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Abstract

This paper studies conjoint measurement models tolerating intransitivi-
ties that closely resemble Tversky’s additive difference model while replacing
additivity and subtractivity by mere decomposability requirements. We of-
fer a complete axiomatic characterization of these models without having
recourse to unnecessary structural assumptions on the set of objects. This
shows the pure consequences of several cancellation conditions that have
often been used in the analysis of more traditional conjoint measurement
models. Our models contain as particular cases many aggregation rules that
have been proposed in the literature.

Keywords: conjoint measurement, nontransitive preferences, additive dif-
ference model, cancellation conditions.

Suggested running title: Generalized additive difference model
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1 Introduction

This paper pursues the analysis of conjoint measurement models tolerat-
ing intransitivity initiated in Bouyssou and Pirlot (2002). We are therefore
interested in numerical representations of a binary relation % on a prod-
uct set X = X1 × X2 × · · · × Xn; the elements of X are vectors x =
(x1, . . . , xi, . . . , xn), xi ∈ Xi interpreted as alternatives evaluated on sev-
eral attributes. The models that we study all admit a representation of the
following type:

(M– D) x % y ⇔ F (ϕ1(u1(x1), u1(y1)), . . . , ϕn(un(xn), un(yn))) ≥ 0 (1)

where ui are real-valued functions on Xi, ϕi are real-valued functions on
ui(Xi) × ui(Xi) and F is a real valued function on U =

∏n
i=1 ϕi(ui(Xi) ×

ui(Xi)). We refer to model (1) as to model (M– D) for reasons that will
become clear soon.

Variants of this model are obtained by combining additional properties
of F and ϕi, e.g.

• the functions ϕi may be supposed to be nondecreasing (resp. nonin-
creasing) in their first (resp. second) argument;

• they may be skew-symmetric (ϕi(vi, wi) = −ϕi(wi, vi), vi, wi ∈ ui(Xi));

• F may be supposed nondecreasing (resp. increasing) in all its argu-
ments;

• F may be odd (F (u) = −F (−u), u ∈ U ⊆ Rn).

These additional properties are motivated by the interpretation of the
functions. Intuitively, if a preference can be represented in model (1), the
preference of x over y can be explained as resulting from a positive bal-
ance, obtained through using function F , of the “differences of preference”,
represented by ϕi(ui(xi), ui(yi)), between x and y on each attribute. The
balance is supposed to improve in favour of x if any of the differences of
preference becomes more favourable to x as compared with y (hence it is
natural to consider the case in which F is a nondecreasing function of its
arguments ϕi(ui(xi), ui(yi))). In the same way, a “difference of preference”
ϕi(ui(xi), ui(yi)) should not decrease either when the “position” of x on at-
tribute i (represented by ui(xi)) improves or that of y on the same attribute
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(represented by ui(yi)) deteriorates (hence the case in which ϕi is nondecreas-
ing in its first argument and nonincreasing in the second is natural). The
same intuition leads to the hypothesis following which ϕi would be skew-
symmetric (since ϕi(ui(xi), ui(yi)) could be interpreted as the opposite of
the “difference of preference” represented by ϕi(ui(yi), ui(xi))). Finally, it is
tempting to view the result of the comparison of x to y as the opposite of the
result of the comparison of y to x, justifying, intuitively, the oddness of F .
Despite the appealing character of this intuition, it should be observed that
models in which only part of the above properties are fulfilled also deserve
attention.

This paper will provide a fairly complete axiomatic analysis of model (M–
D) and its variants. When compared to the models studied in Bouyssou and
Pirlot (2002) (see model (M) defined by equation (6) below), model (M– D)
adds the extra feature of “well-behaved” preferences on the components of
the product set governed by the functions ui’s whereas they still encompass
possibly nontransitive preference relations %.

Referring to our model by the label (M– D) is a reminder of model (M)
and its variants studied in Bouyssou and Pirlot (2002). It also evokes the fact
that the easiest way to interpret model (M– D) is to relate it to A. Tversky’s
Additive Difference model (Tversky, 1969) in which:

x % y ⇔
n

∑

i=1

Φi(ui(xi) − ui(yi)) ≥ 0 (2)

where Φi are increasing and odd real-valued functions. The ability of this
model to capture nontransitive preference relations % together with well-
behaved marginal preferences on each attribute and the “intra-dimensional”
information processing strategy that it suggests have made it quite popular
in Psychology (see, e.g. Aschenbrenner (1981) or Montgomery and Svenson
(1976)). In line with the strategy followed in Bouyssou and Pirlot (2002),
going from (2) to (M– D) amounts to replacing both the addition and the
subtraction operations by mere decomposability1 requirements, hence the
title of this paper. Keeping in mind the analysis in Bouyssou and Pirlot
(2002), this replacement will drastically simplify the analysis of the model
while allowing to dispense with unnecessary2 structural conditions on the set

1This is another justification for the label (M– D): the letter D evokes the
decomposability of the d ifferences of preference

2By “unnecessary structural conditions”, we mean conditions on the Xi’s that, when
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of objects. In fact, all axiomatic analyses of the additive difference model (2)
known so far (Fishburn (1980) and Croon (1984) for the n = 2 case, Fishburn
(1992) for n ≥ 3, the work of Bouyssou (1986) in the n = 2 case being
an exception) use unnecessary structural conditions on the set of objects,
which, as in traditional models of conjoint measurement (see Krantz, Luce,
Suppes, and Tversky (1971, ch. 9) and Furkhen and Richter (1991)) interact
with, necessary, cancellation conditions and therefore somewhat contribute
to obscure their interpretation.

On a technical level, we follow the same strategy as in Bouyssou and
Pirlot (2002), i.e. we investigate how far it is possible to go in terms of nu-
merical representations without imposing any transitivity requirement on the
preference relations and any unnecessary structural requirement on the set
of objects. We refer to Bouyssou and Pirlot (2002) for a detailed motivation
for such an approach. Let us simply mention here that in such a framework
numerical representations are quite unlikely to possess any “nice” uniqueness
properties. These representations are not studied here for their own sake and
our results are not intended to give clues on how to build them. They are
used as a framework allowing to understand the consequences of a number
of requirements on %.

It is useful to compare the models studied in this paper with more classical
ones as well as with the one studied in Bouyssou and Pirlot (2002). The point
of departure of nearly all conjoint measurement models is the additive utility
model (Krantz et al. (1971), Debreu (1960)):

x % y ⇔
n

∑

i=1

ui(xi) ≥
n

∑

i=1

ui(yi) (3)

which gives an additive representation of transitive preferences. This model
has been generalised in two distinct directions. The first one keeps the tran-
sitivity aspect of (3) but relaxes additivity to a mere decomposability re-
quirement. The desired representation is such that:

x % y ⇔ G(u1(x1), u2(x2), . . . , un(xn)) ≥ G(u1(y1), u2(y2), . . . , un(yn)) (4)

with G increasing in all its arguments. Such models are amenable to a
very simple axiomatic analysis that dispenses with unnecessary structural

combined with the appropriate axioms on % , would ensure the existence of a representation
of % in a given model, without being necessary conditions for the existence of such a
representation.
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restrictions on X (see Krantz et al. (1971, ch. 7)). Obviously the uniqueness
results for (4) are much weaker than what can be obtained with (3).

Another generalisation of (3) consists in looking for additive representa-
tions of nontransitive preferences. This gives rise to models of the following
type:

x % y ⇔
n

∑

i=1

pi(xi, yi) ≥ 0 (5)

where the real-valued functions pi, defined on Xi × Xi, may have additional
properties, e.g. be skew-symmetric. Such models have received much atten-
tion (see Bouyssou (1986), Fishburn (1990a, 1990b, 1991b), Vind (1991)).
Their additive nature however imposes either the use of a denumerable
scheme of, hardly interpretable, axioms in the finite case (see, e.g. Fish-
burn (1991a); a similar phenomenon occurs with the axiomatisation of the
additive value model (3), see Fishburn (1970, page 45) and Scott and Sup-
pes (1958)) or the use of (unnecessary) structural restrictions on the set of
objects (see Vind (1991), Fishburn (1990b, 1991a)).

The nontransitive decomposable models studied in Bouyssou and Pirlot
(2002) combine these two lines of generalisation. They are of the following
type:

(M) x % y ⇔ F (p1(x1, y1), . . . , pn(xn, yn)) ≥ 0 (6)

where F and pi may have several additional properties (e.g. F odd and in-
creasing in all its arguments and/or pi skew-symmetric). We refer to it as to
the (M) model.

The relations between these models can easily be understood using the
following diagram (taken from Bouyssou and Pirlot (2002)):

Additive Transitive ←→ Decomposable Transitive
Model (3) Model (4)

l l
Additive Non-transitive ←→ Decomposable Non-transitive

Models (5) Models (M) (6)

in which going from left to right amounts to replacing additivity by decom-
posability and going from top to bottom amounts to abandoning transitivity.
We refer to Bouyssou and Pirlot (2002) for a detailed analysis of the relations
between these various models.

The models at the bottom line of the above diagram say nothing on
the properties of marginal preferences on each attribute. This is somewhat
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counter-intuitive since one would mainly expect intransitivity to occur only
when information is aggregated. The additive difference model does not have
this difficulty; in our diagram, it lies on the left column in between the fully
transitive (3) and the fully nontransitive (5). Similarly, the models of type
(M– D) studied in this paper lie in between (4) and (M) on the right column
of the diagram, tolerating intransitivity but imposing well-behaved marginal
preferences. This gives rise to the following picture of the models:

Additive Transitive ←→ Transitive Decomposable
Model (3) Model (4)

l l
Additive Difference (2) ←→ Models (M– D) (1)

l l
Additive Non-transitive ←→ Decomposable Non-transitive

Models (5) Models (M) (6)

in which as before going from left to right relaxes additivity and going from
top to bottom relaxes transitivity.

Note that in Bouyssou and Pirlot (2004), we investigated another line of
generalization of model (4) that allows for intransitivity but does not gen-
eralize the additive difference model (2). More precisely, we study relations
% on X that admit numerical representations of the type

x % y ⇔ H(u1(x1), . . . , un(xn); u1(y1), . . . , un(yn)) ≥ 0, (7)

where H is a function of 2n arguments and may enjoy properties such as
nondecreasingness (or increasingness) in its first n arguments and nonin-
creasingness (or decreasingness) in its last n arguments. It is remarkable
that the axioms used in Bouyssou and Pirlot (2004) to characterize the vari-
ants of model (7) are precisely those that will be needed here, together with
the axioms introduced in Bouyssou and Pirlot (2002) for model (M).

The rest of the paper is organized in five sections (numbered from 2 to 6)
and an appendix. In Section 2, we introduce our notation and recall classical
definitions. Section 3 shows that it is possible under very mild hypotheses, to
go from model (M) to model (M– D) whenever F has no special properties.
More precisely, for each of the special cases of model (M) studied in Bou-
yssou and Pirlot (2002), we show (Theorem 1) that pi(xi, yi) can always be
substituted by ϕi(ui(xi), ui(yi)) (under a condition that essentially limits the
cardinality of Xi, when Xi is not denumerable). In all the models considered
in this section, ϕi and ui are not supposed to enjoy any special property. We
then introduce several variants.
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Having in mind the weak orders on X2
i represented by the functions

pi(xi, yi), we start Section 4 by recalling and adapting general results about
weak orders on any Cartesian product A×A. The axioms that will allow us to
characterize all variants of model (M– D) considered here are then presented
and studied.

The core of the paper is Section 5 in which an axiomatic characterization
of all our models is provided. It is divided into four subsections. Subsections
5.1 and 5.2 handle the case in which the sets Xi are finite or denumerable,
while the non-denumerable case is left for Subsection 5.3. In Subsection 5.1,
we characterize the models in which ϕi(ui(xi), ui(yi)) is nondecreasing in its
first argument and nonincreasing in the second, for all i (Theorem 2); in
5.2, the case in which ϕi is increasing in its first argument and decreasing
in the second is examined (Theorem 3). Both cases are dealt with for non-
denumerable sets Xi in Subsection 5.3 (Theorems 4 and 5). The issues of the
equivalence of models and the independence of axioms is examined system-
atically, in Subsections 5.1.2, 5.2.2 and 5.3.2. The results obtained are dis-
cussed in Subsection 5.4. We comment in particular on the (non-)uniqueness
of the representations in our various models and draw the attention on special
representations that may be called regular. Some connections between our
models and the additive difference model (2) and the additive conjoint mea-
surement model (5) are also established in that subsection. Conclusions and
perspectives for further research are briefly presented in Section 6. The more
technical proofs are relegated in the appendix as well as eighteen examples
mainly used for showing that our axioms are independent.

The reader who is less interested in the technicalities of the non-den-
umerable case may focus on Subsections 5.1, 5.2 and 5.4. Contrary to the
case of more classical models, it should be noticed that the non-denumerable
case brings little new from a conceptual viewpoint. It mainly draws the
attention on the monotonicity (strict or not) of the relation on “differences
of preference” w.r.t. the “marginal traces”.

2 Notation and definitions

A binary relation S on a set A is a subset of A×A; we write aSb for (a, b) ∈ S.
A binary relation S on A is said to be:

• reflexive if [aSa],
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• irreflexive if [Not aSa],

• complete if [aSb or bSa],

• symmetric if [aSb] ⇒ [bSa],

• asymmetric if [aSb] ⇒ [Not bSa],

• transitive if [aSb and bSc] ⇒ [aSc],

• Ferrers if [aSb and cSd] ⇒ [aSd or cSb],

• semi-transitive if [aSb, bSc] ⇒ [aSd or dSc],

for all a, b, c, d ∈ A. A binary relation is:

• a weak order (resp. an equivalence) if it is complete and transitive (resp.
reflexive, symmetric and transitive),

• an interval order if it is complete and Ferrers (Fishburn (1970)),

• a semi-order if it is a semi-transitive interval order (Luce (1956)).

For more detail on relations in the context of preference analysis, the
reader is referred to Fishburn (1985), Roubens and Vincke (1985), Pirlot and
Vincke (1997).

If S is an equivalence on A, A/S will denote the set of equivalence classes
of S on A.

A subset B ⊆ A is dense in A w.r.t. a relation S if ∀a, c ∈ A, aSc ⇒
[∃b ∈ B such that aSbSc]. If S is a weak order on A, there is a numerical
representation of S on the real numbers (i.e. ∃f : A → R such that aSb ⇔
f(a) ≥ f(b)) iff there is a finite or denumerable set B that is dense in A w.r.t.
S. This condition for the existence of a numerical representation is called
order density and will be referred to as such in the sequel.

In this paper % will always denote a binary relation on a set X =
∏n

i=1 Xi

with n ≥ 2. Elements of X will be interpreted as alternatives evaluated on
a set N = {1, 2, . . . , n} of attributes and % as an “at least as good as”
preference relation between alternatives (x % y reads “x is at least as good
as y”). We note ≻ (resp. ∼) the asymmetric (resp. symmetric) part of %. A
similar convention holds when % is starred, superscripted and/or subscripted.

For any nonempty subset J of the set of attributes N , we denote by
XJ (resp. X−J) the set

∏

i∈J Xi (resp.
∏

i/∈J Xi). With customary abuse of
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notation, (xJ , y−J) will denote the element w ∈ X such that wi = xi if i ∈ J
and wi = yi otherwise. When J = {i} we shall simply write X−i and (xi, y−i).

