is
defined by:

Sugν [β] =
∨
T⊆P

[
ν(T ) ∧

(∧
i∈T

βi

)]
.

Definition 11. A weak order % on X has a representation in the discrete Sugeno integral
model if there are a normalized capacity µ on N and functions ui : Xi → [0, 1] such that,
for all x, y ∈ X,

x % y ⇔ Sugµ[(u1(x1), u2(x2), . . . , un(xn))] ≥ Sugµ[(u1(y1), u2(y2), . . . , un(yn))].

Definition 12. The relation % on X is said to be strongly 2-graded on attribute i ∈ N
(condition 2∗-gradedi) if, for all a, b, c, d ∈ X and all xi, yi, zi ∈ Xi,

(xi, a−i) % c
and

(yi, b−i) % d
and
d % c

⇒


(yi, a−i) % c
or

(zi, b−i) % d,

The relation % on X is said to be 2-graded on attribute i ∈ N (condition 2-gradedi) if,
for all a, b, c, d ∈ X and all xi, yi, zi ∈ Xi,

(xi, a−i) % c
and

(yi, b−i) % d
and

(xi, b−i) % d
and
d % c


⇒


(yi, a−i) % c

or
(zi, b−i) % d,

A binary relation is said to be strongly 2-graded (condition 2∗-graded) if it is strongly
2-graded on all attributes i ∈ N . Similarly, a binary relation is said to be 2-graded
(condition 2-graded) if it is 2-graded on all attributes i ∈ N .
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Bouyssou et al. (2009, Lemma 1) have shown that condition 2∗-gradedi holds iff
conditions 2-gradedi and AC 1i hold.

It is clear that condition 2∗-gradedi is a weakening of AC 1∗i since it amounts to
adding a premise to this condition. Similarly, condition 2-gradedi is a weakening of
AC 1∗∗i . Greco et al. (2004) and Bouyssou et al. (2009) have shown the following (this
result can be extended to cover sets of arbitrary cardinality adding a condition imposing
that the weak order has a numerical representation. This will not be useful here.).

Proposition 4. Let % be a weak order on X such that X/∼ is at most countably infinite.
Then % has a representation in the discrete Sugeno integral model iff it satisfies condition
2∗-graded iff it satisfies conditions AC 1 and 2-graded.

The following lemma is a direct consequence of the fact that condition 2∗-gradedi is
a weakening of AC 1∗i .

Lemma 19. Let % be a weak order. If it is a RSRP, then it has a representation in the
discrete Sugeno integral model.

Proof. See Section A15 in the supplementary material.

The above lemma has shown that, for weak orders, a RSRP always has a represen-
tation in the discrete Sugeno integral model.

Suppose that the weak order % can be represented as a RSRP using sets Ai and
an importance relation D (such a representation is unique, as shown by Lemma 1). We
know from Lemma 2 that D is a weak order on N , so that it can be represented by a
normalized capacity µ on N . It is then easy to devise a representation of this weak order
in the discrete Sugeno integral model. (such a representation is clearly not unique).

Define, for all i ∈ N and all xi ∈ Xi,

ui(xi) =

{
1 if xi ∈ Ai,
0 otherwise.

Using such functions ui, it is easy to see that, for all x ∈ X, and all J ⊆ N , we have:

µ(J) ∧

(∧
i∈J

ui(xi)

)
=

{
µ(J) if xi ∈ Ai for all i ∈ J,
0 otherwise.

Hence, when S(x) = J we have Sugµ[(u1(x1), u2(x2), . . . , un(xn))] = µ(J), so that

x % y ⇔ S(x) D S(y)

⇔ µ(S(x)) ≥ µ(S(y))

⇔ Sugµ[(u1(x1), u2(x2), . . . , un(xn))] ≥ Sugµ[(u1(y1), u2(y2), . . . , un(yn))].

The representation of weak order that is a RSRP in the Sugeno integral model is clearly
not unique.

We will see in Section 8 that the situation is different when considering relations using
several reference points: such relations may not have a representation in the discrete
Sugeno integral model.
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7.3. Elicitation of a 2-additive capacity

Suppose that a decision maker has given some preference statements on the alterna-
tives in X. Suppose that these preference statements are compatible with a weak order
on X, i.e., are such that there is a weak order on X that contains them all, as was the
case in the example given in Section 3.4.

Let us describe how one can use mathematical programming techniques to test
whether the information provided by the decision maker is compatible with a RSRP, i.e.,
whether it has a representation in terms of sets Ai, i = 1, 2, . . . , n, and an importance
relation D. We will only investigate the case in which the importance relation D can
be represented by a normalized 2-additive capacity (see Section 2.2) We only sketch our
procedure since it rests on fairly standard techniques.

Let us define variables ai, i = 1, 2, . . . , n. These variables will represent the Möbius
inverse of the capacity on singletons and, hence, be such that 0 ≤ ai ≤ 1, i = 1, 2, . . . , n.
Define analogously, variables bij , b

+
ij , b
−
ij , i, j = 1, 2, . . . , n with i 6= j, the variables b+ij , b

−
ij

being non-negative. The bij variable will represent the Möbius inverse of the capacity
for the pair {i, j} and will be expressed as bij = b+ij − b

−
ij , exploiting the fact that any

real variable can be written as the difference between two non-negative variables. It is
well-known (Grabisch 1997) that we always have bij ∈ [−1, 1]. Hence, we may always
impose that 0 ≤ b+ij ≤ 1 and 0 ≤ b−ij ≤ 1, the variable bij being unrestricted.

The conditions on the variables ai and bij ensuring that they can be interpreted as
the Möbius inverse of a 2-additive capacity are well known (Marichal and Roubens 2000,
p. 645) and are linear:

n∑
i=1

ai +
n∑
i=1

n∑
j=1
i 6=j

bij = 1,

ai +
∑
j∈T

bij ≥ 0, ∀i ∈ N, ∀T ⊆ N \ {i},

together with the fact that the Möbius inverse associated to the empty set is 0. This
last requirement will always be ensured in our model.

To each element xi ∈ Xi, we associate a binary variable that will model the fact that
the element belongs or not to Ai. We grossly abuse notation below and we write the
binary variable as xi. Notice here that, in fact, it is necessary to introduce a variable
xi corresponding to xi ∈ Xi only when the evaluation xi ∈ Xi is used in one of the
alternatives that have been compared by the decision maker.

To each pair of elements xi ∈ Xi and xj ∈ Xj , we associate a binary variable yij that
will model the fact that the element xi ∈ Xi belongs to Ai and the element xj ∈ Xj

belongs to Aj . Of course, we must impose conditions ensuring that yij takes the value
1 iff both xi and xj take the value 1. This is easily done using linear constraints, e.g.,
requiring that

yij ≥ xi + xj − 1, yij ≤ 0.5xi + 0.5xj .
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Consider now an alternative (x1, x2, . . . , xn) ∈ X that has been compared by the
decision maker to other ones. The value of the 2-additive capacity corresponding to
S((x1, x2, . . . , xn)) can be written as:

n∑
i=1

aixi +

n∑
i=1

n∑
j=1
i 6=j

bijyij , (9)

an expression that should be linearized. This is easily done using standard tricks.
We first introduce for each element xi ∈ Xi a variable x̂i that will be equal to ai if

xi = 1 and to 0 otherwise. This is a standard trick that can be done imposing, e.g., the
following linear constraints:

x̂i ≤ xi, x̂i ≥ 0, x̂i ≤ ai, x̂i ≥ xi − 1 + ai.

Hence, we may replace in Expression (9) all terms aixi by x̂i. Notice that the above
trick only works if it is known that ai ≥ 0. This is not the case for the variables bij , so
that we have recourse here to the two non-negative variables b+ij and b−ij .