Let J be a nonempty set of attributes. We define the following two binary
relations on XJ :

xJ %J yJ iff (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J , (8)

xJ %◦
J yJ iff (xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J , (9)

where xJ , yJ ∈ XJ . We refer to %J as the marginal relation or marginal
preference induced on XJ by %. When J = {i} we write %i instead of %{i}.

If, for all xJ , yJ ∈ XJ , xJ %◦
J yJ implies xJ %J yJ , we say that % is

independent for J . If % is independent for all nonempty subsets of attributes
we say that % is independent. It is not difficult to see that a binary relation
is independent if and only if it is independent for N \ {i}, for all i ∈ N
(see, e.g., Wakker (1989)). A relation is said to be weakly independent if it is
independent for all subsets containing a single attribute; while independence
implies weak independence, it is clear that the converse is not true (Wakker,
1989).

3 Intra-attribute decomposability

This section is divided into three subsections that play a preparatory role
in the paper. We first show that all relations admit a representation in
model (M– D) as soon as quite a natural cardinality condition is fulfilled.
In Subsection 3.2, we adapt results about inter-attribute decomposability,
previously obtained in Bouyssou and Pirlot (2002), to the context of (M– D)
models. The final subsection lists the variants of the (M– D) model that will
be analysed in the sequel and states some of their elementary properties.

3.1 Intra-attribute decomposition of model (M)

In a previous paper (Bouyssou & Pirlot, 2002), we extensively studied model
(M) and characterised several of its specialisations obtained by imposing ad-
ditional requirements on F or the pi’s. A possible interpretation of these
models is that the preference can be described as resulting from a descrip-
tion (by means of the functions pi) of the differences between alternatives on
each attribute separately; these single attribute descriptions are combined
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by means of a function F that carries all inter-attribute information. In that
paper, we referred to this sort of decomposability of the preference as to
inter-criteria decomposability. What we are examining here is the possibil-
ity of further decomposing model (M) by specifying a particular functional
form ϕi(ui(xi), ui(yi)) for the functions pi(xi, yi); we call this further step
“intra-attribute decomposition”, since it intuitively amounts to analysing on
each attribute the “‘difference of preference” possibly reflected by pi(xi, yi)
as a function of “values” ui(xi), ui(yi), respectively attached to xi and yi.
Substituting pi(xi, yi) in model (M) with a function ϕi(ui(xi), ui(yi)) leads
to model (M–D) presented in the introduction (ui is a real-valued function
defined on Xi and ϕi is a real-valued function defined on ui(Xi) × ui(Xi)).

As already noted by Goldstein (1991), all binary relations satisfy model
(M) at least when the cardinality of Xi does not exceed that of R, the set of
real numbers. The same holds for model (M-D) ; the functions ui and ϕi can
indeed be constructed as follows. Define the binary relations ∼∗

i on X2
i and

∼±
i on Xi, letting for all xi, yi, zi, wi ∈ Xi,

(xi, yi) ∼
∗
i (zi, wi) iff (10)

[(xi, a−i) % (yi, b−i) ⇔ (zi, a−i) % (wi, b−i), for all a−i, b−i ∈ X−i]

and

xi ∼
±
i yi iff (11)

[(xi, a−i) % b ⇔ (yi, a−i) % b, for all a−i ∈ X−i, b ∈ X]

and [c % (xi, d−i) ⇔ c % (yi, d−i), for all c ∈ X, d−i ∈ X−i].

It is clear that ∼∗
i (resp. ∼±

i ) is an equivalence on the set X2
i (resp. Xi).

Call LCCi (Low Cardinality Condition) the assertion stating that the set
of equivalence classes Xi/∼

±
i of ∼±

i has at most the cardinality of R. If LCCi

is satisfied for all i = 1, . . . n, we say that % satisfies property LCC; LCC
will trivially be fulfilled if for instance the cardinality of all Xi is at most
that of R. Under hypothesis LCC, which, obviously, is necessary for model
(M– D), it is clear that there are real-valued functions ui on Xi such that, for
all xi, yi ∈ Xi:

xi ∼
±
i yi ⇔ ui(xi) = ui(yi) (12)

Given a particular representation of % in model (M), define ϕi on ui(Xi)×
ui(Xi) letting, for all xi, yi ∈ Xi,

ϕi(ui(xi), ui(yi)) = pi(xi, yi). (13)
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The well-definedness of ϕi easily follows from the definitions of ∼∗
i and ∼±

i .
Since the intuition behind ϕi(ui(xi), ui(yi)) is the idea of a “difference of

preference” between the “values” ui(xi) and ui(yi), it is natural to impose on
ϕi monotonicity conditions that will bring it closer to an algebraic difference;
we thus consider imposing on ϕi the following conditions:

Property 1: ϕi is nondecreasing in its first argument and nonincreasing
in the second;

Property 1′: ϕi is increasing in its first argument and decreasing in the
second.

We call (M– D1) (resp. (M– D1 ′)) model (M– D) with the additional property
that ϕi satisfies Property 1 (resp. Property 1′). As we can see from Lemma
1 below, these requirements imposed on ϕi in the absence of any hypothesis
on F do not restrict the generality of the model.

Lemma 1 A relation % on X satisfies model (M–D1) or, equivalently, model
(M–D1 ′) iff property LCC holds.

Proof of Lemma 1
We construct a representation of % according to model (M– D1 ′).
(a) Choose a function ui : Xi → R, satisfying (12), which is possible in view
of hypothesis LCCi.
(b) Define a real-valued function ϕi on ui(Xi)×ui(Xi) verifying the following
requirements :

• ϕi assigns different values to different classes of ∼∗
i ;

• ϕi is increasing in its first argument and decreasing in the second.

Remark that the former condition will be fulfilled if ϕi separates all pairs
(xi, yi) and (zi, wi) such that Not [xi ∼±

i zi] or Not [yi ∼±
i wi]. Indeed, if

xi ∼
±
i zi and yi ∼

±
i wi, it is easily checked that (xi, yi) ∼∗

i (zi, wi). Hence,
if Not [(xi, yi) ∼∗

i (zi, wi)], either Not [xi ∼
±
i zi] or Not [yi ∼

±
i wi] (or both)

and ϕi(ui(xi), ui(yi)) 6= ϕi(ui(zi), ui(wi)).
In case Xi is at most denumerable, there is a straightforward way of

building appropriate ui’s and ϕi’s. Choose for ui a function that separates
the classes of ∼±

i and is valued in the set of positive integers N; define ϕi by
ϕi(ui(xi), ui(yi)) = ui(xi) + 1

ui(yi)
; it is readily checked that ϕi fulfills both

conditions above.
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The general case, under the LCC hypothesis, is a little more technical
(and may be skipped by the uninterested reader). The function ui may,
without loss of generality, be chosen to be valued in the open ]0, 1[ inter-
val. Each number a ∈]0, 1[ can be represented in binary notation as a
sequence (a1, a2, . . . , ak, . . .) of binary digits 0 or 1. Using a binary repre-
sentation3 of the numbers of the ]0, 1[ interval, we define a function f1 :
]0, 1[→]0, 1[ that maps any number a ∈]0, 1[ (with binary representation
(a1, a2, . . . , ak, . . .)) onto the number the binary representation of which is
(a1, 0, a2, 0, . . . , ak, 0, . . .). This function is increasing and injective. Define
similarly the increasing and injective function f2 :]0, 1[→]0, 1[ mapping the
binary representation of a ∈]0, 1[ onto (0, a1, 0, a2, . . . , 0, ak, . . .). A function
ϕi satisfying the required properties may be defined as ϕi(ui(xi), ui(yi)) =
f1(ui(xi)) + f2(1 − ui(yi)). This function ϕi is clearly increasing with ui(xi)
and decreasing with ui(yi). It also separates any pair (ui(xi), ui(yi)) from
any pair (ui(zi), ui(wi)) as soon as ui(xi) 6= ui(zi) or/and ui(yi) 6= ui(wi).
(c) Finally, define F as follows :

F (ϕ1(u1(x1), u1(y1)), . . . ϕn(un(xn), un(yn))) =
{

1 if x % y
−1 if Not[x % y].

The latter function is well-defined, due to the property that ϕi distinguishes
the equivalence classes of ∼∗

i : it never occurs that x % y and Not[z % w]
while for all i, ϕi(ui(xi), ui(yi)) = ϕi(ui(zi), ui(wi)). The latter equalities
indeed would imply that for all i, (xi, yi) ∼∗

i (zi, wi), which in turn would
imply that x % y iff z % w. 2

As a corollary, we get that models (M– D), (M– D1) and (M– D1 ′) all are
equivalent and impose no restriction on the relations (apart from necessary
cardinality conditions). In order to get non-trivial models, we shall study the
combinations of properties 1 and 1′ together with various properties of F and
additional requirements on ϕi. The latter have been investigated in Bouyssou
and Pirlot (2002) in the context of model (M); for the sake of completeness,
we recall in the next subsection relevant definitions and results, adapting
them to model (M– D).

3Rational numbers have two binary representations; choose one way of representing
each rational; using one particular representation or another as described in the rest of
the proof may lead to different functions ϕi, but all fulfill the requirements.
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3.2 Previous results on inter-attribute decomposable
models

3.2.1 Models

Consider model (M). Requiring (M) together with F (0) ≥ 0 (where 0 denotes
the vector of Rn all coordinates of which are equal to 0) and pi(xi, xi) = 0,
leads to a model labelled (M0) that is not much constrained since it encom-
passes all relations that are reflexive and independent:

(M0) x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0

with pi(xi, xi) = 0 for all xi ∈ Xi and F (0) ≥ 0. (14)

Provided we suppose that LCC is in force, we may proceed as we did
with model (M) in Subsection 3.1, i.e. defining functions ui and substituting
pi(xi, yi) with ϕi(ui(xi), ui(yi)). The constructed functions ϕi inherit the
property of pi, namely, ϕi(ui(xi), ui(xi)) = 0, leading to model (M0– D) :

(M0– D) x % y ⇔ F (ϕ1(u1(x1), u1(y1)), . . . , ϕn(un(xn), un(yn))) ≥ 0

with ϕi(ui(xi), ui(xi)) = 0 for all xi ∈ Xi and F (0) ≥ 0. (15)

In view of bringing model (M) “closer” to an addition operation, like
in model (5), additional properties on F have been considered. A natural
requirement is to impose that F be nondecreasing or increasing in all its
arguments. This respectively leads to models (M1) and (M1 ′). An addi-
tional requirement is the skew symmetry of each function pi, i.e. pi(xi, yi) =
−pi(yi, xi), for all xi, yi ∈ Xi. Adding this condition to (M1) and (M1 ′) leads
to (M2) and (M2 ′). Going one step further in the direction of an addition
operation we add to models (M2) and (M2 ′) the requirement that F should
be odd; this defines models (M3) and (M3 ′).The definition of these various
models is recalled in Table 1.

These models combine in different ways the increasingness of F , its odd-
ness and the skew symmetry of the functions pi; defining functions ui and
substituting pi(xi, yi) with ϕi(ui(xi), ui(yi)) is again possible under the as-
sumption that LCC holds. The properties of pi are inherited by ϕi; the
resulting models are denoted by suffixing their initial label by “– D”.

3.2.2 Axioms

The characterisations of models (Mk), for k = 0, 1, 2, 3, and (Mk ′), for k =
1, 2, 3, obtained in Bouyssou and Pirlot (2002) obviously remain true for

12



Table 1: Model (M– D) and its variants

(M– D) x % y ⇔ F (ϕ1(u1(x1), u1(y1)), . . . , ϕn(un(xn), un(yn))) ≥ 0
(M0– D) (M– D) with ϕi(ui(xi), ui(xi)) = 0 and F (0) ≥ 0
(M1– D) (M0– D) with F nondecreasing in all its arguments
(M1 ′– D) (M0– D) with F increasing in all its arguments
(M2– D) (M1– D) with ϕi skew-symmetric
(M2 ′– D) (M1 ′– D) with ϕi skew symmetric
(M3– D) (M2– D) with F odd
(M3 ′– D) (M2 ′– D) with F odd

the “suffixed” models (Mk– D) or (Mk ′– D), provided LCC is in force. For
studying these models, three conditions have proved useful. Let % be a
binary relation on a set X =

∏n
i=1 Xi. This relation is said to satisfy:

RC1i if

(xi, a−i) % (yi, b−i)
and

(zi, c−i) % (wi, d−i)







⇒







(xi, c−i) % (yi, d−i)
or
(zi, a−i) % (wi, b−i),

RC2i if

(xi, a−i) % (yi, b−i)
and

(yi, c−i) % (xi, d−i)







⇒







(zi, a−i) % (wi, b−i)
or
(wi, c−i) % (zi, d−i),

TCi if
(xi, a−i) % (yi, b−i)

and
(zi, b−i) % (wi, a−i)

and
(wi, c−i) % (zi, d−i)























⇒ (xi, c−i) % (yi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i.
We say that % satisfies RC1 (resp RC2, TC) if it satisfies RC1i (resp.

RC2i, TCi) for all i ∈ N ; RC12 (resp. RC12i) is short for RC1 and RC2
(resp. RC1i and RC2i).
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Condition RC1i (inteR-attribute Cancellation) suggests that % induces
on X2

i a relation that compares “preference differences” in a well-behaved
way: if (xi, yi) is a “larger preference difference” than (zi, wi) and (zi, c−i) %

(wi, d−i) then we should have (xi, c−i) % (yi, d−i) and vice versa. This rela-
tion, which we denote by %∗

i , is formally defined as

(xi, yi) %∗
i (zi, wi) iff

[for all c−i, d−i ∈ X−i, (zi, c−i) % (wi, d−i) ⇒ (xi, c−i) % (yi, d−i)](16)

for all xi, yi, zi, wi ∈ Xi. Relation %∗
i is transitive by construction and RC1i

exactly amounts to asking that it is complete, hence a weak order. The
equivalence relation ∼∗

i defined in (10) is the symmetric part of %∗
i .

Condition RC2i suggests that the “preference difference” (xi, yi) is linked
to the “opposite” preference difference (yi, xi). Again, RC1i and RC2i are
equivalent to requiring that the relation %∗∗

i , defined on X2
i by

(xi, yi) %∗∗
i (zi, wi) iff [(xi, yi) %∗

i (zi, wi) and (wi, zi) %∗
i (yi, xi)], (17)

be complete (it is transitive by construction) and thus a weak order.
Condition TCi (Triple Cancellation) is a classical cancellation condition

that has been often used in the analysis of the additive value model (see e.g.
Wakker (1989) or Bouyssou and Pirlot (2002), for interpretations).

No other condition is required in order to characterise models (M0), (M1),
(M1 ′), (M2), (M2 ′), (M3) and (M3 ′) as long as the sets Xi are finite or
denumerable. When the latter hypothesis is not fulfilled, restrictions must
be imposed in order to ensure that either ∼∗

i , %∗
i or %∗∗

i have a numerical
representation. These will be needed also for the characterisation of the
suffixed models. Property LCC ensures that each equivalence class of ∼±

i

can be unambiguously identified by a real number (which is realised by the
functions ui); we have seen in the proof of Lemma 1 that this implies that
there are enough real numbers to label the equivalence classes of ∼∗

i ; thus
LCC, that is necessary for guaranteeing the existence of the ui functions in
the D−suffixed models, can substitute the (weaker) hypothesis used in the
characterisation of the initial models (condition C∗ in Bouyssou and Pirlot
(2002)). The condition used for ensuring the representability of weak orders
remains necessary. This condition can be formulated as follows.

We say that % satisfies OD∗
i if there is a finite or countably infinite

subset of X2
i that is dense in X2

i for %∗
i . In case %∗

i is a weak order, OD∗
i

ensures that it has a numerical representation, i.e. there exists a real-valued
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function pi on X2
i such that, for all (xi, yi), (zi, wi) ∈ X2

i , (xi, yi) %∗
i (zi, wi)

iff pi(xi, yi) ≥ pi(zi, wi). Condition OD∗ is said to hold if condition OD∗
i

holds for i = 1, 2, . . . , n.

3.2.3 Results

The theorem below describes all “–D” suffixed models listed in Table 1.

Theorem 1 Let % be a binary relation on a set X =
∏n

i=1 Xi. If X is at
most denumerable, then:

1. the relation % satisfies model (M–D),

2. % satisfies model (M0–D) iff % is reflexive and independent,

3. % satisfies model (M1–D) iff % satisfies model (M1 ′–D) iff % is re-
flexive, independent and satisfies RC1,

4. % satisfies model (M2–D) iff % satisfies model (M2 ′–D) iff % is re-
flexive and satisfies RC12,

5. % satisfies model (M3–D) iff % is complete and satisfies RC12,

6. % satisfies model (M3 ′–D) iff % is complete and satisfies TC.

7. If X is not denumerable, parts 1 and 2 remain valid iff the requirement
that % satisfies condition LCC is added; parts 3, 4, 5, 6 remain valid
iff the requirement that % satisfies conditions LCC and OD∗ is added.

The above results constitute a straightforward adaptation of Theorems 1
and 2 in Bouyssou and Pirlot (2002) ; the characterisation of models (M) to
(M3 ′) extends immediately to that of the corresponding “M– D” model if X
is denumerable since we have seen that, in such a case, pi(xi, yi) decomposes
without further condition into ϕi(ui(xi), ui(yi)). Part 7 deserves a word of
explanation. Condition LCC obviously is necessary to guarantee the exis-
tence of ui in all models and OD∗ is necessary in all models in which F is
required to be at least nondecreasing (the latter was shown in Bouyssou and
Pirlot (2002, Theorem 2)). It should be noted that condition LCC may not
be dispensed of, even in the presence of OD∗, in part 7 of the theorem, as
shown by Example 18 in Appendix B. Bouyssou and Pirlot (2002) showed
that the conditions used in this theorem are independent.
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3.3 Variants of intra- and inter-attribute decompos-
able models

Lemma 1 shows that imposing monotonicity properties on ϕi without re-
quirements on F does not lead to new models; in the same way, as we have
seen in Theorem 1, the conditions previously considered in model (M) and
imported in model (M– D) without imposing monotonicity properties on ϕi

do not generate new models either (as long as the cardinality of Xi is not
strictly larger than that of R). It thus remains to examine, the possible ef-
fect of properties imposed correlatively both on the “inter” and the “intra”
components of the model; doing this will achieve our main goal that is to
study the variants of model (M– D) as was stated in the introduction.

For each of the eight models described in Table 1, we consider two spe-
cialisations in which property 1 (respectively 1′) is imposed on the functions
ϕi. They are various instances of “nontransitive decomposable models” with
which the intra-attribute decomposability requirements combine without im-
plying however the full force of additivity and subtractivity. These variants
will be identified by replacing the suffix “– D” either by “– D1” or by “–
D1 ′ ” depending on the fact that property 1 or 1 ′ is respectively added. For
each model in Table 1, we shall thus consider a version in which, for all
i = 1, . . . , n, ϕi(ui(xi), ui(yi)) is nondecreasing in ui(xi) and nonincreasing
in ui(yi) (property 1) and a version in which it is increasing in ui(xi) and
decreasing in ui(yi) (property 1 ′).

The – D1 or – D1 ′ variants of model (M– D) have been analysed in Section
3.1 and proven equivalent to the unconstrained model (M– D). The same is
true for the – D1 or – D1 ′ variants of model (M0– D) that are equivalent to
(M0– D1), because (M0) does not impose any monotonicity on F . We state
this result in the following lemma; its proof—a slight modification of that of
Lemma 1—is relegated in Appendix A.1.

Lemma 2 A relation % on X satisfies model (M0–D1) or, equivalently,
model (M0–D1 ′) iff it is reflexive, independent and satisfies property LCC.
These conditions are independent.

Remarks

1. The preliminary study done so far leaves us with twelve models to
analyse, namely, for k = 1, 2, 3, (Mk– D1), (Mk ′– D1), (Mk– D1 ′) and
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(Mk ′– D1 ′). Some of these will turn out to be equivalent; their charac-
terization requires axioms that will be introduced in Section 4.2 below.
Figure 1 shows the implications between those models ; for the sake of
readability, only direct implications are drawn. Note that we have also:

• (Mk– D1) ⇒ (Mk) , for k = 1, 2, 3 ;

• (Mk ′– D1) ⇒ (Mk ′) , for k = 1, 2, 3 .

2. It is interesting to observe and easy to prove that the various proper-
ties imposed on F , ϕi and ui in our models induce properties of the
marginal preferences %J , J ⊆ N , and links between %J and % that
become closer and closer to what is obtained with the additive value
function model (3). For the reader’s convenience, we recall in the next
proposition three consequences that were established in Bouyssou and
Pirlot (2002) and that we adapt to the “(M– D)” context . We add two
new consequences that reveal possible effects of interaction between
monotonicity conditions imposed both on F and ϕi.

Proposition 1 Let % be a binary relation on X =
∏n

i=1 Xi.

1. If % satisfies model (M1–D) or (M1 ′–D) then, for all J ⊆ N :

[xi ≻i yi, for all i ∈ J ] ⇒ Not[yJ %J xJ ].

2. If % satisfies model (M2–D) or (M2 ′–D) then:

• %i is complete,

• for all J ⊆ N , [xi ≻i yi for all i ∈ J ] ⇒ [xJ ≻J yJ ].

3. If % satisfies model (M3 ′–D) then, for all J ⊆ N :

• [xi %i yi for all i ∈ J ] ⇒ [xJ %J yJ ],

• [xi %i yi for all i ∈ J, xj ≻j yj, for some j ∈ J ] ⇒ [xJ ≻J yJ ].

4. If % satisfies model (M1–D1) then %i is a semi-order.

5. If % satisfies model (M3 ′–D1 ′) then %i is a weak order.
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(M3 ′– D1 ′) (M3 ′– D1)

(M3– D1 ′) (M3– D1)

(M2 ′– D1 ′) (M2 ′– D1)

(M2– D1 ′) (M2– D1)

(M1 ′– D1 ′) (M1 ′– D1)

(M1– D1 ′) (M1– D1)

(M0– D1) (M0– D1 ′)

(M– D1) (M– D1 ′)

Figure 1: Graph of implications
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Proof of Proposition 1
For the proof of parts 1), 2) and 3), see Bouyssou and Pirlot (2002,

proposition 1).
4) We first prove that %i has the Ferrers property, i.e., if xi %i yi and

zi %i wi, then at least one of the following holds : zi %i yi or xi %i wi. From
the premise, using obvious notation, we get F (ϕi(ui(xi), ui(yi)),0−i) ≥ 0
and F (ϕi(ui(zi), ui(wi)),0−i) ≥ 0. We have either ui(yi) ≥ ui(wi) or ui(yi) <
ui(wi). In the former case, due to the monotonicity properties of F and
ϕi, we get F (ϕi(ui(xi), ui(wi)),0−i) ≥ 0, hence xi %i wi; in the latter case,
F (ϕi(ui(zi), ui(yi)),0−i) ≥ 0 and thus zi %i yi. The Ferrers property of %i

is thus established. It is well-known (and easy to prove4) that the Ferrers
property implies completeness provided the relation is reflexive, which is the
case of %i in (M1– D1).

The semi-transitivity property results from showing, in a similar manner,
that xi %i yi and yi %i zi entail either xi %i wi or wi %i zi, for any wi ∈ Xi.

5) Since we already know that %i is a semi-order, it remains to prove that
the marginal indifference ∼i is transitive5. Due to the skew-symmetry of ϕi

and the increasingness of F in model (M3 ′), it is readily seen that xi ∼i yi if
and only if ϕi(ui(xi), ui(yi)) = 0. In model (M3 ′– D1 ′), since ϕi is decreasing
in its second argument and since ϕi(ui(xi), ui(xi)) = 0, we have xi ∼i yi if
and only if ui(xi) = ui(yi). From this, one clearly obtains that xi ∼i yi and
yi ∼i zi imply xi ∼i zi. 2

Remarks

1. Obviously, any property of %i, valid in a model, is inherited by any of
the more constrained model (see the implications between models in
Figure 1). In particular, the semi-order property (Proposition 1.4) is
valid in models (M2– D1) and (M3– D1).

2. Pure (M) models, without intra-attribute decomposability, confer lit-
tle structure to the marginal preferences %i. It is only with (M2)
that %i becomes a complete relation. On the contrary, in the intra-
decomposable models, from (M1– D1) on, %i is a semi-order.

4Just apply the Ferrers property to derive aSb or bSa from aSa and bSb.
5The asymmetric part of an interval order or a semi-order S is transitive (see Roubens

and Vincke (1985, p. 22)) and a weak order is a complete relation the symmetric and
asymmetric part of which are transitive (see Roubens and Vincke (1985, p. 18)).
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3. It is only in the more restrictive model (M3 ′– D1 ′) that %i is a weak
order. In such a model, two elements of Xi that are marginally indiffer-
ent must have equal ui values, as results from the proof of Proposition
1.5.

4 Axioms

This section has two subsections. The first one states and proves an auxiliary
result on relations defined on a Cartesian product of a set with itself. In the
second subsection, we present the axioms that will help us to analyse the
models introduced in Section 3.2; we prove some elementary consequences of
these axioms.

4.1 Properties of weak orders on X2
i

In view of setting down the axioms that govern intra-attribute decompos-
ability in our models, we first pay attention to the weak order %pi on X2

i

represented by the function pi(xi, yi) = ϕi(ui(xi), ui(yi)), i.e. (xi, yi) %pi

(zi, wi) ⇔ pi(xi, yi) ≥ pi(zi, wi). Note that pi need not be a numerical repre-
sentation of %∗

i or %∗∗
i (it may be “finer” in the sense that it may discriminate

between pairs that are in the indifference relation ∼∗
i or ∼∗∗

i ) and hence, %pi

is not necessarily %∗
i or %∗∗

i (but it must satisfy (32) or (33), see Lemma 5
in Section 5.2.1).

What will be of particular interest is linking properties of ϕi to those of
%pi . In order to reduce notational burden and since the following definitions
and results are fairly general and may be interesting in their own, we formu-
late them in terms of a set A (instead of Xi) and a function f (instead of
pi).

To any binary relation %A defined on a cartesian product A2, can be
associated the relations E and T defined on A letting, for all a, b ∈ A:

aEb ⇔ (a, c) ∼A (b, c) and (c, b) ∼A (c, a), for all c ∈ A (18)

and
aTb ⇔ (a, c) %A (b, c) and (c, b) %A (c, a) for all c ∈ A. (19)

Relation T is usually called the trace of %A and E is the symmetric part of
T . Following mainly Monjardet (1984) and Doignon, Monjardet, Roubens,
and Vincke (1988), we say that:
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• %A is strongly linear iff [Not((b, c) %A (a, c)) or Not ((c, a) %A (c, b))] ⇒
[(a, d) %A (b, d) and (d, b) %A (d, a)],

• %A is strongly independent iff [(a, c) %A (b, c)) or (c, b) %A (c, a))] ⇒
[(a, d) %A (b, d) and (d, b) %A (d, a)],

• %A is reversible iff [(a, b) %A (c, d) ⇒ (d, c) %A (b, a)],

for all a, b, c, d ∈ A.

We note a few simple and useful observations in the following lemma (its
proof is left to the reader).

Lemma 3 Let %A be a relation on A2, ∼A, its symmetric part, T , its trace
and E, the symmetric part of T . We have:

1. If ∼A is an equivalence, then E is an equivalence.

2. If %A is transitive, then T is transitive.

3. %A is strongly linear iff T is complete.

As an elementary consequence of these properties, we have that the trace
T of a strongly linear weak order %A is a weak order.

The following result studies the situation in which %A is a weak order
induced on A2 by a function f : A2 → R. The case in which A is not denu-
merable raises technical problems of representability on the real numbers. In
addition to the condition LCCi introduced in Section 3.1 (the relation ∼±

i

corresponds exactly to E), we need the classical order density condition (see
Section 2) to ensure that the trace T is representable on R.

Proposition 2 Let f : A2 → R and %f be the weak order induced on A2 by
f , i.e. (a, b) %f (c, d) iff f(a, b) ≥ f(c, d), for all a, b, c, d ∈ A.

1. %f is reversible iff there is a function f ′ such that f ′(a, b) = −f ′(b, a)
and (a, b) %f (c, d) iff f ′(a, b) ≥ f ′(c, d)

2. Suppose that A is at most denumerable. There are a function u : A → R

and a function ϕ : u(A) × u(A) → R such that f(a, b) = ϕ(u(a), u(b)).
Furthermore,
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(a) the function ϕ can be taken to be nondecreasing in its first argu-
ment and nonincreasing in its second argument iff %f is strongly
linear;

(b) the function ϕ can be taken to be increasing in its first argument
and decreasing in its second argument iff %f is strongly indepen-
dent.

3. In case A is not a denumerable set, there exist a function u : A → R

and a function ϕ : u(A) × u(A) → R such that f(a, b) = ϕ(u(a), u(b))
iff the number of equivalence classes of the relation E is not larger than
the cardinality of R. Properties 2(a) and 2(b) hold iff there is a finite
or denumerable subset of A that is dense in A for T .

Proof of Proposition 2
1) Sufficiency is obvious. We prove necessity. Suppose that %f is reversible.
Define f ′(a, b) = f(a, b) − f(b, a); f ′ obviously is skew-symmetric. We show
that f ′ provides another representation of %f . Since %f is reversible, we have
(a, b) %f (c, d) iff (d, c) %f (b, a). Hence, f(a, b) ≥ f(c, d) and f(d, c) ≥
f(b, a) and finally, f ′(a, b) ≥ f ′(c, d). Conversely, if f ′(a, b) ≥ f ′(c, d), we
have that f(a, b) ≥ f(c, d). Suppose, on the contrary, that f(a, b) < f(c, d).
Since f ′(a, b) ≥ f ′(c, d), it must be that f(b, a) < f(d, c) implying (d, c) %f

(b, a) and, since %f is reversible, (a, b) %f (c, d), a contradiction.
2) The existence of ui and ϕi has been established in Section 3.1, around
(13); this proof transposes immediately for establishing the existence of u
and ϕ (∼∗

i corresponds to ∼f and ∼±
i to E).