We then proceed as above. We introduce a variable ŷ+ij that will be equal to b+ij iff

yij = 1 and to 0 otherwise. Similarly, we introduce a variable ŷ−ij that will be equal to

b−ij iff yij = 1 and to 0 otherwise. This can be done linearly, e.g., imposing that:

ŷ+ij ≤ yij , ŷ+ij ≥ 0, ŷ+ij ≤ b
+
ij , ŷ+ij ≥ yij − 1 + b+ij ,

and, similarly,

ŷ−ij ≤ yij , ŷ−ij ≥ 0, ŷ−ij ≤ b
−
ij , ŷ−ij ≥ yij − 1 + b−ij .

With these new variables at hand, we may replace in Equation (9) all terms bijyij by
ŷ+ij − ŷ

−
ij .

Expression (9) can now be expressed as the linear expression:

n∑
i=1

x̂i +
n∑
i=1

n∑
j=1
i 6=j

(ŷ+ij − ŷ
−
ij), (10)

which gives all we need.
The rest of the procedure is quite standard. For each indifference statement issued by

the decision maker, we associate an equality constraint between two terms of the type
given by Expression (10). For each strict preference statement this equality becomes
a strict inequality and we replace it by a non-strict one with the help of an auxiliary
non-negative variable ε.

If the resulting set of linear constraints is compatible, we have found a 2-additive
capacity compatible with this information, as given by the Möbius terms ai and bij .
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Using ai and bij , it is indeed easy to recover the 2-additive capacity (see, e.g., Marichal
and Roubens 2000, p. 645) letting:

µ({i}) = ai, ∀i ∈ N,
µ({i, j}) = ai + aj + bij ,∀i, j ∈ N with i 6= j,

µ(S) =
∑
i∈S

ai +
∑

i∈S,j∈S
i 6=j

bij , ∀S ⊆ N with |S| ≥ 2.

The sets Ai consist in the evaluations for which we have xi = 1.
This test of compatibility of the linear constraints can be done using an MILP solver.

The objective function can, e.g., consist in maximizing the auxiliary variable ε. If the
LP has a feasible solution, the compatibility of the constraints is ensured5.

The capacity exhibited in the analysis of the example analyzed in section 3.4 has
been obtained using the above technique. In this example, the following preferences:

[x ∼ y] � z � w,

lead to the following solution: A1 = {a1}, A2 = {b2}, and A3 = {a3}, together with the
2-additive capacity having the Möbius inverse such that: m({2}) = 1/2, m({3}) = 1,
and m({2, 3}) = −1/2, all other terms being null.

Unsurprisingly, in the same example, the preference information:

[x ∼ y] � [z ∼ w] ,

is compatible with a representation that uses an additive capacity, e.g., with A1 = {a1},
A2 = {b2}, and A3 = {a3}, with the 2-additive capacity with a Möbius inverse such
that: m({3}) = 1, all other terms being null.

Clearly the above procedure can easily be adapted to cope with other type of infor-
mation given by the decision maker, e.g., in the form of an a priori weak order on each
attribute or giving constraints on the importance relation.

It should be clear that the solution found by the above elicitation procedure will
be unique only in exceptional cases. Hence, using this procedure for decision aiding
purposes should take this non-uniqueness into account, for instance in the spirit of the
robust ordinal regression advocated in Greco et al. (2008). We leave the details to the
interested reader since this is not our main point here.

Let us finally notice that Mousseau et al. (2012) and Zheng et al. (2012) have also
investigated elicitation techniques for models with reference points. On the one hand,
they study a case that is more general than the one we cover here since they deal with

5Notice that an optimal solution may be found in which we have at the same time b+ij > 0 and

b−ij > 0. This can be easily avoided, since the only role of these two variables is to define the variable

bij = b+ij − b−ij . Hence, if this happens, we may fix the value of the objective function to its optimal value

and have recourse to a secondary optimization that will minimize the sum of all b+ij and b−ij . Doing so,

we will obtain an optimal solution in which at least one of b+ij and b−ij is zero.
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multiple reference points (each reference point leads to a preference structure; these
structures are then aggregated in a lexicographic way). On the other hand, they confine
themselves, contrary to what we do here, to the case in which the importance relation
w.r.t. each reference point that is additive. We have worked independently of them on
this topic.

8. Multiple reference points

8.1. Definition

The model defined below, building on Rolland (2003, 2006a,b, 2008, 2013), extends
Definition 1 to deal with the case of multiple reference points. In this model, there is
a semiorder Ri on each attribute. In order to compare the alternatives x and y, we
first compare each of them to a number of “reference points” π1, π2, . . . , π` only using
“ordinal considerations”. For each profile πk, we compute the subsets of attributes
Rk(x) = {i ∈ N : xi Ri π

k
i } and Rk(y) = {i ∈ N : yi Ri π

k
i }. The comparison of

x and y is based on the two `-tuples RL(x) = (R1(x),R2(x), . . . ,R`(x)) and RL(y) =
(R1(y),R2(y), . . . ,R`(y)). This comparison uses an “importance relation” that will only
be required to be monotonic w.r.t. inclusion.

Definition 13. A binary relation % is a Relation with Multiple Reference Points (or
more briefly is a RMRP) if:

• for all i ∈ N , there is a semiorder Ri on Xi,

• there are ` ∈ N+ elements of X, π1, π2, . . . , π`, interpreted as ` “reference points”,

• there is a binary relation DL on (2N )` that is monotonic w.r.t. inclusion, i.e., for
all A1, B1, C1, D1, . . . , A`, B`, C`, D` ⊆ N ,

(A1, . . . , A`) DL (B1, . . . , B`)⇒ (C1, . . . , C`) DL (D1, . . . , D`),

whenever, for all k ∈ L = {1, 2, . . . , `}, Ck ⊇ Ak, Bk ⊇ Dk, and there are
x, y, z, w ∈ X such that RL(x) = (A1, . . . , A`), RL(y) = (B1, . . . , B`), RL(z) =
(C1, . . . , C`), and RL(w) = (D1, . . . , D`),

such that, for all x, y ∈ X,

x % y ⇔ (R1(x),R2(x), . . . ,R`(x)) DL (R1(y),R2(y), . . . ,R`(y)), (RMRP)

where Rk(x) = {i ∈ N : xi Ri π
k
i } and RL(x) = (R1(x),R2(x), . . . ,R`(x)).

We write RL(x) w RL(y) to mean that, for all k ∈ L, Rk(x) ⊇ Rk(y). Observe that,
contrary to what was the case with Definition 1 the fact that each attribute is influential
does not imply that, for all for all A1, A2, . . . , A` ⊆ N , we have RL(x) = (A1, . . . , A`),
for some x ∈ X.

Rolland (2008, 2013) defines and studies many particular cases of this general model.
We do not consider them here.
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8.2. Results

We start by showing that a RMRP is a particular case of model (M).

Lemma 20. If a binary relation on X is a RMRP with ` reference points, it satisfies
AC 1, AC 2 and AC 3, so that all relations %±i are weak orders. Furthermore, for all
i ∈ N , the weak order %±i has at most `+ 1 distinct equivalence classes.

Proof. See Section A16 in the supplementary material.

The above lemma shows that a RMRP satisfies AC 1, AC 2 and AC 3 and is such
that, for all i ∈ N , Xi/∼±i is finite. Hence, it has a representation in model (M). We
show below that the converse is true, as soon as all sets Xi/∼±i are finite.

Lemma 21. Let % be a binary relation on X. If % satisfies AC 1, AC 2, and AC 3 and,
for all i ∈ N , the sets Xi/∼±i are finite then % is a RMRP.

Proof. See Section A17 in the supplementary material.

Lemmas 20 and 21 show that, whenever Xi/∼±i is finite, for all i ∈ N , the Model
with Multiple Reference Points is equivalent to model (M). Moreover:

• if % has a representation in the Model with Multiple Reference Points, it also has
a representation in the Model with Multiple Reference Points in which all relations
Ri are weak orders,

• if % has a representation in the Model with Multiple Reference Points, it also
has a representation in which reference points dominates each other according
to the weak orders Ri, i.e., for all k ∈ {2, 3, . . . , `} and all i ∈ N , πki Ri π

k−1
i .