Part 2)(a) [⇒]. Suppose that Not [(b, c) %f (a, c)] or Not [(c, a) %f (c, b)],
for some a, b, c ∈ A. This is equivalent to f(b, c) < f(a, c) or f(c, a) < f(c, b).
Using the monotonicity properties of ϕ, we obtain from both inequalities that
u(a) > u(b) and that ϕ(u(a), u(d)) ≥ ϕ(u(b), u(d)) and ϕ(u(d), u(b)) ≥
ϕ(u(d), u(a)), for all d ∈ A. This establishes that %f is strongly linear.
Part 2)(a) [⇐]. Since %f is a strongly linear weak order, T is a weak order
(Lemma 3, parts 2 and 3). Let u be a numerical representation of T , i.e. aTb
iff u(a) ≥ u(b); such a representation exists since A is finite or denumerable.
Define ϕ by ϕ(u(a), u(b)) = f(a, b). ϕ is well-defined since u(c) = u(d)
iff c(T ∩ T−1)d, i.e. cEd; the reasoning made just after formula (13) thus
holds. Moreover ϕ is nondecreasing in its fist argument and nonincreasing
in the second. To prove the former, suppose that u(a) > u(b); this implies
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aTb. We have for all c ∈ A, (a, c) %f (b, c) and hence f(a, c) ≥ f(b, c).
Non-increasingness in the second argument is similarly proven.
Part 2)(b) [⇒]. Suppose, on the contrary, that %f is not strongly indepen-
dent. Among the four possible cases, we have, for instance, that (a, c) %f

(b, c) and Not [(a, d) %f (b, d)], for some a, b, c, d ∈ A. This is tantamount to
ϕ(u(a), u(c)) ≥ ϕ(u(b), u(c)) and ϕ(u(a), u(d)) < ϕ(u(b), u(d)), which im-
ply respectively, due to increasingness of ϕ in its first argument, u(a) ≥ u(b)
and u(a) < u(b), a contradiction. The other cases can be dealt with similarly.
Part 2)(b) [⇐]. We define u and ϕ as in part 2)(a). Let a, b ∈ A be such
that u(a) > u(b). Since u is a numerical representation of T , we have aTb
and Not [bTa]; strong independence implies that, for all c ∈ A, Not [(b, c) %f

(a, c)] and Not [(c, a) %f (c, b)], i.e. f(a, c) > f(b, c) and f(c, b) > f(c, a).
Suppose, for instance, that ϕ is not increasing in its first argument. This
would imply that, for some a, b, d ∈ A, with u(a) > u(b), f(a, d) ≤ f(b, d), a
contradiction. A similar argument proves that ϕ is decreasing in its second
argument.
3) In case A is not denumerable, the condition on E is clearly necessary and
sufficient for being able to represent each equivalence class of that relation
by a real number. The order density condition makes it possible to consider
a numerical representation of the weak order T by means of a real-valued
function u; this condition is thus sufficient. To show it is also necessary,
it suffices to observe that any function u in a representation of %f with ϕ
monotonic is a representation of a weak order that is at least as fine as T .
In other words, if aTb and Not [bTa], then u(a) > u(b). 2

Remarks

1. Proposition 2 reformulates in our framework classical results that may
essentially be found in Doignon et al. (1988), Tversky and Russo (1969)
(see also Pirlot and Vincke (1997) for a synthesis). Take any numerical
representation of %A. This representation may be seen as a valued
relation on A2. In the terminology of Doignon et al. (1988, Section 4.4),
the valued relation obtained when %A is strongly linear is a coherently
biordered valued relation. The families of binary relations obtained by
considering all the cuts of these valued relations have been well studied
(Doignon et al., 1988). To our knowledge the valued relations obtained
when replacing linearity by independence have received no particular
name in the literature.
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2. Doignon et al. (1988) distinguish three less restrictive versions of lin-
earity, namely, left-linearity, right-linearity and linearity. We do not
investigate these notions for the sake of conciseness; the reader should
note that distinguishing left and right linearity (or independence) has
strong connections with a slightly more general model where pi(xi, yi)
is decomposed as ϕi(ui(xi), vi(yi)) with ui not necessarily equal to vi.
These variants can easily be dealt with using our methods.

3. The results in Doignon et al. (1988) are expressed for finite sets. They
extend, at least those we consider, to denumerable sets, without further
condition. In view of obtaining the results in Section 5.3.1 below, we
need further extension to non-denumerable sets and we obtain it under
rather straightforward necessary and sufficient conditions, as shown in
part 3 of Proposition 2.

4. It is important to note that in case f has particular features—for in-
stance if f vanishes on the diagonal (f(a, a) = 0, for all a) or f is
skew-symmetric—these are inherited by ϕ. This will be of importance
in our models when f = pi and %f possibly is the relation %∗

i or the
relation %∗∗

i .

4.2 Axioms for intra-criteria decomposability

In view of Proposition 2.2 and 2.3, and the construction of numerical repre-
sentations for models of type (M) (see Bouyssou and Pirlot (2002)), obtaining
intra-decomposable models boils down to imposing linearity conditions on %∗

i

and %∗∗
i . In order to do so, we introduce a number of intrA-attribute Can-

cellation (AC) conditions and of Triple intrA-attribute Cancellation (TAC)
conditions. We say that % satisfies:

AC1i if
(xi, a−i) % y

and
(zi, c−i) % w







⇒







(zi, a−i) % y
or

(xi, c−i) % w,

AC2i if
x % (yi, b−i)

and
z % (wi, d−i)







⇒







x % (wi, b−i)
or
z % (yi, d−i),
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AC3i if
(xi, a−i) % y

and
z % (xi, d−i)







⇒







(wi, a−i) % y
or
z % (wi, d−i)

for all x, y, z, w ∈ X and all a−i, b−i, c−i, d−i ∈ X−i.

We say that % satisfies AC1 (resp AC2, AC3) if it satisfies AC1i (resp
AC2i, AC3i), for i = 1, 2, . . . , n. We shall also use AC123 (resp. AC123i)
as a short form for the conjunction of conditions AC1, AC2 and AC3 (resp.
AC1i, AC2i and AC3i).

Condition AC1i suggests that the elements of Xi can be linearly or-
dered considering “upward dominance”: if xi “upward dominates” zi then
(zi, c−i) % w entails (xi, c−i) % w . Condition AC2i has a similar interpreta-
tion considering now “downward dominance”. More formally, let %+

i (resp.
%−

i ) denote the left (resp. right) trace induced by % on Xi, i.e.

xi %+
i zi iff ∀ c−i ∈ X−i, w ∈ X, [(zi, c−i) % w ⇒ (xi, c−i) % w] (20)

yi %−
i wi iff ∀ a−i ∈ X−i, z ∈ X, [z % (yi, a−i) ⇒ z % (wi, a−i)]. (21)

It was shown in Bouyssou and Pirlot (2004, Lemma 3) that AC1i (resp.
AC2i) is equivalent to imposing that %+

i (resp. %−
i ) is a complete relation,

hence a weak order (since it is transitive by definition).
Condition AC3i ensures that the linear arrangements of the elements of Xi

obtained considering upward and downward dominance are not incompatible.
In other terms, the trace %±

i that is the intersection of %+
i and %−

i , i.e.

xi %±
i zi iff [xi %+

i zi and xi %−
i zi], (22)

is also a complete relation, hence a weak order.
It is also quite important to note that %±

i is also the trace of %∗
i and %∗∗

i

(defined by formulae (16) and (17)). Indeed, we can easily check that we
have :

xi %±
i yi iff ∀zi ∈ Xi, (xi, zi) %∗

i (yi, zi)

and ∀wi ∈ Xi, (wi, yi) %∗
i (wi, xi) (23)

The latter expression implies that %±
i is the trace both of %∗

i and %∗∗
i . Re-

mark that the relation ∼±
i , defined in (11), is the symmetric part of %±

i .
The Triple intrA-attribute Cancellation (TAC) conditions read as follows.

We say that % satisfies
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TAC1i if
(xi, a−i) % y

and
y % (zi, a−i)

and
(zi, b−i) % w























⇒ (xi, b−i) % w

TAC2i if
(xi, a−i) % y

and
y % (zi, a−i)

and
w % (xi, b−i)























⇒ w % (zi, b−i)

for all y, w ∈ X, all xi, zi ∈ Xi and all a−i, b−i ∈ X−i.

We say that % satisfies TAC1 (resp TAC2) if it satisfies TAC1i (resp
TAC2i), for i = 1, 2, . . . , n. We shall also use TAC12 (resp. TAC12i) for the
conjunction of conditions TAC1 and TAC2 (resp. TAC1i and TAC2i).

The TAC1i, TAC2i conditions are variants of the classical triple cancella-
tion condition, like TCi in Section 3.2. As soon as % is complete, TAC1 and
TAC2 become powerful conditions (as was the case of TC in models (M))
that imply AC123; they will help to make sure, in certain models, that ties
can be broken just by using “upward” or “downward dominance”.

The above axioms and their consequences have been studied in detail in
Bouyssou and Pirlot (2004). The following lemma recalls results that will
be needed in the sequel and establishes new ones showing that some of the
axioms are intimately related to strong linearity of %∗

i and %∗∗
i .

Lemma 4 We have:

1. Model (M1–D1) implies AC123.

2. Model (M3 ′–D1 ′) implies TAC12.

3. %+
i is complete iff AC1i holds

4. %−
i is complete iff AC2i holds

5. %±
i is complete iff AC123i holds

6. AC123i iff %∗
i is strongly linear iff %∗∗

i is strongly linear.
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7. If % is complete, TAC12i implies AC123i and if one of the alternatives
in the consequent of any of AC1i, AC2i or AC3i is false, then the
preference in the other branch of the alternative is strict.

8. If % is complete, TAC1i is equivalent to the completeness of %+
i and

the following condition:

[x % y and zi ≻
+
i xi] ⇒ (zi, x−i) ≻ y. (24)

9. If % is complete, TAC2i is equivalent to the completeness of %−
i and

the following condition:

[x % y and yi ≻
−
i wi] ⇒ x ≻ (wi, y−i). (25)

Proof of Lemma 4

1) The premise of AC1i yields in terms of model (M1– D1):

F (ϕi(ui(xi), ui(yi)), (ϕj(uj(aj), uj(yj)))j 6=i) ≥ 0

and
F (ϕi(ui(zi), ui(wi)), (ϕj(uj(cj), uj(wj)))j 6=i) ≥ 0.

Due to the monotonicity of F and ϕi, either ui(zi) ≥ ui(xi) and

F (ϕi(ui(zi), ui(yi)), (ϕj(uj(aj), uj(yj)))j 6=i)) ≥ 0,

or ui(xi) > ui(zi) and

F (ϕi(ui(xi), ui(wi)), (ϕj(uj(cj), uj(wj)))j 6=i) ≥ 0,

which implies that AC1i is satisfied. The proof for AC2i and AC3i is similar.

2) The premise of TAC1i, interpreted in terms of model (M3 ′– D1 ′), yields
three inequalities :

F (ϕi(ui(xi), ui(yi)), (ϕj(uj(aj), uj(yj)))j 6=i) ≥ 0 (26)

F (ϕi(ui(yi), ui(zi)), (ϕj(uj(yj), uj(aj)))j 6=i) ≥ 0 (27)

F (ϕi(ui(zi), ui(wi)), (ϕj(uj(bj), uj(wj)))j 6=i) ≥ 0. (28)
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Due to skew-symmetry of ϕi and oddness of F , equation (27) may be rewrit-
ten as :

F (ϕi(ui(zi), ui(yi)), (ϕj(uj(aj), uj(yj)))j 6=i) ≤ 0. (29)

We deduce from equations (26) and (29), using the increasingness of F (resp.
ϕi) in its ith (resp. first) argument, that ui(xi) ≥ ui(zi); substituting ui(zi)
by ui(xi) in equation (28) yields :

F (ϕi(ui(xi), ui(wi)), (ϕj(uj(bj), uj(wj)))j 6=i) ≥ 0,

which establishes TAC1i. The proof for TAC2i is similar.

Parts 3), 4) and 5) were respectively proven as Lemma 3, parts 1, 2 and 4
in Bouyssou and Pirlot (2004).

6) Using (23), we observed above that %±
i is not only the trace of % but

also of both %∗
i and %∗∗

i . Applying Lemma 3.3, with A = Xi and %A=%∗
i or

%∗∗
i , we get that %∗

i and %∗∗
i are strongly linear iff %±

i is complete, which, in
turn, is equivalent to AC123i (by part 5) of the present lemma).

7) We prove that, if % is complete, TAC1i implies AC1i and AC3i. Suppose
that AC1i is violated so that (xi, a−i) % y, (zi, b−i) % w, Not[(zi, a−i) % y]
and Not[(xi, b−i) % w], for some xi, zi ∈ Xi, a−i, b−i ∈ X−i and y, w ∈ X.
Since % is complete, we know that y % (zi, a−i). Using TAC1i, (xi, a−i) % y,
y % (zi, a−i) and (zi, b−i) % w imply (xi, b−i) % w, a contradiction.

Similarly, suppose that AC3i is violated so that (xi, a−i) % y, w %

(xi, b−i), Not[(zi, a−i) % y] and Not[w % (zi, b−i)], for some xi, zi ∈ Xi,
a−i, b−i ∈ X−i and y, w ∈ X. Since % is complete, we have: (zi, b−i) % w. Us-
ing TAC1i, (zi, b−i) % w, w % (xi, b−i) and (xi, a−i) % y imply (zi, a−i) % y,
a contradiction.

One proves similarly that TAC2i implies AC2i and AC3i.
For proving the second part of the thesis, we need using TAC1i (resp.

TAC2i) for the statement concerned with AC1i (resp. AC2i) and both TAC1i

and TAC2i for the statement concerned with AC3i. Let us prove the result for
AC1i (the proof is similar in the two other cases). Suppose that the premise of
AC1i is verified, i.e. (xi, a−i) % y and (zi, c−i) % w, while the first alternative
of the consequent is false, i.e. Not [(zi, a−i) % y]; suppose eventually that the
second branch of the alternative is not a strict preference, which means that
(xi, c−i) ∼ w. Applying TAC1i to the premise [(zi, c−i) % w, w % (xi, c−i)
and (xi, a−i) % y] yields (zi, a−i) % y, a contradiction. If, on the contrary,
the second branch of the alternative is false, i.e. Not [(xi, c−i) % w], and
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supposing that the first branch of the alternative is (zi, a−i) ∼ y, we get,
applying TAC1i to [(xi, a−i) % y, y % (zi, a−i) and (zi, c−i) % w ], the fact
that (xi, c−i) % w, a contradiction.

Parts 8) and 9) were respectively shown as Lemma 4, parts 4 and 5 in
Bouyssou and Pirlot (2004).

2

5 Main results

We are now in a position to provide a characterization of all intra- and inter-
decomposable models defined in Section 3.3, using in particular the “AC”
and “TAC” conditions introduced in the previous section. For ease of reading
and in order to concentrate first on the core arguments, we start with the
case in which the Xi’s are at most denumerable, postponing to Subsection
5.3 below, the technicalities inherent to sets of arbitrary cardinality. In the
denumerable case, we deal separately (respectively in Subsections 5.1 and
5.2) with the “– D1” and the “– D1 ′ ” models, finally showing that all pairs
of models differing only by – D1 or – D1 ′ are equivalent except for (M3 ′– D1)
and (M3 ′– D1 ′). For the sake of completeness, we include in our theorems,
results about models (M– D1), (M– D1 ′), (M0– D1) and (M0– D1 ′) that were
already included in Lemmas 1 and 2.

5.1 Non strictly monotonic decomposable models in
the denumerable case

In this section, we consider the models studied in Theorem 1, with the addi-
tional property that they admit a representation in which ϕi is nondecreasing
in its first argument and nonincreasing in the second.

5.1.1 Characterization results

The monotonicity property of ϕ (nondecreasing in its first argument and
nonincreasing in the second) is obtained for all models (except for M and
M0) as soon as conditions AC123 are added to the axioms stated in Theorem
1.

Theorem 2 Let % be a binary relation on a finite or countably infinite set
X =

∏n
i=1 Xi. Then:
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1. % satisfies model (M–D1);

2. % satisfies model (M0–D1) iff % is reflexive and independent;

3. % satisfies model (M1 ′–D1) iff % is reflexive, independent and satis-
fies RC1 and AC123;

4. % satisfies model (M2 ′–D1) iff % is reflexive and satisfies RC12 and
AC123;

5. % satisfies model (M3–D1) iff % is complete and satisfies RC12 and
AC123;

6. % satisfies model (M3 ′–D1) iff % is complete and satisfies TC and
AC123.

Proof of Theorem 2

Parts 1) and 2) are consequences of Lemmas 1 and 2. For all parts from 3)
to 6), necessity results from Theorem 1 and Lemma 4.1. It remains to prove
sufficiency.

3) We have to recall how a reflexive, independent relation satisfying RC1
can be represented in model (M1 ′). Detailed justification of such a construc-
tion can be found in Bouyssou and Pirlot (2002). Due to RC1, %∗

i is a weak
order on X2

i ; since X2
i is denumerable, we may choose for pi : X2

i −→ R, a
numerical representation of %∗

i . Since % is independent, we have (xi, xi) ∼∗
i

(yi, yi), for all xi, yi ∈ Xi; we may thus impose that pi(xi, xi) = 0 for all
xi ∈ Xi. We then define F for instance as :

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) = (30)
{

exp(
∑n

i=1 pi(xi, yi)) if x % y,
− exp(−

∑n
i=1 pi(xi, yi)) otherwise.

Under AC123, %∗
i is strongly linear (Lemma 4.6) ; by Proposition 2.2, there

are functions ui and ϕi such that the numerical representation pi of %∗
i may

be written as pi(xi, yi) = ϕi(ui(xi), ui(yi)) with ϕi nondecreasing in its first
argument and nonincreasing in the second.

4) The construction of F for a relation that satisfies model (M2 ′) is almost
the same; the only difference lies in the fact that we may choose pi a nu-
merical representation of the weak order %∗∗

i (instead of %∗
i ) and in addition
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impose that pi(xi, yi) = −pi(yi, xi) (skew-symmetry). The skew-symmetric pi

functions may then be decomposed as in the previous case since by Lemma
4, part 6, %∗∗

i is strongly linear.

5) and 6) For models (M3) and (M3 ′), which are distinct, we have to modify
slightly the definition of F . Take for pi a skew-symmetric numerical repre-
sentation of %∗∗

i , like in model (M2 ′), and define F as follows:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) = (31)






exp(
∑n

i=1 pi(xi, yi)) if x ≻ y,
0 if x ∼ y,

− exp(−
∑n

i=1 pi(xi, yi)) otherwise.

F again is well-defined (see Bouyssou and Pirlot (2002) for details); it is odd
in view of the definition of F and the fact that the relation % is complete. In
model (M3), F is nondecreasing in all pi but not necessarily strictly increas-
ing; in this model we may not exclude indeed that x ∼ y, (zi, wi) ≻∗∗

i (xi, yi)
and (zi, x−i) ∼ (wi, y−i), for some x, y ∈ X and zi, wi ∈ Xi. In model (M3 ′),
when axiom TC is in force, such a situation never occurs and, with the same
construction, F is strictly increasing. Due to Lemma 4, part 6, %∗∗

i is strongly
linear and in both models, pi may thus be decomposed as in case 3).

2

5.1.2 Equivalence of models and independence of axioms

The equivalence of two pairs of models directly results from Theorem 2 and
the previous results. We note them in the following corollary.

Corollary 1 If X is at most denumerable,

1. models (M1–D1) and (M1 ′–D1) are equivalent;

2. models (M2–D1) and (M2 ′–D1) are equivalent.

The proof is immediate since by Theorem 1 and Lemma 4.1, the weaker
model (M1– D1) (resp. (M2– D1)) satisfies all the properties that characterize
the stronger (M1 ′– D1) (resp. (M2 ′– D1)), according to Theorem 2.

In Appendix B we provide examples showing that none of the axioms
characterizing the models described in Theorem 2, parts 3 to 6 is a conse-
quence of the others (for part 1 there is nothing to prove and proving the
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independence of the axioms for part 2 is left to the reader). Table 2 summa-
rizes the properties of the Examples 1 to 8 in Appendix B; properties that
are fulfilled (resp. violated) by an example are encoded by “1” (resp. “0”)
in that table. The non-redundancy of the properties used for characterizing
the various models in Theorem 2 is established

• for part 3, by Examples 1, 6, 8, 3, 4, 5;

• for parts 4 and 5, by Examples 1, 8, 7, 3, 4, 5;

• for part 6, by Examples 1, 2, 3, 4, 5.

The order in which the examples are listed corresponds to the order in which
the properties characterizing the models appear in parts 3 to 6 of Theorem
2: for each model, each example violates the corresponding property in the
characterization of the model while it satisfies all the others.

Table 2: Properties of Examples 1 to 8 in Appendix B

R C RC1 RC2 I TC AC1 AC2 AC3
Ex1 0 0 1 1 1 1 1 1 1
Ex2 1 1 1 1 1 0 1 1 1
Ex3 1 1 1 1 1 1 0 1 1
Ex4 1 1 1 1 1 1 1 0 1
Ex5 1 1 1 1 1 1 1 1 0
Ex6 1 1 1 0 0 0 1 1 1
Ex7 1 1 1 0 1 0 1 1 1
Ex8 1 1 0 1 1 0 1 1 1

Meaning of the abbreviations: “R” for “reflexive”;

“C” for “complete”; “I” for “independent”.

5.2 Strictly monotonic decomposable models in the
denumerable case

In this section we extend our analysis to “strictly monotonically” decompos-
able models, i.e. we deal with all models suffixed by −D1 ′.
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5.2.1 Characterization results

The following theorem shows that −D1 and −D1 ′ models cannot be distin-
guished except in the more constrained (M3 ′) case.

Theorem 3 Let % be a binary relation on a finite or countably infinite set
X =

∏n
i=1 Xi. Then:

1. parts 1, 2, 3, 4 and 5 of Theorem 2 remain true when D1 is substituted
by D1 ′ in the labels of the models;

2. % satisfies model (M3 ′–D1 ′) iff % is complete and satisfies TC and
TAC12.

Except for the first two models (corresponding to parts 1 and 2 of Theorem
2, which have been proved in Lemmas 1 and 2 respectively), the proof of
Theorem 3 is rather technical. It develops the following idea. For each of
the models characterized in Theorem 2, with the exception of the sixth one,
we show that the functions ϕi that appear in the representation and are
nondecreasing in their first argument and nonincreasing in their second, can
be substituted by functions that are strictly increasing in their first argument
and strictly decreasing in their second. The proof of the theorem relies on
Lemmas 5 and 6 stated below; the proof of these lemmas is deferred to
Appendix A.2 and A.3.

Since we are planning to transform the functions ϕi that appear in the
representation of % in our models, we need knowing how much freedom we
have for doing so. It is important to keep in mind that the functions pi

appearing in the various (Mk) and (Mk ′) models need not be a numerical
representation of %∗

i (in model (M1) or (M1 ′)) or of %∗∗
i (in models (M2),

(M2 ′), (M3) or (M3 ′)). Our first lemma states the precise (necessary and
sufficient) conditions that pi has to fulfill in the numerical representations of
the various models.

Lemma 5

1. Let % satisfy model (M1) or (M1 ′). A function pi : X2
i → R, with

pi(xi, xi) = 0, for all xi ∈ Xi, can be used in a representation of %

according to model (M1) or (M1 ′) iff

(zi, wi) ≻
∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi). (32)
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2. Let % satisfy model (M2), (M2 ′) or (M3). A function pi : X2
i →

R, with pi(xi, yi) = −pi(yi, xi), for all xi, yi ∈ Xi, can be used in a
representation of % according to model (M2), (M2 ′) or (M3) iff

(zi, wi) ≻
∗∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi). (33)

3. Let % satisfy model (M3 ′). A function pi : X2
i → R, with pi(xi, yi) =

−pi(yi, xi), for all xi, yi ∈ Xi, can be used in a representation of %

according to model (M3 ′) iff

(zi, wi) ≻
∗∗
i (xi, yi) ⇒ pi(zi, wi) > pi(xi, yi)

and

(zi, wi) ∼∗∗
i (xi, yi) and

∃ a−i, b−i ∈ X−i s.t. (xi, a−i) ∼ (yi, b−i)

}

⇒ pi(zi, wi) = pi(xi, yi).

(34)

The next lemma states, in a fairly general framework, the conditions
under which a function ϕ of two variables that is nondecreasing in its first
argument and nonincreasing in the second can be transformed into a strictly
monotonic function ψ while preserving the ordering induced by ϕ on its
domain of definition. Consider a function ϕ : U × U → R, with U , a
subset of R, and suppose that ϕ is nondecreasing in its first argument and
nonincreasing in the second. There are two types of situations that may
cause the lack of strict monotonicity of ϕ in its variables; we denote by S,
the set of values r of ϕ for which either there are a, b, c ∈ U such that :

ϕ(a, c) = ϕ(b, c) = r with a > b (35)

or there are a, c, d ∈ U such that :

ϕ(a, c) = ϕ(a, d) = r with c > d. (36)

Clearly, ϕ is strictly monotonic iff S is empty. The role played by the set S
is crucial as we can see in the next lemma.

Lemma 6 Let U be a subset of the ]0, 1[ interval and ϕ : U × U → R that
vanishes on the diagonal (ϕ(u, u) = 0, for all u ∈ U) and is nondecreasing
in its first argument and nonincreasing in the second.
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1. If S is at most denumerable, there exists a function ψ : U × U → R

that vanishes on the diagonal, is increasing in its first argument and
decreasing in the second and satisfies the following properties: for all
u, v, u′, v′ ∈ U ,

[ϕ(u, v) > ϕ(u′, v′)] ⇒ [ψ(u, v)) > ψ(u′, v′)]. (37)

and

[ϕ(u, v) = ϕ(u′, v′)] ⇒ [ψ(u, v)) = ψ(u′, v′)] iff ϕ(u, v) 6∈ S (38)

If, in addition, ϕ is skew-symmetric, there exists a skew-symmetric ψ
with the same properties as above.

2. If S is not denumerable, there is no function ψ that is increasing in its
first argument, decreasing in the second and satisfies (37).

We are now in a position to prove Theorem 3.

Proof of Theorem 3

1) The assertion about models (M– D1 ′) and (M0– D1 ′) are established
respectively by Lemmas 1 and 2.

Model (M1 ′– D1 ′). We know from Theorem 2.3 that the conditions
are necessary and that they enable to build a representation of % within
model (M1 ′– D1). Following the construction process outlined in the proof
of Theorem 2.3, we have (zi, wi) %∗

i (xi, yi) iff pi(zi, wi) ≥ pi(xi, yi) and
pi(xi, yi) = ϕi(ui(xi), ui(yi)), for all xi, yi, zi, wi ∈ Xi. Use Lemma 6.1 and
substitute ϕ by a strictly monotonic function ψi (U = ui(Xi) may w.l.o.g.
be supposed to be included in the ]0, 1[ interval and the set S associated
with ϕ by (35) and (36) is denumerable, since Xi is at most denumerable).
According to equation (37), the function p′i(xi, yi) = ψi(ui(xi), ui(yi)) satis-
fies the necessary and sufficient condition (32) so that it can be used in a
representation of % within model (M1 ′). Since p′i(xi, yi) decomposes (by def-
inition) as a function ψi(ui(xi), ui(yi)) that is increasing in its first argument
and decreasing in the second , we thus have a representation of % in model
(M1 ′– D1 ′).

Models (M2 ′– D1 ′) and (M3– D1 ′). The proof is similar to that for model
(M1 ′– D1 ′) except that pi is a skew-symmetric representation of %∗∗

i ; parts
4 and 5 of Theorem 2 are used together with Lemmas 6.1 and 5.2.
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2) The conditions have already proven to be necessary (Theorem 1.2 and
Lemma 4.2). Assuming that the axioms are satisfied implies that % has a rep-
resentation in model (M3 ′– D1) with pi(xi, yi) = ϕi(ui(xi), ui(yi)) represent-
ing %∗∗

i . By construction, ϕi is nondecreasing in its first argument and non-
increasing in the second and skew-symmetric. Applying Lemma 6.1 yields
a function ψi; letting p′i(xi, yi) = ψi(ui(xi), ui(yi)), we have to check whether
the additional condition (34) of Lemma 5.3 is fulfilled. Let Y ⊆ Xi × Xi be
an equivalence class of the relation ∼∗∗

i containing a pair (xi, yi) such that
∃ a−i, b−i ∈ X−i with (xi, a−i) ∼ (yi, b−i). We claim that Y contains neither
pairs (x′

i, y
′
i), (x′′

i , y
′
i) such that ui(x

′
i) > ui(x

′′
i ) nor pairs (x′

i, y
′
i), (x′

i, y
′′
i ) such

that ui(y
′
i) > ui(y

′′
i ). This means that the value pi(xi, yi) = ϕi(ui(xi), ui(yi))

associated to all pairs in the class Y does not belong to the set S associ-
ated to ϕi. If true, all pairs in Y will be assigned the same number by ψi

(according to (38)).
To prove the assertion, suppose, on the contrary, that there are pairs

(x′
i, y

′
i), (x′′

i , y
′
i) ∈ Y such that ui(x

′
i) > ui(x

′′
i ) (the other case is treated

similarly). Notice that since (xi, a−i) ∼ (yi, b−i), for all (ui, vi) such that
(ui, vi) ∼∗∗

i (xi, yi), one has (ui, a−i) ∼ (vi, b−i); we would thus have here
(x′

i, a−i) ∼ (y′
i, b−i) and (x′′

i , a−i) ∼ (y′
i, b−i). We may assume that ui repre-

sents the trace of %∗∗
i (as is done in the proof of Theorem 2) ; ui(x

′
i) > ui(x

′′
i )

consequently means that either ∃wi such that (x′
i, wi) ≻∗∗

i (x′′
i , wi) or ∃zi such

that (zi, x
′′
i ) ≻∗∗

i (zi, x
′
i), which in turn means respectively that ∃c−i, d−i ∈

X−i such that :

(x′
i, c−i) % (wi, d−i) and Not [(x′′

i , c−i) % (wi, d−i)] (39)

or
(zi, c−i) % (x′′

i , d−i) and Not [(zi, c−i) % (x′
i, d−i)] (40)

In case (x′
i, c−i) % (wi, d−i) holds in (39), applying TAC1i to (x′′

i , a−i) %

(y′
i, b−i), (y′

i, b−i) % (x′
i, a−i) and (x′

i, c−i) % (wi, d−i) yields (x′′
i , c−i) %

(wi, d−i), contrary to (39).
Similarly, in case (zi, c−i) % (x′′

i , d−i) holds in (40), applying TAC2i

to (x′′
i , a−i) % (y′

i, b−i), (y′
i, b−i) % (x′

i, a−i) and (zi, c−i) % (x′′
i , d−i) yields

(zi, c−i) % (x′
i, d−i), contrary to (40).