In such a representation, for all x ∈ X, with RL(x) = (A1, . . . , A`) we have
A1 ⊇ A2 ⊇ · · · ⊇ A` (this was already observed in Rolland 2008, p. 51).

Indeed, the reference points π1, π2, . . . , π` and the relations Ri that are built in the proof
of Lemma 21 have these two properties.

Our findings are summarized below.

Theorem 3. A binary relation % on X is a RMRP iff it satisfies AC 1, AC 2 and AC 3
and, for all i ∈ N , the set Xi/∼±i is finite.

If a relation % is a RMRP, it always has a representation in which all relations Ri
are weak orders and in which the ` reference points are such that for all k ∈ {2, 3, . . . , `}
and all i ∈ N , πki Ri π

k−1
i .

The uniqueness of the representation of RMRP is obviously quite weak. Since its
study is cumbersome and does not appear to be particularly informative, we do not
detail this point.

By definition, a RMRP only uses a finite number of reference points. This is reflected
in the above result by the fact that in a RMRP, all relations %±i have a finite number
of equivalence classes. We have seen above (see the proof of Lemma 15) that there are
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CR-AT in which the relations %±i have infinitely many equivalence classes. Hence, there
are CR-AT that are not reflexive RMRP. The converse is also true since a reflexive
RMRP may fail to be independent whereas we know that a CR-AT always is. The claim
of Rolland (2003, 2006a, 2008) that models using reference points are more “flexible”
than concordance relations is nevertheless clearly true if attention is restricted to the
case of finite sets X. Indeed, a CR-AT always satisfies conditions AC 1, AC 2 and AC 3.
Moreover, on finite sets, the condition stating that, for all i ∈ N , the set Xi/∼±i is finite
trivially holds. Hence, in this particular but important case, all CR-AT are reflexive
RMRP.

Using Lemma 5, it is easy to formulate a result characterizing model (RMRP) when
% is a weak order. In this case, we know that the three conditions AC 1, AC 2 and AC 3
are equivalent and may be replaced by weak separability. For the record, we state the
following:

Proposition 5. Let % be a weak order on X. It is a Relation with Multiple Reference
Points iff it satisfies AC 1 and, for all i ∈ N , the set Xi/∼±i is finite.

Since the relation DL is defined on the finite set (2N )`, it is simple to show that a
RMRP that is a weak order can only have a finite number of equivalence classes.

Consider now a relation % defined on a finite set X. It will be a RMRP as soon as
it satisfies AC 1. In view of Proposition 4, it will have a representation in the discrete
Sugeno integral model if, furthermore, it is 2-graded. Clearly, a relation satisfying AC 1
does not have to be 2-graded. This shows that, contrary to the situation with RSRP, a
RMRP may not have a representation in the discrete Sugeno integral model. This was
already noted in Rolland (2008, Ex. 61, p. 138).

9. Discussion

This paper has shown how to use the general model developed in Bouyssou and Pirlot
(2004b) to characterize preference models using a single reference point introduced by
Rolland (2003, 2006a,b, 2008, 2013). This analysis was extended to the case of multiple
reference points in Section 8. Basically, models using reference points are particular cases
of the model inducing complete traces on the levels of each attribute. The number of
reference points is linked to the number of distinct equivalence classes generated by these
traces. Models using a single reference point generate traces that are quite rough. We
have proposed a complete characterization of these models using a traditional conjoint
measurement setting in which the only primitive is a preference relation % on X. This
analysis has allowed us to compare models using reference points with several other
preference models for multiattributed alternatives. In particular, we have shown that
preference models using a single reference point that are weak orders are a particular
case of preference models based on the discrete Sugeno integral. Moreover, we have
analyzed the relations between preference models using a single reference point and
concordance relations. None of these two models is a subclass of the other. Finally,
since the conditions that we have exhibited are entirely phrased in terms of a preference
relation % on X, they could be subjected to empirical tests.
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We conclude with the indication of directions for future research on the subject.
The first is to analyze models using reference points that would include an idea of
“non-discordance” as in the ELECTRE TRI model. Using the results in Bouyssou and
Marchant (2007a,b), this should not be overly difficult. The second is to pursue the
analysis of preference models using several reference points. Indeed, Rolland (2003,
2006a,b, 2008, 2013) has proposed several particular cases of the general model that
we study in Section 8. Finally, it is clearly of particular interest to further investigate
elicitation techniques that would lead to specify the parameters of the models that we
have studied.
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ROADEF, pages 153–167. Presses Universitaires de Valenciennes, 2006a.

A. Rolland. On bi-capacity-based concordance rules in multicriteria decision making. In
B. Bouchon-Meunier, G. Coletti, and R. R. Yager, editors, Modern Information Processing:
From theory to applications, pages 231–245. Elsevier, 2006b.
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Supplementary material to the paper
Multiattribute preference models with reference points

Denis Bouyssou & Thierry Marchant

18 April 2013

A1. Proof of Lemma 1

Suppose that % is a RSRP having two distinct representations, i.e., that we have

x % y ⇔ S(x) D S(y)⇔ S ′(x) D′ S ′(y),

where S(x) = {i ∈ N : xi ∈ Ai} and S ′(x) = {i ∈ N : xi ∈ A′i}.
Suppose that for some ei ∈ Xi, we have ei ∈ Ai and ei /∈ A′i. Because attribute i ∈ N

is influential, there are xi, yi, zi, wi ∈ Xi and a−i, b−i ∈ X−i such that (xi, a−i) % (yi, b−i)
and (zi, a−i) 6% (wi, b−i).

Because ei ∈ Ai and (xi, a−i) % (yi, b−i), we must have (ei, a−i) % (yi, b−i). Similarly,
because ei /∈ A′i and (zi, a−i) 6% (wi, b−i), we must have (ei, a−i) 6% (wi, b−i).

Suppose that yi ∈ Ai. Using (ei, a−i) % (yi, b−i) and the monotonicity of D, we
obtain (ei, a−i) % (si, b−i), for all si ∈ Xi. This is contradictory since we know that
(ei, a−i) 6% (wi, b−i).

Suppose that yi ∈ A′i. Using (ei, a−i) % (yi, b−i) and the monotonicity of D′, we
obtain (ei, a−i) % (si, b−i), for all si ∈ Xi. This is contradictory since we know that
(ei, a−i) 6% (wi, b−i).

Hence, yi /∈ Ai and yi /∈ A′i. Since we have (ei, a−i) % (yi, b−i) and (ei, a−i) 6%
(wi, b−i), we must have wi ∈ Ai and wi ∈ A′i.

Because (ei, a−i) % (yi, b−i), yi /∈ A′i and ei /∈ A′i, we obtain (ei, a−i) % (ei, b−i).
Similarly, because (ei, a−i) 6% (wi, b−i), wi ∈ Ai and ei ∈ Ai, we obtain (ei, a−i) 6%
(ei, b−i), a contradiction.

Hence, we have shown that, for all i ∈ N , we have Ai = A′i. It is easy to show that
this implies D = D′.

Let us now prove that ∅ ( Ai ( Xi. Because attribute i ∈ N is influential, there
are xi, yi, zi, wi ∈ Xi and a−i, b−i ∈ X−i such that (xi, a−i) % (yi, b−i) and (zi, a−i) 6%
(wi, b−i). If Ai = ∅ or Ai = Xi, we have S((xi, a−i)) = S((zi, a−i)) and S((yi, b−i)) =
S((wi, b−i)). Because % is a RSRP, this implies (xi, a−i) % (yi, b−i) ⇔ (zi, a−i) %
(wi, b−i), a contradiction.

A2. Proof of Lemma 2

We know that % has a unique representation in which, for all i ∈ N , ∅ ( Ai ( Xi.
Hence, for all A,B ⊆ N , there are x, y ∈ X such that S(x) = A and S(y) = B.
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Part 1.Let x ∈ X. Since D is reflexive, we know that S(x) D S(x), so that x % x.
Hence, % is reflexive. Conversely, let A ⊆ N . We have S(x) = A, for some x ∈ X. Since
x % x, we obtain A D A. Hence, D is reflexive.

The proof of Parts 2 and 3 is similar.
Part 4. Suppose that % is not independent so that we have (xi, a−i) % (xi, b−i) and

(yi, a−i) 6% (yi, b−i), for some i ∈ N , xi, yi ∈ Xi, and a, b ∈ X. Since % is a RSRP, it
is impossible that xi, yi ∈ Ai or xi, yi /∈ Ai. Letting A = {j ∈ N \ {i} : aj ∈ Aj} and
B = {j ∈ N \ {i} : bj ∈ Aj}, we obtain either A D B and A ∪ {i} 4 B ∪ {i} or A 4 B
and A ∪ {i} D B ∪ {i}.

Conversely, suppose that we have A D B and A ∪ {i} 4 B ∪ {i}. Let a, b ∈ X be
such that A = {j ∈ N \ {i} : aj ∈ Aj} and B = {j ∈ N \ {i} : bj ∈ Aj}. Take xi ∈ Ai
and yi /∈ Ai. We obtain (xi, a−i) 6% (xi, b−i) and (yi, a−i) % (yi, b−i). The case A 4 B
and A ∪ {i} D B ∪ {i} is similar.

A3. Proof of Lemma 6

Let % be a RSRP. Lemma 1 has shown that it has a unique representation using
the sets Ai and the relation D. Using the definition of a RSRP, it is easy to see that
if xi, yi ∈ Ai or if xi, yi /∈ Ai, we have xi ∼±i yi. Moreover, if xi ∈ Ai and yi /∈ Ai, the
monotonicity of D w.r.t. inclusion implies xi %

±
i yi. Hence, the relation %±i is a weak

order having at most two distinct equivalence classes.
Because we have supposed that each i ∈ N is influential, there are xi, yi, zi, wi ∈ Xi

and a, b ∈ X such that (xi, a−i) % (yi, b−i) and (zi, a−i) 6% (wi, b−i). If zi %
+
i xi and

yi %
−
i wi, (xi, a−i) % (yi, b−i) implies (zi, a−i) % (wi, b−i), a contradiction. Hence, we

must have either xi �+
i zi or wi �−i yi. Either case implies that the weak order %±i has

at least two distinct equivalence classes.

A4. Proof of Lemma 7

For all i ∈ N , define Ai as the set of elements of Xi in the first equivalence class
of %±i . Define the relation D letting, for all A,B ⊆ N , A D B if x % y, for some
x, y ∈ X such that S(x) = A and S(y) = B. We have to show that, for all x, y ∈ X,
x % y ⇔ S(x) D S(y) and that D is monotonic w.r.t. inclusion. If x % y, the definition
of D implies that S(x) D S(y). Suppose now that S(x) D S(y). By construction, this
implies that, for some z, w ∈ X we have z % w, S(z) = S(x) and S(w) = S(y). This
implies that, for all i ∈ N , xi ∼±i zi and yi ∼±i wi. Using (4), we obtain x % y.

It remains to prove that D is monotonic w.r.t. inclusion.
Suppose that for some x, y, z, w ∈ X we have S(z) ⊇ S(x), S(y) ⊇ S(w), and

S(x) D S(y). By construction of the sets Ai, S(z) ⊇ S(x) and S(y) ⊇ S(w) imply that,
for all i ∈ N , we have zi %

±
i xi and yi %

±
i wi. Since S(x) D S(y), we have x % y. Using

(3), we obtain z % w, so that S(z) D S(w).
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A5. Proof of Lemma 8

We prove Part 1, the proof of the other parts being similar. The negation of AC 1∗i
says that (xi, a−i) % c, (yi, b−i) % d, (yi, a−i) 6% c, (zi, b−i) 6% d, for some a, b, c, d ∈ X
and some xi, yi, zi ∈ Xi. This is equivalent to saying that we have Not [yi %

+
i xi] and

Not [zi %
+
i yi].

A6. Proof of Lemma 9

Suppose that AC 1∗i is violated, so that we have (xi, a−i) % c, (yi, b−i) % d, (yi, a−i) 6%
c, and (zi, b−i) 6% d, for some a, b, c, d ∈ X and some xi, yi, zi ∈ Xi. Since (xi, a−i) % c
and (yi, a−i) 6% c, we have Not [yi %+

i xi]. In a RSRP, this can only happen if yi /∈
Ai. Since yi /∈ Ai, we have S((zi, a−i)) ⊇ S((yi, a−i)). Because (yi, b−i) % d, we
know that S((yi, b−i)) D S(d). Using the monotonicity of D w.r.t. inclusion, we obtain
S((zi, b−i)) D S(d), so that (zi, b−i) % d, a contradiction. The proof of the other parts
is similar.

A7. Proof of Lemma 11

[AC 1∗i , AC 2∗i , AC 3∗i , AC 4∗i ] ⇒ [%±i is a weak order having at most two distinct
equivalence classes]. Using Lemma 10, we know that AC 1i, AC 2i, and AC 3i hold, so
that, using Lemma 4, %±i is a weak order. Suppose that we have, for some xi, yi, zi ∈ Xi,
xi �±i yi and yi �±i zi. By construction, xi �±i yi implies either

[xi �+
i yi and xi %

−
i yi] or (A 11a)

[xi %
+
i yi and xi �−i yi]. (A 11b)

Similarly, yi �±i zi implies either

[yi �+
i zi and yi %

−
i zi] or (A 11c)

[yi %
+
i zi and yi �−i zi]. (A 11d)

The combination of (A 11a) and (A 11c) violates Lemma 8.1 (i.e., Part 1 of Lemma 8)
since it implies Not [yi %+

i xi] and Not [zi %+
i yi]. The combination of (A 11b) and

(A 11d) violates Lemma 8.2 since it implies Not [yi %−i xi] and Not [zi %−i yi]. The
combination of (A 11a) and (A 11d) violates Lemma 8.3 since it implies Not [yi %

+
i xi]

and Not [zi %
−
i yi]. Finally, the combination of (A 11b) and (A 11c) violates Lemma 8.4

since it implies Not [yi %
−
i xi] and Not [zi %

+
i yi].

[%±i is a weak order having at most two distinct equivalence classes]⇒ [AC 1∗i , AC 2∗i ,
AC 3∗i , AC 4∗i ]. Suppose that (xi, a−i) % c, and (yi, b−i) % d. If (yi, a−i) 6% c, we know
that xi �+

i yi, so that xi �±i yi. Since %±i is a weak order having only two distinct
equivalence classes, this implies that, for all zi ∈ Xi, zi %

±
i yi, so that zi %

+
i yi. Hence,

(yi, b−i) % d implies (zi, b−i) % d. This shows that AC 1∗i holds. The proof for the other
three conditions is similar.
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The proof is completed observing that, since all attributes are influential, all relations
%±i have at least two equivalence classes.

In all examples in Sections A8, A10, and A14, we take n = 3 and X1 = {x, y, z},
X2 = {a, b} and X3 = {p, q}. To save space, we often write xap instead of (x, a, p).

A8. Proof of Lemma 12

We have to show that in the class of all semiorders on X, conditions AC 1∗, AC 2∗,
AC 3∗, and AC 4∗ are independent.

We provide below the required four examples. In all these examples, we define %
by its boolean matrix, so that it is easy to check that the relations considered below
are semiorders. Indeed, if it is possible to arrange the rows and columns of the boolean
matrix in the same order so that the boolean matrix is stepped, we know that the relation
is a semiorder (Aleskerov et al. 2007, p. 80).