2
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5.2.2 Equivalence of models and independence of axioms

We list in the next corollary the equivalences of models that result from
Theorems 2 and 3.

Corollary 2 If X is at most denumerable, there are seven classes of distinct
models, which are:

1. models (M–D1), (M–D1 ′), that are equivalent;

2. models (M0–D1), (M0–D1 ′), that are equivalent;

3. models (M1–D1), (M1–D1 ′), (M1 ′–D1) and (M1 ′–D1 ′), that are
equivalent;

4. models (M2–D1), (M2–D1 ′), (M2 ′–D1) and (M2 ′–D1 ′), that are
equivalent;

5. model (M3–D1) and (M3–D1 ′), that are equivalent;

6. model (M3 ′–D1);

7. model (M3 ′–D1 ′).

Proof of Corollary 2
The equivalences of models listed above result from Corollary 1 and the fact
that the characterizations of the first five models are the same in Theorems
2 and 3. The first two equivalences were already noted in Lemmas 1 and 2.

The distinctness of the seven classes of models can be shown by exhibiting
appropriate examples. Since not all relations are reflexive and independent,
the first two classes are distinct. Example 8 in Appendix B proves that
there are models satisfying (M0– D1) and not (M1 ′– D1); by Example 7 we
know that it is possible to satisfy (M1 ′– D1) without satisfying (M2 ′– D1).
Example 9 verifies (M2 ′– D1) but not (M3– D1) and Example 10, (M3– D1)
but not (M3 ′– D1). Example 13 shows that models (M3 ′– D1) and (M3 ′–
D1 ′) are not equivalent since the relation in this example is complete and
satisfies TC and AC123 but neither TAC1 nor TAC2; therefore it can be
represented in model (M3 ′– D1) but not in model (M3 ′– D1 ′). The classical
additive utility model (equation (3)) shows that the axioms characterizing
model (M3 ′– D1 ′) are not inconsistent.

2
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Independence of the axioms characterizing models (M– D1 ′), (M0– D1 ′),
(M1 ′– D1 ′), (M2 ′– D1 ′) and (M3– D1 ′) has been established in Section 5.1.2.
Table 3 refers to examples showing that each of the axioms characterizing
model (M3 ′– D1 ′) is independent of the others.

Table 3: Properties of Examples in Appendix B related with model (M3 ′–
D1 ′)

C TC TAC1 TAC2
Ex1 0 1 1 1
Ex12 1 0 1 1
Ex3 1 1 0 1
Ex4 1 1 1 0

“C” stands for “complete”.

Finally, in view of Bouyssou and Pirlot (2002) (where axioms RC1, RC2
and TC are studied) and of Bouyssou and Pirlot (2004) (where the scruti-
nized axioms are AC1, AC2, AC3, TAC1 and TAC2), it may be interesting
to point out that there are no logical interactions between those two families
of axioms. Example 11 in Appendix B shows that there are reflexive, inde-
pendent and complete relations satisfying TC (and, hence, RC1, RC2) but
none of AC1, AC2, AC3 (and a fortiori none of TAC1, TAC2). Conversely,
as shown by Example 12, there are reflexive, independent and complete re-
lations satisfying TAC1 and TAC2 (hence AC1, AC2 and AC3) but neither
RC1 nor RC2 (and a fortiori not TC).

5.3 The non-denumerable case

Extending Theorems 2 and 3 to the case in which the Xi’s are not supposed
to be denumerable raises problems of numerical representability. Since the
case of models (M– D1), (M– D1 ′), (M0– D1) and (M0– D1 ′) has been dealt
with above using only LCC (Lemma 2), we concentrate on models at least
as constrained as (M1– D1). Suppose that % satisfies the axioms for model
(M1– D1) (or a more constrained model) as stated in Theorem 2; in case
some (or all) of the Xi’s are not denumerable, we observe that :

• the weak orders %∗
i (or %∗∗

i ) may not have a numerical representation;
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• the weak orders %±
i may not have a numerical representation and

• the functions ϕi (resp. ui) that appear in the model may fail to be
representations of %∗

i or %∗∗
i (resp. of %±

i , see (19)).

5.3.1 Characterization results

We start by showing that the representability of %∗
i (or %∗∗

i ) and their traces
is a necessary condition in the non-denumerable case. Theorem 1.7 indicates
that models (Mk– D) and (Mk ′– D), for k = 1, 2, 3 require property OD∗

ensuring that %∗
i or %∗∗

i be representable on R. OD∗ is a fortiori necessary
for all the models we consider, (M1– D1) and more constrained.

Lemma 5 states conditions that functions pi must satisfy (and that are
also sufficient) for being used in a representation of % in models (Mk) or
(Mk ′); from that, conditions on the functions ϕi can be derived. In the same
spirit, the next lemma states a condition that ui has to fulfill if used in model
(M1– D1) or a more constrained one.

Lemma 7 Let % satisfy model (M1–D1) or a more constrained one. If a
function ui : Xi → R appears in a representation of % according to model
(M1–D1) or a more constrained model, then, for all xi, yi ∈ Xi,

xi ≻
±
i yi ⇒ ui(xi) > ui(yi) (41)

Proof of Lemma 7

Suppose, on the contrary, that for some xi, yi ∈ Xi, we have xi ≻
±
i yi and

ui(xi) ≤ ui(yi). From xi ≻
±
i yi and using the completeness of both %±

i and %∗
i

in (M1– D1), we get that there is zi ∈ Xi such that (xi, zi) ≻∗
i (yi, zi) or there

is wi ∈ Xi such that (wi, yi) ≻∗
i (wi, xi). In the former case, using Lemma

5.1, yields ϕi(ui(xi), ui(zi)) > ϕi(ui(yi), ui(zi)), which is not compatible with
ui(xi) ≤ ui(yi) as long as ϕi is nondecreasing in its first argument. A similar
contradiction can be derived from the other branch of the alternative. The
same type of reasoning, using Lemma 5, enables to show the necessity of
condition (41) for all models from (M1– D1) on. 2

Condition (41) states that the weak order represented by ui must be at
least as fine as %±

i . Since an order finer (i.e. more discriminating) than
an order that is not representable on the reals does not admit a numerical
representation either, we have established that the following order-density
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condition is necessary. We say that % satisfies OD±
i if there is a finite or

countably infinite subset of Xi that is dense in Xi for %±
i . Condition OD±

is said to hold if condition OD±
i is in force for all i ∈ N .

Conditions OD∗ and OD± are sufficient to extend the results of Theorem
2 to the uncountable case. Reconsidering the proof of parts 3 to 6 of Theorem
2, we see that the construction of a representation in the respective models
can be worked out as soon as are available :

• a representation pi of the weak order %∗
i (for all i ∈ N) in models (M1–

D1) and (M1 ′– D1) or of %∗∗
i in model (M2– D1) and more constrained

ones

• and a representation of the trace of %∗
i (which, in view of (23) is also

the trace of %∗∗
i ).

This is precisely what OD∗ and OD± guarantee. Note that in models (M2–
D1) and more constrained, OD∗ implies that %∗∗

i is representable (see Bou-
yssou and Pirlot (2002)). We thus have the following extension of Theorem
2. The first two parts are consequences of Lemmas 1 and 2; they are stated
here for the sake of completeness.

Theorem 4 Let % be a binary relation on a product set X =
∏n

i=1 Xi. Then:

1. % satisfies model (M–D1) iff % satisfies property LCC;

2. % satisfies model (M0–D1) iff % is reflexive, independent and satisfies
property LCC;

3. % satisfies model (M1–D1) or (M1 ′–D1) iff % is reflexive, indepen-
dent and satisfies RC1, AC123, OD∗ and OD±;

4. % satisfies model (M2–D1) or (M2 ′–D1) iff % is reflexive and satisfies
RC12, AC123, OD∗ and OD±;

5. % satisfies model (M3–D1) iff % is complete and satisfies RC12,
AC123, OD∗ and OD±;

6. % satisfies model (M3 ′–D1) iff % is complete and satisfies TC, AC123,
OD∗ and OD±.
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In order to extend Theorem 3, we need another axiom that is closely
linked with the set S described in (35), (36) and that will enable us to adapt
the proof of Theorem 3, i.e. to modify function ϕi into a function ψi that is
strictly monotonic in both its arguments. Let S∗

i (resp. S∗∗
i ) denote the set of

equivalence classes s of the relation %∗
i (resp. %∗∗

i ) that verify the following:

∃ (xi, zi), (yi, zi) ∈ s or ∃ (wi, xi), (wi, yi) ∈ s such that Not[ xi ∼
±
i yi ].

(42)
In view of Lemma 6 and the correspondence between S∗

i (or S∗∗
i ) and the set

S, it is no wonder that the cardinality of those sets does matter. We denote
by Σ∗

i (resp. Σ∗∗
i ), the property stating that S∗

i (resp. S∗∗
i ) is denumerable ;

Σ∗ (resp. Σ∗∗) stands for Σ∗
i (resp. Σ∗∗

i ) holding for all i ∈ N . The necessity
of Σ∗ or Σ∗∗ in the various models is established in the next lemma.

Lemma 8

1. [ (M1–D1 ′), (M1 ′–D1 ′) ] ⇒ Σ∗

2. [ (M2–D1 ′), (M2 ′–D1 ′), (M3–D1 ′), (M3 ′–D1 ′) ] ⇒ Σ∗∗ ⇒ Σ∗

Proof of Lemma 8

1) Let % belong to one of the models (Mk– D1 ′) or (Mk ′– D1 ′) for k =
1, 2, 3. Since all these models are more constrained than (M1– D1 ′) , % has
a representation in the latter. Let F, ϕi, ui, for i ∈ N , provide a represen-
tation of % in model (M1– D1 ′) ; ϕi is increasing in its first argument and
decreasing in the second for all i. Let s denote an equivalence class of %∗

i

containing a pair (xi, zi), (yi, zi) with xi ≻±
i yi. Suppose the set of classes

such as s is not denumerable. Using Lemma 7 and the increasingness of ϕi

in its first argument, xi ≻
±
i yi entails ui(xi) > ui(yi) and ϕi(ui(xi), ui(zi)) >

ϕi(ui(yi), ui(zi)). Intervals (ϕi(ui(yi), ui(zi)), ϕi(ui(xi), ui(zi))) correspond-
ing to different classes s and s′ are disjoint (in view of Lemma 5.1); they
form a non-denumerable family of disjoint non-empty intervals of R, which
does not exist since each interval contains a distinct rational number. One
similarly proves the denumerability of the set of equivalence classes s′ of %∗

i

containing a pair (wi, xi), (wi, yi) with xi ≻
±
i yi (using the decreasingness of

ϕi in its second argument). This establishes that Σ∗ holds in all models at
least as constrained as (M1– D1 ′).
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2) Turning to Σ∗∗, consider % , a relation that satisfies model (M2– D1 ′)
or a more constrained model. Such a relation has a representation in (M2–
D1 ′) using some functions F, ϕi, ui, for i ∈ N , with ϕi increasing in its
first argument and decreasing in the second. Reasoning as above but about
equivalence classes s or s′ of %∗∗

i , we can prove that Σ∗∗ must hold. Moreover,
it is clear, in general, that Σ∗∗ implies Σ∗ since the equivalence classes of %∗∗

i

are subdivisions of those of %∗
i .

2

The extension of Theorem 3 to sets of arbitrary cardinality is now at
hand.

Theorem 5 Let % be a binary relation on a set X =
∏n

i=1 Xi. Then:

1. % satisfies model (M–D1 ′) iff % satisfies property LCC;

2. % satisfies model (M0–D1 ′) iff % is reflexive, independent and satis-
fies property LCC;

3. % satisfies model (M1–D1 ′) or (M1 ′–D1 ′) iff % is reflexive, indepen-
dent and satisfies RC1, AC123, OD∗, OD± and Σ∗;

4. % satisfies model (M2–D1 ′) or (M2 ′–D1 ′) iff % is reflexive and sat-
isfies RC12, AC123, OD∗, OD± and Σ∗∗;

5. % satisfies model (M3–D1 ′) iff % is complete and satisfies RC12,
AC123, OD∗, OD± and Σ∗∗;

6. % satisfies model (M3 ′–D1 ′) iff % is complete and satisfies TC,
TAC12, OD∗, OD± and Σ∗∗.

Proof of Theorem 5

Parts 1) and 2) are consequences of Lemmas 1 and 2 .

3) In view of Lemma 8.1, it only remains to prove that the conditions are
sufficient to guarantee the existence of a representation of % in model (M1 ′–
D1 ′). Since the hypotheses of Theorem 4.3 are in force, we may construct
a representation of % just as described in the proof of Theorem 4.3. Ac-
cording to that construction, pi(xi, yi) = ϕi(ui(xi), ui(yi)) is a representation
of the weak order %∗

i and ui is a representation of %±
i . Starting from that

point, we may transform ϕi into a function ψi increasing in its first argu-
ment and decreasing in the second as done in the proof of Theorem 3.1.
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Such a transformation is made possible since Σ∗ together with the fact that
ϕi(ui(xi), ui(yi)) is a numerical representation of %∗

i imply that the set Si,
defined by (35) and (36), applied to ϕi instead of ϕ, is denumerable; the con-
ditions required for applying Lemma 6.1 are thus fulfilled. The conclusion,
i.e. the fact that the transformed representation is a representation of % in
model (M1 ′– D1 ′), follows as in part 1 of Theorem 3.

4), 5) and 6) Necessity is a consequence of Lemma 8.2. The proof of suffi-
ciency follows the same lines as in part 3 above; there is only one difference :
pi(xi, yi) = ϕi(ui(xi), ui(yi)) is a representation of the weak order %∗∗

i (in-
stead of %∗

i ) and hypothesis Σ∗∗ is thus needed in order to transform ϕi into
a function ψi that is increasing in its first argument and decreasing in the
second. The proof that the transformed representation yields a representa-
tion of % in model (M2 ′– D1 ′) (resp. (M3– D1 ′), (M3 ′– D1 ′)) is the same as
for part 4 (resp. 5, 6) of Theorem 4.

2

5.3.2 Independence of the axioms (final)

The independence of LCC in models (M– D1 ′) and (M0– D1 ′) is obvious.
Non-redundancy of the axioms has been established for the denumerable
case in the previous sections; in that case, order density conditions as well as
Σ∗ and Σ∗∗ are trivially fulfilled. None of these conditions can be dispensed
of in the non-denumerable case. Examples 14, 15 and 16 in Appendix B
(see a summary of their properties in Table 4) establish the independence of
these conditions in all the models. More specifically, for models (M1– D1 ′)
or (M1 ′– D1 ′) in part 3 of Theorem 5, they respectively show that none of
OD∗, OD± and Σ∗ is redundant. For the models in parts 4, 5, 6, the same
examples respectively show that none of OD∗, OD± and Σ∗∗ is redundant.

In case X is not a denumerable set, the equivalences of models in parts
3, 4 and 5 of Corollary 2 break into two parts; we describe the resulting
equivalences in the next corollary.