Example 1. Let % on X be defined by the following table:

xaq yaq zaq xap yap zap ybq xbp xbq ybp zbp zbq
xaq 1 1 1 1 1 1 1 1 1 1 1 1
yaq 1 1 1 1 1 1 1 1 1 1 1 1
zaq 1 1 1 1 1 1 1 1 1 1 1 1
xap 1 1 1 1 1 1 1 1 1 1 1 1
yap 1 1 1 1 1 1 1 1 1 1 1 1
zap 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
xbp 1 1 1 1 1 1 1 1 1 1 1 1
xbq 1 1 1 1 1 1 1 1 1 1 1 1
ybp 0 0 0 1 1 1 1 1 1 1 1 1
zbp 0 0 0 0 0 0 1 1 1 1 1 1
zbq 0 0 0 0 0 0 1 1 1 1 1 1

It is clear that this relation is a semiorder on X.
It is easy to check that we have a �+

2 b, a �−2 b, q �+
3 p and q �−3 p. Using Lemma 8

shows that AC 1∗i , AC 2∗i , AC 3∗i , and AC 4∗i hold for i = 2, 3.
On attribute 1, we have x ∼−1 y ∼−1 z and x �+

1 y �+
1 z. Using Lemma 8 shows that

AC 2∗1, AC 3∗1, and AC 4∗1 hold, while AC 1∗1 is clearly violated.

Transposing the boolean matrix in the above example, one easily obtain an example
satisfying all our conditions except AC 2 on one attribute. Indeed, on each attribute the
consequence of this transposition is is to interchange the roles of %+

i and %−i and to
reverse them. This is detailed below.

Example 2. Let % on X be defined by the following table:
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zbq zbp ybp xbq xbp ybq zap yap xap zaq yaq xaq
zbq 1 1 1 1 1 1 1 1 1 1 1 1
zbp 1 1 1 1 1 1 1 1 1 1 1 1
ybp 1 1 1 1 1 1 1 1 1 1 1 1
xbq 1 1 1 1 1 1 1 1 1 1 1 1
xbp 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
zap 0 0 1 1 1 1 1 1 1 1 1 1
yap 0 0 1 1 1 1 1 1 1 1 1 1
xap 0 0 1 1 1 1 1 1 1 1 1 1
zaq 0 0 0 1 1 1 1 1 1 1 1 1
yaq 0 0 0 1 1 1 1 1 1 1 1 1
xaq 0 0 0 1 1 1 1 1 1 1 1 1

It is clear that this relation is a semiorder on X.
It is easy to check that we have b �+

2 a, b �−2 a, p �+
3 q and p �−3 q. Using Lemma 8

shows that AC 1∗i , AC 2∗i , AC 3∗i , and AC 4∗i hold for i = 2, 3.
On attribute 1, we have x ∼+

1 y ∼+
1 z and z �−1 y �−1 x. Using Lemma 8 shows that

AC 1∗1, AC 3∗1, and AC 4∗1 hold, while AC 2∗1 is clearly violated.

Example 3. Let % on X be defined by the following table:

xaq yaq xap xbp xbq yap ybq zap zaq zbq ybp zbp
xaq 1 1 1 1 1 1 1 1 1 1 1 1
yaq 1 1 1 1 1 1 1 1 1 1 1 1
xap 1 1 1 1 1 1 1 1 1 1 1 1
xbp 1 1 1 1 1 1 1 1 1 1 1 1
xbq 1 1 1 1 1 1 1 1 1 1 1 1
yap 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
zap 1 1 1 1 1 1 1 1 1 1 1 1
zaq 1 1 1 1 1 1 1 1 1 1 1 1
zbq 1 1 1 1 1 1 1 1 1 1 1 1
ybp 0 0 1 1 1 1 1 1 1 1 1 1
zbp 0 0 1 1 1 1 1 1 1 1 1 1

It is clear that this relation is a semiorder on X.
It is easy to check that we have a �+

2 b, a �−2 b, q �+
3 p and q �−3 p. Using Lemma 8

shows that AC 1∗i , AC 2∗i , AC 3∗i , and AC 4∗i hold for i = 2, 3.
On attribute 1, we have x �+

1 [y ∼+
1 z] and [x ∼−1 y] �−1 z. Using Lemma 8 shows

that AC 1∗1, AC 2∗1, and AC 4∗1 hold, while AC 3∗1 is clearly violated.

Example 4. Let % on X be defined by the following table:
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xbp xbq xap xaq yap yaq ybp ybq zaq zbq zap zbp
xbp 1 1 1 1 1 1 1 1 1 1 1 1
xbq 1 1 1 1 1 1 1 1 1 1 1 1
xap 1 1 1 1 1 1 1 1 1 1 1 1
xaq 1 1 1 1 1 1 1 1 1 1 1 1
yap 1 1 1 1 1 1 1 1 1 1 1 1
yaq 1 1 1 1 1 1 1 1 1 1 1 1
ybp 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
zaq 1 1 1 1 1 1 1 1 1 1 1 1
zbq 1 1 1 1 1 1 1 1 1 1 1 1
zap 0 0 1 1 1 1 1 1 1 1 1 1
zbp 0 0 1 1 1 1 1 1 1 1 1 1

It is clear that this relation is a semiorder on X.
It is easy to check that we have b ∼+

2 a, b �−2 a, q �+
3 p and q ∼−3 p. Using Lemma 8

shows that AC 1∗i , AC 2∗i , AC 3∗i , and AC 4∗i hold for i = 2, 3.
On attribute 1, we have [x ∼+

1 y] �+
1 z and x �−1 [y ∼−1 z]. Using Lemma 8 shows

that AC 1∗1, AC 2∗1, and AC 3∗1 hold, while AC 4∗1 is clearly violated.

Observe that going from Example 3 to Example 4 does not amount to transposing
the boolean matrix of the relation in Example 3. Transposing a relation violating only
AC 3∗1 does not lead to a relation violating only AC 4∗1.

A9. Proof of Lemma 13

Part 1. It is clear that AC 1∗i implies AC 1∗∗i (since the latter condition amount to
add a premise to the former condition) and AC 1i (in view of Lemma 10). Let us show
that the reverse implication holds. Suppose that AC 1∗i is violated, so that we have:
(xi, a−i) % c, (yi, b−i) % d, (yi, a−i) 6% c, (zi, b−i) 6% d, for some a, b, c, d ∈ X and some
xi, yi, zi ∈ Xi. Since AC 1i holds, we know that %+

i is a weak order. In view of the fact
that (xi, a−i) % c and (yi, a−i) 6% c, we must have xi %

+
i yi. Since (yi, b−i) % d, we obtain

(xi, b−i) % d. Hence, we have: (xi, a−i) % c, (yi, b−i) % d, (xi, b−i) % d, (yi, a−i) 6% c,
(zi, b−i) 6% d, violating AC 1∗∗i .

The proof of the other parts is similar.

A10. Proof of Lemma 14

We have to show that in the class of all semiorders on X, conditions AC 1i, AC 2i,
AC 3i, AC 1∗∗, AC 2∗∗, AC 3∗∗, and AC 4∗∗ are independent. Seven examples are needed
to do so.

Observe first that in Examples 1–4, conditions AC 1, AC 2, AC 3 are satisfied. Hence,
each of these examples violates exactly one of AC 1∗∗i , AC 2∗∗i , AC 3∗∗i , and AC 4∗∗i . It
remains to find three more examples.
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In order to check the following three examples, it will be helpful to observe that
whenever Xi has only two elements, conditions AC 1∗∗i , AC 2∗∗i , AC 3∗∗i , and AC 4∗∗i are
always satisfied. Indeed, the premises of AC 1∗∗i state that (xi, a−i) % c, (yi, b−i) % d, and
(xi, b−i) % d. The two possible conclusions of AC 1∗∗i are (yi, a−i) % c or (zi, b−i) % d.
If xi = yi then the first conclusion of AC 1∗∗i trivially holds. If xi 6= yi then the second
possible conclusion of AC 1∗∗i will trivially hold since zi must be either xi or yi. A
similar reasoning applies to AC 2∗∗i and AC 4∗∗i . The premises of AC 3∗∗i state that
(xi, a−i) % c, d % (zi, b−i). The three possible conclusions are (yi, a−i) % c, d % (yi, b−i),
or d % (xi, b−i). If xi = zi, then the third conclusion of AC 3∗∗i trivially holds. If xi 6= zi,
then the yi in the conclusion of AC 3∗∗i must be either xi or zi. In the first (resp. second)
case, the first (resp. second) conclusion trivially holds.