Corollary 3 If X is not denumerable, there are ten classes of distinct mod-
els, which are:

1. models (M–D1) and (M–D1 ′), that are equivalent;

2. models (M0–D1) and (M0–D1 ′), that are equivalent;
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Table 4: Properties of Examples 14 to 16 in Appendix B

R C I TC TAC OD∗ OD± Σ∗ Σ∗∗

Ex14 1 1 1 1 1 0 1 1 1
Ex15 1 1 1 1 1 1 0 1 1
Ex16 1 1 1 1 1 1 1 0 0

Meaning of the abbreviations: “R” stands for “reflexive”, “C” for “complete”,

“I” for “independent”; TAC stands for TAC1 and TAC2

3. models (M1–D1), (M1 ′–D1), that are equivalent;

4. models (M1–D1 ′) and (M1 ′–D1 ′), that are equivalent;

5. models (M2–D1), (M2 ′–D1), that are equivalent;

6. models (M2–D1 ′) and (M2 ′–D1 ′), that are equivalent;

7. model (M3–D1);

8. model (M3–D1 ′);

9. model (M3 ′–D1);

10. model (M3 ′–D1 ′).

Proof of Corollary 3

The equivalences stated in the corollary result from Theorems 4 and 5. In
view of the proof of Corollary 2 and the examples used therein, we only have
to justify that the subclasses of the equivalence classes that split in the non-
denumerable case are distinct. A single example suffices to prove the latter.
Example 16 is representable in model (M3 ′– D1) (and hence in models (M2 ′–
D1) and (M1 ′– D1)) but in none of (M3 ′– D1 ′), (M2 ′– D1 ′) or (M1 ′– D1 ′)
since the relation in the example satisfies neither Σ∗ nor Σ∗∗.

2

5.4 Discussion of the results

We summarize in Table 5 the results obtained in Theorems 2, 3, 4 and 5.
This table offers a synthetic view of all the models studied together with their
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characterization. The axioms that appear in the columns headed by the label
“Non-denumerable” have to be added to those characterizing the correspond-
ing models in the denumerable case in order to get a characterization valid
for the non-denumerable case.

Table 5: Summary of the results in Theorems 2, 3, 4 and 5.

Denumerable Non-Denumerable

−D1 −D1 ′ −D1 −D1 ′

M LCC

M0 refl., indep. LCC

M1, M1 ′ refl., indep. OD∗, OD± OD∗, OD±

RC1, AC123 Σ∗

M2, M2 ′ refl., RC12, AC123 OD∗, OD± OD∗, OD±

Σ∗∗

M3 compl., RC12, AC123 OD∗, OD± OD∗, OD±

Σ∗∗

M3 ′ compl., TC compl., TC OD∗, OD±

AC123 TAC12 Σ∗∗

Meaning of the abbreviations: “refl.” for “reflexive”, “indep.” for “independent”, “compl.”

for “complete”.

The relations between models are shown in graphical form in Figure 2,
which represents the same information as Corollary 3; this figure both shows
which models are equivalent and which classes are contained in others. This
picture is valid for the most general non-denumerable case. It simplifies in
the denumerable case as indicated by Corollary 2: all models (M1) and (M1 ′)
are equivalent as well as all models (M2) and (M2 ′); at the upper level, three
distinct classes remain: one formed by (M3– D1) and (M3– D1 ′) and two
classes each containing a single model, namely (M3 ′– D1) and (M3 ′– D1 ′).
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(M3 ′– D1 ′) (M3 ′– D1)

(M3– D1 ′) (M3– D1)

(M2– D1 ′), (M2 ′– D1 ′) (M2– D1), (M2 ′– D1)

(M1– D1 ′), (M1 ′– D1 ′) (M1– D1), (M1 ′– D1)

(M0– D1), (M0– D1 ′)

(M– D1), (M– D1 ′)

Figure 2: Distinct models and implications in the non-denumerable case

5.4.1 Relationship between %±
i and %∗

i or %∗∗
i

The inter-relations between %∗
i or %∗∗

i and % have been investigated in Bou-
yssou and Pirlot (2002) (see Lemma 3, p. 689). Similarly, those between
%±

i and % are studied in Bouyssou and Pirlot (2004) (see Lemmas 2 and
4). We have the opportunity to examine here the relationships between %±

i

and %∗
i or %∗∗

i . We observed through (23), that %±
i is the trace of %∗

i and
%∗∗

i , which amounts saying that %∗
i and %∗∗

i respond positively to %±
i , i.e.

xi %±
i yi ⇒ (xi, zi) %∗

i (yi, zi) and (zi, yi) %∗
i (zi, xi),∀ zi (and similarly for

%∗∗
i ). The “response” may however fail to be “strictly positive” even in the

more constrained model (M3 ′– D1 ′); it may happen indeed that xi ≻±
i yi

and for some zi, (xi, zi) ∼∗∗
i (yi, zi) or for some wi, (wi, yi) ∼∗∗

i (wi, xi) (this
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is the case for a denumerable set of equivalence classes in Example 17). In
this respect, the set S∗

i (resp. S∗∗
i ) defined by formula (42) plays a crucial

role. The response of %∗
i (resp. %∗∗

i ) is strictly positive if and only if the set
S∗

i (resp. S∗∗
i ) is empty. If this is not the case, as long as S∗

i (resp. S∗∗
i ) is

finite or denumerable, the response is not always strictly positive, but there
is a representation in a model of type −D1 ′; in case S∗

i (resp. S∗∗
i ) is not

denumerable, representing % in such a model is no longer possible.

5.4.2 Uniqueness issues and regular representations

In this section, we only consider models from (M1– D1) and more constrained;
in all these models, %±

i and %∗
i (and %∗∗

i in models (M2– D1) and more con-
strained) are weak orders for all i. As noted in Bouyssou and Pirlot (2002),
uniqueness results for the numerical representations of these models are very
weak. Lemmas 5 and 7 give however indications on necessary conditions that
ϕi and ui have to fulfill if used in a numerical representation of one of our
models. These conditions amount saying that ϕi represents a relation that
is at least as fine as %∗

i (or %∗∗
i for models from (M2– D1) and more con-

strained); similarly, ui must represent a relation that is finer than %±
i . The

discussion in Section 5.4.1 has shown that it is not possible in all models to
have representations in which:

• ui is a numerical representation of the weak order %±
i and

• pi(xi, yi) = ϕi(ui(xi), ui(yi)) is a numerical representation of the weak
order %∗

i (for models (M1– D1) and more constrained) or of the weak
order %∗∗

i (for models (M2– D1) and more constrained).

We call regular a representation in which this is the case (see Roberts (1979)
about regularization of a scale of measurement; see also the considerations
on regularity in relation with uniqueness of the representation in Bouyssou
and Pirlot (2002, Remark 4, p. 695)).

In the proofs of Theorems 2 and 4, we built regular representations for
the models (M1 ′– D1), (M2 ′– D1), (M3 ′– D1), which proves that regular rep-
resentations always exist (even in the non-denumerable case) for all our −D1
models. Is it the case for the −D1 ′ models? In the proofs of Theorems 3 and
5 where the −D1 ′ models are studied, we start from regular representations
in the corresponding −D1 model and change the functions ϕi into functions
ψi that are increasing in their first argument and decreasing in the second.
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These alterations of the representations of %∗
i (or %∗∗

i ) respect conditions
(37) and (38) of Lemma 6. If the representation with ui and ϕi is regular, all
pairs in any equivalence class of %∗

i (or %∗∗
i ) are associated the same value

by ϕi. Due to (38), this is still the case after ϕi has been transformed into
ψi unless the equivalence class belongs to S∗

i (or S∗∗
i ). Hence, if S∗

i (or S∗∗
i )

is empty, there is a regular representation in the −D1 ′ model. Thus, start-
ing from a regular representation in a −D1 model, we have proven that a
sufficient condition for a regular representation in the corresponding −D1 ′

model to exist is that S∗
i (or S∗∗

i ) be empty. This condition is also clearly
necessary. We thus have proven the following proposition.

Proposition 3

1. A relation % that satisfies the hypotheses of any model (Mk–D1) or
(Mk ′–D1) for k = 1, 2 or 3, has a regular representation in that model;

2. A relation % that satisfies the hypotheses of model (M1–D1 ′) or (M1 ′–
D1 ′) has a regular representation in that model iff S∗

i is empty for all
i ∈ N ;

3. A relation % that satisfies the hypotheses of model (M2–D1 ′), (M2 ′–
D1 ′), (M3–D1 ′) or (M3 ′–D1 ′) has a regular representation in that
model iff S∗∗

i is empty for all i ∈ N .

As a direct consequence of the above proposition, we get a condition
under which %∗

i is not only strongly linear but also strongly independent
(see Section 4.1 for the definition of strong independence). This result is
formalized in the following corollary.

Corollary 4

1. If % satisfies model (M1–D1 ′) or (M1 ′–D1 ′), %∗
i is strongly indepen-

dent iff S∗
i = ∅ for all i ∈ N .

2. If % satisfies model (M2–D1 ′), (M2 ′–D1 ′) (M3–D1 ′) or (M3 ′–D1 ′),
%∗∗

i is strongly independent iff S∗∗
i = ∅ for all i ∈ N .

Proof of Corollary 4

1) Let % be a relation that can be represented in model (M1– D1 ′) (resp.
(M1 ′– D1 ′)). According to Proposition 3, part 2, S∗

i = ∅ is a necessary and
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sufficient condition for such a relation % to admit a representation in model
(M1– D1 ′) (resp. (M1 ′– D1 ′)) with ψi(ui(xi), ui(yi)) a representation of %∗

i

that is increasing in its first argument and decreasing in the second and ui a
representation of %±

i . In view of Proposition 2, part 2(b), this is equivalent
to saying that %∗

i is strongly independent .

2) A similar result holds for %∗∗
i iff S∗∗

i = ∅ in model (M2– D1 ′) and more
constrained −D1 ′ models. This establishes part 2.

2

5.4.3 Variants left aside

For the sake of conciseness, not all variants of intra-attribute decomposable
models have been investigated here. For instance, instead of using equation
(13), we might have chosen to decompose pi as pi(xi, yi) = ϕi(ui(xi), vi(yi)),
with a function ui possibly different from the function vi. In models (M– D)
and (M0– D), this apparently more general decomposition has no incidence
but, when combined with monotonicity properties of ϕi, the decomposition
leads to models in which the “difference of preference” pi may be understood
via two possibly different linear orderings of Xi (for instance, those repre-
sented by ui and vi respectively). It is rather straightforward—we leave it to
the reader—to adapt the reasonings we made in the case ui = vi to the case
in which ui 6= vi (mainly omitting AC3).

5.4.4 Relationships with models studied in the literature

Our intention, as stated in the introduction, was to develop the axiomati-
zation of models (M– D) in order to come as close as possible to Tversky’s
additive difference model (2), without making use of unnecessary structural
assumptions or hardly interpretable conditions.

Let % be representable in model (2), i.e. x % y iff
∑n

i=1 Φi(ui(xi) −
ui(yi)) ≥ 0, for some functions ui and some functions Φi that are increas-
ing and odd. Such a representation is a particular case of a representa-
tion of % in model (M3 ′– D1 ′) with e.g. F (α1, . . . , αn) =

∑n
i=1 Φi(αi) and

ϕi(ui(xi), ui(yi)) = ui(xi)−ui(yi). F is indeed increasing in all its arguments
and odd and ϕi increasing in its first argument, decreasing in the second and
skew-symmetric. A relation that is representable in model (2) is thus com-
plete and satisfies TC, TAC12, OD∗, OD± and Σ∗∗ (Theorem 5, part 6). For
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a relation % that satisfies model (2), ui is necessarily a numerical representa-
tion of the marginal preference %i since [(xi, a−i) % (yi, a−i), ∀ a−i ∈ Xi] iff
[Φi(ui(xi)−ui(yi)) ≥ 0] iff ui(xi)−ui(yi) ≥ 0]. We know (Bouyssou & Pirlot,
2004, Lemma 4, part 3) that for a complete relation % that satisfies TAC12,
the marginal preference %i and the marginal trace %±

i are identical. Thus ui

also represents %±
i . It is not hard to convince oneself that ui(xi) − ui(yi) is

a numerical representation of a relation on X2
i that is at least as fine as %∗∗

i

(as is true in general of the functions ϕi involved in the representation of a
relation that belongs to model (M3 ′– D1 ′)). It cannot be excluded for a re-
lation belonging to model (2) that the relation represented by ui(xi)− ui(yi)
be strictly finer than %∗∗

i . It is even possible that no regular representation
of % exist, i.e. that one cannot find a representation of % in model (2) in
which ui(xi) − ui(yi) is a numerical representation of %∗∗

i (this is the case if
S∗∗

i 6= ∅, as stated in Proposition 3.3).
Of all the models studied in this paper, (M3 ′– D1 ′) is the one closest to

model (2) and the latter is a special case of the former. Coming closer to
Tversky’s model without using unnecessary and non-interpretable additional
conditions is an interesting challenge for a further study.

Another type of model alluded to in the introduction is the nontransitive
additive preference model (5). Model (5) is a particular case of model (M1 ′)
(since F (α1, . . . , αn) =

∑n
i=1 αi is increasing in all its arguments) and of

model (M3 ′), as soon as the pi functions are assumed to be skew-symmetric.
We assume in the sequel that the pi’s are skew-symmetric, which thus implies
that % fulfills TC and OD∗. If % verifies model (5), the function pi(xi, yi)
can be decomposed, as we shall see, into a function ϕi(ui(xi), ui(yi)) that is
nondecreasing in its first argument and nonincreasing in the second, as soon
as % verifies AC123 and OD±. In such a case, we have:

x % y ⇔
n

∑

i=1

ϕi(ui(xi), ui(yi)) ≥ 0 (43)

To prove this assertion, it suffices to apply the strategy of proof of Theorem
2, part 6 and Theorem 4, part 6. In the denumerable case (Theorem 2, part
6), we started with a representation of % in model (M3 ′), where pi represents
%∗∗

i ; since we know that %∗∗
i is strongly linear for all i as soon as AC123 is

in force, we get, by applying Lemma 4, part 6, a decomposition of pi(xi, yi)
into ϕi(ui(xi), ui(yi)); in this representation, ϕi is nondecreasing in its first
argument and nonincreasing in the second and ui is a representation of %±

i .
In the non-denumerable case, the same can be done provided OD± holds.
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The only additional difficulty that appears when starting with a repre-
sentation in model (5) is that the pi’s do not necessarily represent %∗∗

i . It is
easily shown that the relation on X2

i represented by pi(xi, yi) is at least as fine
as %∗∗

i , i.e. [pi(xi, yi) ≥ pi(zi, wi)] ⇒ [(xi, yi) %∗∗
i (zi, wi)]. In other words,

using the completeness of %∗∗
i , [(xi, yi) ≻∗∗

i (zi, wi)] ⇒ [pi(xi, yi) > pi(zi, wi)].
If pi fails to be a representation of %∗∗

i , it is because it assigns distinct val-
ues to some equivalent pairs (xi, yi) ∼∗∗

i (zi, wi). Since such pairs are per-
fectly substitutable without any change in the preference % , we may well
transform pi into a representation pi

′ of %∗∗
i just by selecting a particu-

lar representative pair in each equivalence class of %∗∗
i and assigning to all

pairs in the same class, the value assigned by pi to the selected pair. In
other terms, letting (zi, wi) be the pair selected in an equivalence class of
%∗∗

i , we define pi
′(xi, yi) = pi(zi, wi) for all (xi, yi) ∼∗∗

i (zi, wi). We have
x % y ⇔

∑n
i=1 pi(xi, yi) ≥ 0 ⇔

∑n
i=1 pi

′(xi, yi) ≥ 0. When this regu-
larization has been done, we know that the pi

′’s are representations of the
strongly linear relation %∗∗

i (if AC123 holds) and can thus be decomposed
into ϕi(ui(xi), ui(yi)). In the non-denumerable case, OD± is needed for guar-
anteeing the existence of a representation ui of %±

i . If we additionally impose
that % satisfies TAC12, the marginal preferences %i and the marginal traces
%±

i are identical (Bouyssou and Pirlot (2004, Lemma 4, part 3)). Hence ui

also represents %±
i ; one cannot guarantee in that case, even when imposing

Σ∗∗, that ϕi can be transformed into a function ψi increasing in its first argu-
ment and decreasing in the second, as is done in Theorem 5, and still yielding
an additive representation. In other words, we do not know the conditions
that guarantee the existence of a representation of % as in model (43) with
ϕi increasing in its first argument and decreasing in the second.