Example 5. Let % on X be defined by the following table:

zbp ybp xbp ybq zbq xbq zap yap xap yaq zaq xaq
zbp 1 1 1 1 1 1 1 1 1 1 1 1
ybp 1 1 1 1 1 1 1 1 1 1 1 1
xbp 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
zbq 0 0 0 1 1 1 1 1 1 1 1 1
xbq 0 0 0 1 1 1 1 1 1 1 1 1
zap 0 0 0 1 1 1 1 1 1 1 1 1
yap 0 0 0 0 0 0 1 1 1 1 1 1
xap 0 0 0 0 0 0 1 1 1 1 1 1
yaq 0 0 0 0 0 0 1 1 1 1 1 1
zaq 0 0 0 0 0 0 0 0 0 1 1 1
xaq 0 0 0 0 0 0 0 0 0 1 1 1

It is clear that this relation is a semiorder.
It is easy to check that the traces are as follows.
On attribute 2, we have b �+

2 a and b �−2 a. Hence, AC 12, AC 22, and AC 32 hold.
Since X2 has only two elements, AC 1∗∗2 , AC 2∗∗2 , AC 3∗∗2 , and AC 4∗∗2 trivially hold.

On attribute 3, we have p �+
3 q and p �−3 q. Hence, AC 13, AC 23, and AC 33 hold.

Since X3 has only two elements, AC 1∗∗3 , AC 2∗∗3 , AC 3∗∗3 , and AC 4∗∗3 trivially hold.
On attribute 1, %−1 is a clique. Furthermore, we have y �+

1 x and z �+
1 x, but

neither y %+
1 z nor z %+

1 y. It easy to check that this implies that AC 21 and AC 31 hold,
while AC 11 is violated.

It remains to check that AC 1∗∗1 , AC 2∗∗1 , AC 3∗∗1 , and AC 4∗∗1 are satisfied.
Using Lemma 8, it is easy to check that AC 2∗1, AC 3∗1, and AC 4∗1 are satisfied.

Indeed, since %−1 is a clique, the premise of AC 2∗1 and AC 4∗1 is never satisfied, while the
conclusion AC 3∗1 always holds.

Let us check that AC 1∗∗1 holds.
The second premise of AC 1∗∗1 is (y1, b−1) % d. If y1 = x then since all elements of

X1 are above x according to %+
1 , we will have that (z1, b−1) % d, for all z1 ∈ X1.
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Similarly, the first premise of AC 1∗∗1 is (x1, a−1) % c. If x1 = x then since all elements
of X1 are above x according to %+

1 , we will have that (y1, a−1) % c, for all y1 ∈ X1.
This shows that the only possible violations of AC 1∗∗1 will occur if either x1 = y and

y1 = z or x1 = z and y1 = y.
Let us consider the first case with x1 = y and y1 = z. The premises of AC 1∗∗1 state

that (y, a−1) % c, (z, b−1) % d, and (y, b−1) % d. It is easy to check that whenever we
have both (z, b−1) % d and (y, b−1) % d, we also have that (x, b−1) % d. Hence, the
second conclusion of AC 1∗∗1 is satisfied.

Let us now consider the second case in which x1 = z and y1 = y. The premises
of AC 1∗∗1 state that (z, a−1) % c, (y, b−1) % d, and (z, b−1) % d. As observed above,
whenever we have both (y, b−1) % d and (z, b−1) % d, we also have that (x, b−1) % d.
Hence, the second conclusion of AC 1∗∗1 is satisfied.

Hence, AC 1∗∗1 holds.

Transposing the boolean matrix in the above example, one easily obtain an example
satisfying all our conditions except AC 2 on one attribute. This is detailed below.

Example 6. Let % on X be defined by the following table:

xaq zaq yaq xap yap zap xbq zbq ybq xbp ybp zbp
xaq 1 1 1 1 1 1 1 1 1 1 1 1
zaq 1 1 1 1 1 1 1 1 1 1 1 1
yaq 1 1 1 1 1 1 1 1 1 1 1 1
xap 0 0 1 1 1 1 1 1 1 1 1 1
yap 0 0 1 1 1 1 1 1 1 1 1 1
zap 0 0 1 1 1 1 1 1 1 1 1 1
xbq 0 0 0 0 0 1 1 1 1 1 1 1
zbq 0 0 0 0 0 1 1 1 1 1 1 1
ybq 0 0 0 0 0 1 1 1 1 1 1 1
xbp 0 0 0 0 0 0 0 0 1 1 1 1
ybp 0 0 0 0 0 0 0 0 1 1 1 1
zbp 0 0 0 0 0 0 0 0 1 1 1 1

It is clear that this relation is a semiorder.
It is easy to check that the traces are as follows.
On attribute 2, we have a �+

2 b and a �−2 b. Hence, AC 12, AC 22, and AC 32 hold.
Since X2 has only two elements, AC 1∗∗2 , AC 2∗∗2 , AC 3∗∗2 , and AC 4∗∗2 trivially hold.

On attribute 3, we have q �+
3 p and q �−3 p. Hence, AC 13, AC 23, and AC 33 hold.

Since X3 has only two elements, AC 1∗∗3 , AC 2∗∗3 , AC 3∗∗3 , and AC 4∗∗3 trivially hold.
On attribute 1, %+

1 is a clique. Furthermore, we have x �−1 y and x �−1 z, but
neither y %−1 z nor z %−1 y. It easy to check that this implies that AC 11, and AC 31
hold, while AC 21 is violated.

It remains to check that AC 1∗∗1 , AC 2∗∗1 , AC 3∗∗1 , and AC 4∗∗1 are satisfied.

viii



Using Lemma 8, it is easy to check that AC 1∗1, AC 3∗1, and AC 4∗1 are satisfied.
Indeed, since %+

1 is a clique, the premise of AC 1∗1 and AC 3∗1 is never satisfied, while the
conclusion AC 4∗1 always holds.

Let us check that AC 2∗∗1 holds.
The second premise of AC 2∗∗1 is d % (z1, b−1). If z1 = x then since all elements of

X1 are below x according to %−1 , we will have that d % (y1, b−i), for all y1 ∈ X1.
Similarly, the first premise of AC 2∗∗1 is c % (y1, a−1). If y1 = x then, since all

elements of X1 are below x according to %−1 , we will have that c % (x1, a−1), for all
x1 ∈ X1.

This shows that the only possible violations of AC 2∗∗1 will occur if either y1 = y and
z1 = z or y1 = z and z1 = y.

Let us consider the first case with y1 = y and z1 = z. The premises of AC 2∗∗1 state
that c % (y, a−1), d % (z, b−1), and c % (z, a−1). It is easy to check that whenever we
have both c % (y, a−1) and c % (z, a−1) we also have c % (x, a−1). Hence, the first
conclusion of AC 2∗∗1 will hold.

Let us now consider the second case in which y1 = z and z1 = y. The premises
of AC 2∗∗1 state that c % (z, a−1), d % (y, b−1), and c % (y, a−1). As observed above,
whenever we have both c % (z, a−1) and c % (y, a−1), we also have that c % (x, a−1).
Hence, the first conclusion of AC 2∗∗1 is satisfied.

Hence, AC 2∗∗1 holds.

Example 7. Let % on X be defined by the following table:

xaq yaq xap xbp xbq yap ybp ybq zap zaq zbp zbq
xaq 1 1 1 1 1 1 1 1 1 1 1 1
yaq 1 1 1 1 1 1 1 1 1 1 1 1
xap 1 1 1 1 1 1 1 1 1 1 1 1
xbp 1 1 1 1 1 1 1 1 1 1 1 1
xbq 1 1 1 1 1 1 1 1 1 1 1 1
yap 1 1 1 1 1 1 1 1 1 1 1 1
ybp 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
zap 1 1 1 1 1 1 1 1 1 1 1 1
zaq 1 1 1 1 1 1 1 1 1 1 1 1
zbp 1 1 1 1 1 1 1 1 1 1 1 1
zbq 0 0 1 1 1 1 1 1 1 1 1 1

This relation is a semiorder.
It is easy to check that the traces are as follows.
On attribute 2, we have a �+

2 b and a �−2 b. Hence, AC 12, AC 22, and AC 32 hold.
Since X2 has only two elements, AC 1∗∗2 , AC 2∗∗2 , AC 3∗∗2 , and AC 4∗∗2 trivially hold.

On attribute 1, we have [x ∼+
1 y] �+

1 z and [x ∼−1 y] �−1 z. Using Lemma 8, it is
easy to check that AC 1∗1, AC 2∗1, AC 3∗1, and AC 4∗1 hold. This shows that AC 11, AC 21,
AC 31, AC 1∗∗1 , AC 2∗∗1 , AC 3∗∗1 , and AC 4∗∗1 hold.
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On attribute 3, we have p �+
3 q and q �−3 p. Hence, AC 13 and AC 23 hold but AC 33

is violated. Since X3 has only two elements, AC 1∗∗3 , AC 2∗∗3 , AC 3∗∗3 , and AC 4∗∗3 trivially
hold.

A11. Proof of Lemma 15

This is obvious since a CR-AT does not impose a limit on the number of equivalence
classes of the relations %±i . For instance, let n = 3, X1 = X2 = X3 = R, and X =∏n
i=1Xi. For all i ∈ N , let Ti be identical to ≥. Consider the relation % on X such that

x % y ⇔ |T (x, y)| ≥ |T (y, x)|

By construction, this relation is a CR-AT. It is not a RSRP. Indeed, it is easy to see
that for all i ∈ N , we have %±i = ≥. But we know that with a RSRP, all relations %±i
have two distinct equivalence classes.

A12. Proof of Lemma 16

We know from Lemma 6 that in a RSRP all relations %±i are weak orders. Hence,
in view of the comments following Definition 8, it is enough to show that all relations
%∗∗i are weak orders having at most three equivalence classes.

It is easy to show that, for all i ∈ N and all xi, x
′
i, yi, y

′
i, zi, z

′
i, wi, w

′
i ∈ Xi, (xi, yi) %∗∗i

(zi, wi), x
′
i %
±
i xi, yi %

±
i y′i, zi %

±
i z′i, w

′
i %
±
i wi, imply (x′i, y

′
i) %∗∗i (z′i, w

′
i) (Bouyssou

and Pirlot 2005a, Lemma 3.8). In particular, using the reflexivity of %∗∗i , if xi ∼±i zi
and yi ∼±i wi we have (xi, yi) ∼∗∗i (zi, wi).

Let ai, bi ∈ Xi. For the ordered pair (ai, bi), it is clear that we have one of the
following four situations:

1. ai ∈ Ai and bi ∈ Ai,
2. ai ∈ Ai and bi /∈ Ai,
3. ai /∈ Ai and bi ∈ Ai,
4. ai /∈ Ai and bi /∈ Ai.

Consider two ordered pairs (xi, yi) and (zi, wi) of elements in Xi. If these two ordered
pairs are in the same situation, we have xi ∼±i zi and yi ∼±i wi, so that (xi, yi) ∼∗∗i
(zi, wi).

All ordered pairs (xi, yi) in the second situation are above all ordered pairs (zi, wi)
in the first situation in terms of %∗∗i . Indeed, in this case, we know that [xi ∼±i zi ∼±i
wi] �±i yi. Since %∗∗i is reflexive, we have (zi, wi) %∗∗i (zi, wi). Using the fact that
xi %

±
i zi and wi %

±
i yi, we obtain (xi, yi) %∗∗i (zi, wi). A similar reasoning shows that all

ordered pairs (xi, yi) in the second situation are above all ordered pairs (zi, wi) in the in
the fourth situation in terms of %∗∗i .

Similarly, it is easy to check that all ordered pairs (xi, yi) in the first situation are
above all ordered pairs (zi, wi) in the in the third situation in terms of %∗∗i and that all
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ordered pairs (xi, yi) in the fourth situation are above all ordered pairs (zi, wi) in the in
the third situation in terms of %∗∗i .

Hence, the relation %∗∗i will be complete iff the elements in the first and fourth
situations are equivalent in terms of %∗∗i . Using Lemma 2.4, it is easy to see that this is
equivalent to requiring that % is independent. Observe that, when this is the case, %∗∗i
has at most three distinct equivalence classes.

A13. Proof of Lemma 17

[AC 2∗i ⇒ AC 1∗i ] Suppose that AC 1∗i is violated, so that (xi, a−i) % c, (yi, b−i) % d,
(yi, a−i) 6% c, (zi, b−i) 6% d. Using the fact that % is a weak order, we obtain (xi, a−i) �
(yi, a−i) and (yi, b−i) � (zi, b−i). Since % is reflexive, we have (yi, a−i) % (yi, a−i)
and (zi, b−i) % (zi, b−i). Applying AC 2∗i , we obtain (yi, a−i) % (xi, a−i) or (zi, b−i) %
(yi, b−i), a contradiction.

[AC 3∗i ⇒ AC 2∗i ] Suppose that AC 2∗i is violated, so that c % (yi, a−i), d % (zi, b−i),
c 6% (xi, a−i), and d 6% (yi, b−i). Using the fact that % is a weak order, we obtain
(xi, a−i) � (yi, a−i) and (yi, b−i) � (zi, b−i). Since % is reflexive, we have (xi, a−i) %
(xi, a−i) and (zi, b−i) % (zi, b−i). Applying AC 3∗i , we obtain (yi, a−i) % (xi, a−i) or
(zi, b−i) % (yi, b−i), a contradiction.

[AC 4∗i ⇒ AC 3∗i ] Suppose that AC 3∗i is violated, so that (xi, a−i) % c, d % (zi, b−i),
(yi, a−i) 6% c, d 6% (yi, b−i). Using the fact that % is a weak order, we obtain (yi, b−i) �
(zi, b−i) and (xi, a−i) � (yi, a−i). Since % is reflexive, we have (yi, a−i) % (yi, a−i)
and (yi, b−i) % (yi, b−i). Applying AC 4∗i , we obtain (yi, a−i) % (xi, a−i) or (zi, b−i) %
(yi, b−i), a contradiction.

[AC 1∗i ⇒ AC 4∗i ] Suppose that AC 4∗i is violated, so that c % (yi, a−i), (yi, b−i) % d,
c 6% (xi, a−i), (zi, b−i) 6% d. Using the fact that % is a weak order, we obtain (xi, a−i) �
(yi, a−i) and (yi, b−i) � (zi, b−i). Since % is reflexive, we have (xi, a−i) % (xi, a−i)
and (yi, b−i) % (yi, b−i). Applying AC 1∗i , we obtain (yi, a−i) % (xi, a−i) or (zi, b−i) %
(yi, b−i), a contradiction.

A14. Proof of Lemma 18

We have to show that in the class of all weak orders on X, conditions AC 1 and
AC 1∗∗ are independent. We need two examples. The first gives an example of a weak
order satisfying AC 1 and AC 1∗∗i on all but one of the attributes. The second gives an
example of a weak order satisfying AC 1∗∗ and AC 1i on all but one of the attributes.

Example 8. Let % on X be the weak order obtained using an additive value function
model with the following value functions: v1(x) = 0, v1(y) = 1, v1(z) = 2, v2(a) = 0,
v2(b) = 1, v3(p) = 0, and v3(q) = 1. It is easy to check that, for this weak order, we
have: z �+

1 y �+
1 x, b �+

2 a, and q �+
3 p. This shows that conditions AC 1, AC 1∗∗2 , and

AC 1∗∗3 hold. By construction, AC 1∗∗1 is violated.

Example 9. Let % on X be defined by the following table:
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xbp xbq ybp ybq zap zbp zbq xap yap yaq xaq zaq
xbp 1 1 1 1 1 1 1 1 1 1 1 1
xbq 1 1 1 1 1 1 1 1 1 1 1 1
ybp 1 1 1 1 1 1 1 1 1 1 1 1
ybq 1 1 1 1 1 1 1 1 1 1 1 1
zap 1 1 1 1 1 1 1 1 1 1 1 1
zbp 1 1 1 1 1 1 1 1 1 1 1 1
zbq 1 1 1 1 1 1 1 1 1 1 1 1
xap 0 0 0 0 0 0 0 1 1 1 1 1
yap 0 0 0 0 0 0 0 1 1 1 1 1
yaq 0 0 0 0 0 0 0 1 1 1 1 1
xaq 0 0 0 0 0 0 0 0 0 0 1 1
zaq 0 0 0 0 0 0 0 0 0 0 1 1

It is clear that this relation is the weak order on X such that:

[xbp, xbq, ybp, ybq, zap, zbp, zbq] � [xap, yap, yaq] � [xaq, zaq]

It is easy to check that we have b �+
2 a and p �+

3 q. Using Lemma 8 shows that AC 1∗i
and, hence, AC 1i and AC 1∗∗i , hold for i = 2, 3.

On attribute 1, we have y �+
1 x, z �+

1 x, but neither y �+
1 z nor z �+

1 y, so that
AC 11 is violated.

Let us check that AC 1∗∗1 holds.
The second premise of AC 1∗∗1 is (y1, b−1) % d. If y1 = x then, since all elements of

X1 are above x according to %+
1 , we will have that (z1, b−1) % d, for all z1 ∈ X1.

Similarly, the first premise of AC 1∗∗1 is (x1, a−1) % c. If x1 = x then, since all
elements of X1 are above x according to %+

1 , we will have that (y1, a−1) % c, for all
y1 ∈ X1.

This shows that the only possible violations of AC 1∗∗1 will occur if either x1 = y and
y1 = z or x1 = z and y1 = y.

Let us consider the first case with x1 = y and y1 = z. The premises of AC 1∗∗1 state
that (y, a−1) % c, (z, b−1) % d, and (y, b−1) % d. It is easy to check that whenever we
have both (z, b−1) % d and (y, b−1) % d, we also have that (x, b−1) % d. Hence, the
second conclusion of AC 1∗∗1 is satisfied.

Let us now consider the second case in which x1 = z and y1 = y. The premises
of AC 1∗∗1 state that (z, a−1) % c, (y, b−1) % d, and (z, b−1) % d. As observed above,
whenever we have both (y, b−1) % d and (z, b−1) % d, we also have that (x, b−1) % d.
Hence, the second conclusion of AC 1∗∗1 is satisfied.

Hence, AC 1∗∗1 holds.

A15. Proof of Lemma 19

We know that a RSRP that is a weak order only has a finite number of distinct
equivalence classes. Hence, the proof follows from Proposition 4 and the fact that AC 1∗

implies 2∗-graded.
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A16. Proof of Lemma 20

Let us show that AC 1 holds. Suppose that (xi, a−i) % c and (yi, b−i) % d. Because
Ri is a semiorder, we know (see the end of Section 2.1) that the relation R◦i is a weak
order. By construction, we have either xi R

◦
i yi or yi R

◦
i xi.

Suppose that xi R
◦
i yi. By construction, for all k ∈ L, yi Ri π

k
i implies xi Ri

πki . This implies RL((xi, b−i)) w RL((yi, b−i)). Since (yi, b−i) % d, we know that
RL((yi, b−i)) DL RL(d). Using the fact that DL is monotonic w.r.t. inclusion, we obtain
RL((xi, b−i)) DL RL(d), so that (xi, b−i) % d. A similar proof shows that if yi R

◦
i xi

then we have (yi, a−i) % c. Hence, AC 1 holds.
The proof for AC 2 and AC 3 is similar.
Let us show that the weak order %±i has at most ` + 1 distinct equivalence classes.

For all k ∈ L, define Aki = {xi ∈ Xi : xi Ri π
k
i }. Because Ri is a semiorder, the relation

R◦i is a weak order. Let k, k′ ∈ L. We have either πki R
◦
i π

k′
i or πk

′
i R◦i π

k
i . Hence, we

have either Aki ⊆ Ak
′
i or Ak′i ⊆ Aki . This shows that, for all i ∈ N , the sets Aki , k ∈ L are

nested. Moreover, it is clear that if xi, yi ∈ Xi belong exactly to the same subsets Aki ,
k ∈ L, we must have xi ∼±i yi. This completes the proof since the sets Aki are nested.

A17. Proof of Lemma 21

For all i ∈ N , we know that %±i is a weak order and that Xi/∼±i is finite. Let `i be
the number of distinct equivalence classes of Xi/∼±i . Let ` = maxi∈N `i. The proof will
be complete if we show that % is a RMRP.

By construction, there is at least one i ∈ N such that %±i has exactly ` distinct
equivalence classes. On all such attributes i ∈ N , we define Eki , for k = 1, 2, . . . , `,
as the set containing all elements in the kth equivalence class of %±i . Consider now an
attribute j ∈ N such that %±j has `j distinct equivalence classes with `j < `. For all such

attributes j ∈ N , we define Ekj , for k = 1, 2, . . . , `j , as the set containing all elements in

the kth equivalence class of %±j . For k = `j + 1, `j + 2, . . . , `, we define Ekj = E
`j
j .

For all i ∈ N , let us take Ri = %±i .
We use ` profiles π1, π2, . . . , π` that are build as follows. For all i ∈ N and k ∈ L,

let πki be any element belonging to E`−k+1
i .

We define the binary relation DL on (2N )` letting (A1, . . . , A`) DL (B1, . . . , B`)
whenever there are x, y ∈ X such that x % y, RL(x) = (A1, . . . , A`), and RL(y) =
(B1, . . . , B`).

We claim that the family of reference points π1, π2, . . . , π` together with the weak
orders Ri = %±i and the relation DL is a representation of % in model (RMRP).

Suppose first that x % y. Then, by construction, we have RL(x) DL RL(y).
Suppose now that (A1, . . . , A`) DL (B1, . . . , B`) and consider x, y ∈ X such that

RL(x) = (A1, . . . , A`), andRL(y) = (B1, . . . , B`). Because (A1, . . . , A`) DL (B1, . . . , B`),
we know that there are z, w ∈ X such thatRL(z) = (A1, . . . , A`), RL(w) = (B1, . . . , B`),
and z % w. Given the construction of the profiles π1, π2, . . . , π`, RL(x) = RL(z) implies
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that, for all i ∈ N , xi ∼±i zi. Similarly, RL(y) = RL(w) implies that, for all i ∈ N ,
yi ∼±i wi. Using (4), we obtain x % y.

It remains to show that DL is monotonic w.r.t. inclusion.
Suppose that (A1, . . . , A`) DL (B1, . . . , B`). This implies that x % y, for some x, y ∈

X such that RL(x) = (A1, . . . , A`), and RL(y) = (B1, . . . , B`). Take any (C1, . . . , C`)
and (D1, . . . , D`) such that, k ∈ L, Ck ⊇ Ak, Bk ⊇ Dk, and there are z, w ∈ X such
that RL(z) = (C1, . . . , C`), and RL(w) = (D1, . . . , D`). By construction of the family
of reference points π1, π2, . . . , π`, this implies that zi %

±
i xi and yi %

±
i wi, for all i ∈ N .

Using, (3), we obtain z % w, so that (C1, . . . , C`) DL (D1, . . . , D`), as required.
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