6 Conclusion

Our objective of characterizing variants of model (M– D) using a limited
number of cancellation axioms without any structural condition on the set
of objects has been achieved. The present work has focussed on further de-
composition of the relations on “difference of preferences” that are central in
our previous study (Bouyssou & Pirlot, 2002). Conditions that allow for de-
composing these in terms of well-behaved marginal traces on each dimension
have been obtained; this helps clarify the inter-relations between marginal
traces and differences of preference (the relationships between preference and
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marginal traces as well as between marginal traces and marginal preferences
have been studied in Bouyssou and Pirlot (2004) without the “mediation” of
“differences of preference”). It is remarkable that, at the level of generality
we place ourselves, there is no synergy between the axioms that permit a
decomposition in terms of differences of preference (the models studied in
Bouyssou and Pirlot (2002)) and the axioms that permit a further decom-
position of the differences of preference in terms of marginal traces; in other
words these blocks of axioms are independent. The resulting model offers
a framework that enables us to understand some fundamental features of a
large variety of preference models.

The line of research initiated in Bouyssou and Pirlot (2002) has also
proved useful here. The axioms that are used:

• appear to have a clear interpretation;

• could be subjected to experimental tests without theoretical difficulty.

Some models have been left aside, for instance those dropping only par-
tially the additivity and subtractivity requirement of the additive difference
model, such as:

x % y iff F ([ui(xi) − ui(yi)]) ≥ 0,

with F nondecreasing (or increasing) in its n arguments. Their analysis
requires a different approach (in order to capture subtraction).

What was said in Bouyssou and Pirlot (2002) on the ability of models of
type (M) to contain as particular cases most rules for the comparison of mul-
tidimensional objects remains valid here. All of these rules make indeed use
of marginal preferences on each dimension. In particular, the various models
studied in this paper were shown in Greco, Matarazzo, and SÃlowiński (1999b,
1999a) to have close connections with preference models representable by de-
cision rules extracted from rough sets approximations.

Future research on the topics introduced in this paper will include:

• the specialization of our results to the case in which X is an homoge-
neous Cartesian product which includes the important case of decision
under uncertainty;

• the study of additional conditions allowing to specify a precise func-
tional form for F and ϕi;
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• the generalization of results to aggregation methods leading to valued
preference relation (see Bouyssou and Pirlot (1999), Bouyssou, Pirlot,
and Vincke (1997), Pirlot and Vincke (1997)).

A Proofs

A.1 Proof of Lemma 2

By Theorem 1.3, we know that model (M0– D1) implies that % is reflex-
ive and independent. The necessity of hypothesis LCC is also clear since
it determines the existence of appropriate functions ui. We show that it
is possible to build a representation of % in model (M0– D1) given that %

is reflexive, independent and satisfies LCC. The proof differs from that of
Lemma 1, in the general not necessarily denumerable case, only in the con-
struction of ϕi. In order to get ϕi(ui(xi), ui(xi)) = 0, for all xi ∈ Xi, we
build upon the construction of ϕi proposed in the proof of Lemma 1. Let
ϕ′

i(ui(xi), ui(yi)) = f1(ui(xi)) + f2(1 − ui(yi)), with f1 and f2 as defined in
the proof of Lemma 1 (we have just renamed as ϕ′

i, the function called ϕi

in the proof of Lemma 1). Let g :]0, 1[→]0, 1[ be the function that maps its
argument a ∈ ]0, 1[ onto a number b, with b ∈ ]0, 1[ ; g works on the binary
representation (a1, a2, . . . , a2k−1, a2k . . .) of a, building the ternary represen-
tation (b1, . . . , bk, . . .) of b as follows:

bk =







0 if (a2k−1, a2k) = (0, 0)
1 if (a2k−1, a2k) = (0, 1) or (1, 0)
2 if (a2k−1, a2k) = (1, 1),

for k = 1, 2, . . .
We define ϕi(ui(xi), ui(yi)) = g(ϕ′

i(ui(xi), ui(yi))) −
1
2
. The function ϕi

takes its values in the ] − 1
2
, 1

2
[ interval. It is not hard to convince one-

self that, for all xi, yi, zi ∈ Xi, ui(xi) > ui(yi) implies ϕi(ui(xi), ui(yi)) >
ϕi(ui(zi), ui(yi)); clearly, ϕi is also decreasing in its second argument.We ob-
serve in addition that, for all xi ∈ Xi, f1(ui(xi))+f2(1−ui(xi)) is a number a,
the binary representation of which is such that (a2k−1, a2k) = (0, 1) or (1, 0)
for all k; g maps such a number onto the number with ternary representa-
tion (1, 1, . . . , 1, . . .), i.e. onto 1

2
, which proves that ϕi(ui(xi), ui(xi)) = 0.

With the same definition of F as in the proof of Lemma 1, observe that
F (0) = 1 ≥ 0 as required.
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It is easy to verify that the constructed representation is well-defined (see
Bouyssou and Pirlot (2002) for more details). The proof of the independence
of the three axioms characterizing the model is left to the reader.

2

A.2 Proof of Lemma 5

1) Necessity. Assume pi is used in a representation according to model
(M1) (or (M1 ′)) and suppose there exist xi, yi, zi, wi such that (zi, wi) ≻∗

i

(xi, yi) and pi(zi, wi) ≤ pi(xi, yi). There would then exist a−i, b−i ∈ X−i

such that Not [(xi, a−i) % (yi, b−i)] and (zi, a−i) % (wi, b−i). A represen-
tation as in model (M1 ′) implies that F (pi(xi, yi), (pj(aj, bj))j 6=i) < 0 and
F (pi(zi, wi), (pj(aj, bj))j 6=i) ≥ 0, which contradicts the nondecreasingness of
F .

Sufficiency results from the fact that the construction described by (30)
does lead to a representation of % in a model of type (M1 ′) as soon as pi

verifies condition (32). The proof is identical to that of Theorem 1.3 in
Bouyssou and Pirlot (2002).

2) Necessity. Suppose there exist xi, yi, zi, wi such that (zi, wi) ≻∗∗
i (xi, yi)

and pi(zi, wi) ≤ pi(xi, yi). Then either

(zi, wi) ≻
∗
i (xi, yi) with pi(zi, wi) ≤ pi(xi, yi)

or (yi, xi) ≻
∗
i (wi, zi) with pi(yi, xi) ≥ pi(wi, zi).

In either case, an argument similar to that used in the proof of the necessity,
in part 1, leads to the conclusion.

In model (M2 ′), sufficiency is proved like for model (M1 ′). Proving suf-
ficiency for model (M3) is slightly more delicate since the case x ∼ y must
be distinguished from x ≻ y; the proof can be done however using the same
arguments as in Theorem 1.5 of Bouyssou and Pirlot (2002).

3) Necessity. The same argument as for (M2 ′) and (M3) shows that con-
dition (33) must be fulfilled. Suppose that condition (34) is violated. One
would then have (zi, wi) ∼∗∗

i (xi, yi), (xi, a−i) ∼ (yi, b−i) for some a−i, b−i ∈
X−i and pi(zi, wi) 6= pi(xi, yi). Since F is strictly increasing, F (pi(zi, wi),
(pj(aj, bj))j 6=i) 6= 0 while (zi, a−i) ∼ (wi, b−i), a contradiction.

Sufficiency. Well-definedness of F is shown as for (M3). For proving in-
creasingness, suppose pi(zi, wi) > pi(xi, yi). This implies that (zi, wi) %∗∗

i

(xi, yi). If x ≻ y, Lemma 3.3 of Bouyssou and Pirlot (2002) says that
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(zi, x−i) ≻ (wi, y−i) and the conclusion follows from the definition of F . If
x ∼ y, F ((pj(xj, yj))j=1,...,n) = 0. Consider two cases. If (zi, wi) ≻∗∗

i (xi, yi),
Lemma 3.5 of Bouyssou and Pirlot (2002) implies that (zi, x−i) ≻ (wi, y−i)
and hence F strictly increases since F (pi(zi, wi), (pj(xj, yj))j 6=i) > 0. The
second case is when (zi, wi) ∼∗∗

i (xi, yi); then, by Lemma 3.4 of Bouyssou
and Pirlot (2002), (zi, x−i) ∼ (wi, y−i); this case is excluded by condition
(34). Finally, the case when Not [ x % y ] is dealt with like for model (M3).

2

A.3 Proof of Lemma 6

1) Assuming that S is denumerable, we can modify ϕ in order to eliminate
all situations described either by equation (35) or (36). This can be done by
transforming ϕ(u, v) for all (u, v) ∈ ϕ−1(r), r ∈ S, into

α + ϕ(u, v) + β(u − v),

where α and β are arbitrary positive coefficients. After such a transformation,
equations (35) and (36) no longer hold within ϕ−1(r). Applying such a
transformation to the whole domain U ×U does not solve our problem since,
in general, it does not preserve the ordering induced on U ×U by ϕ ; indeed,
if ϕ(u, v) = r ∈ S and ϕ(u′, v′) is either larger or smaller than r, we must
arrange that it remains so after the transformation. The idea is to make α
and β depend on (u, v) in order that for all r ∈ S,

• a small interval rather than a single value r is reserved for representing
the pairs (u, v) ∈ ϕ−1(r);

• these intervals are disjoint;

• the other values of ϕ (not in S) are transformed avoiding to let them
fall into these intervals and preserving the order induced on U × U by
ϕ.

Consider separately the positive part S+ (r > 0) and the negative part S−

(r < 0) of S (the case r = 0 is treated apart) and number their respective
elements in arbitrary order :

r+
1 , r+

2 , . . . for the elements of S+

r−1 , r−2 , . . . for the elements of S−.
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Figure 3: Transformation of ϕ into ψ

Note that it is not in general possible to number these elements in increasing
(or decreasing) order of their value since S may have accumulation points or
even be dense in R.

For each u, v in U ×U such that ϕ(u, v) > 0, we define ψ(u, v) as follows:

{

ϕ(u, v) + 1 +
∑

k:r+

k
<ϕ(u,v)(1/2)k if ϕ(u, v) 6∈ S

r+
i + 1 +

∑

k:r+

k
<r+

i

(1/2)k + (1/2)i+1(1 + u − v) if ϕ(u, v) = r+
i

(44)

For each u, v in U × U such that ϕ(u, v) < 0, we define ψ(u, v) as follows:

{

ϕ(u, v) − 1 −
∑

k:r−
k

>ϕ(u,v)(1/2)k if ϕ(u, v) 6∈ S

r−i − 1 −
∑

k:r−
k

>r−
i

(1/2)k − (1/2)i+1(1 − u + v) if ϕ(u, v) = r−i
(45)

The class of pairs such that ϕ(u, v) = 0 requires particular attention since
it contains the diagonal {(u, u); x ∈ U} where ψ(u, u) must be kept equal
to 0. To fulfill this requirement, we define, for (u, v) such that ϕ(u, v) = 0,
ψ(u, v) = u − v; the image by ψ of the pairs (u, v) such that ϕ(u, v) = 0 all
lie in the ] − 1, 1[ interval.

A picture of the transformation of ϕ into ψ is shown in Figure 3. The
function ψ is now fully described. It vanishes on the diagonal (u, u), for
all u ∈ U ; it is strictly monotonic on ϕ−1(r), for all r ∈ S; to each value
of ϕ corresponds a single value of ψ except for the values of ϕ belonging
to S; hence (38) is satisfied. In order to show that ψ is strictly monotonic
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everywhere on U ×U , we have to prove that for all u, v, u′, v′ ∈ U , it satisfies
(37).

Let us check the property for positive values of ϕ. The negative case is
treated symmetrically; the case in which ϕ(u, v) > 0 and ϕ(u′, v′) < 0 is
trivial since ψ keeps the sign of ϕ, the case in which ϕ(u, v) = 0 (resp. > 0)
and ϕ(u′, v′) < 0 (resp. = 0) is dealt with observing that when ϕ = 0, ψ
belongs to the interval ]− 1, 1[ and if ϕ > 0 (resp. ϕ < 0), then ψ > 1 (resp.
ψ < −1).

In the cases in which neither ϕ(u, v) nor ϕ(u′, v′) belong to S, the result
comes from the fact that the transformation applied both to ϕ(u, v) and
ϕ(u′, v′), i.e.

ψ(u, v) = ϕ(u, v) + 1 +
∑

k:r+

k
<ϕ(u,v)

(1/2)k

is an increasing function of ϕ(u, v). In case ϕ(u, v) = r+
i and ϕ(u′, v′) 6∈ S,

we have:

ψ(u′, v′) = ϕ(u′, v′) + 1 +
∑

k:r+

k
<ϕ(u,v)

(1/2)k

< r+
i + 1 +

∑

k:r+

k
<r+

i

(1/2)k

< ψ(u, v)

since 1 + u − v > 0. The remaining two cases are similar.
Note that the definition of ψ ensures that ψ is skew-symmetric as soon

as ϕ has this property.

2) Suppose that S is not denumerable; we show that a function ψ that is
increasing in its first argument and decreasing in the second and satisfies (37)
may not exist. For each r ∈ S, select two pairs (ur, vr) and (u′

r, v
′
r) such that

either equation (35) is fulfilled (with (ur, vr) = (a, c) and (u′
r, v

′
r) = (b, c))

or equation (36) is fulfilled (with (ur, vr) = (a, d) and (u′
r, v

′
r) = (a, c)).

Suppose that there exists ψ such that for all r ∈ S, ψ(ur, vr) > ψ(u′
r, v

′
r).

The intervals ]ψ(u′
r, v

′
r), ψ(ur, vr)[ with r ∈ S, would form a non-denumerable

family of disjoint non-empty open intervals of R, which does not exist since
Q is dense in R.

2
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B Examples

This section puts together the descriptions of eighteen examples that are
used in the main text, mostly for showing the independence of the axioms.
The Examples from 1 to 13 serve for the case in which X is denumerable;
the remaining ones illustrate the non-denumerable case. Some properties of
the examples are summarized in Tables 2, 3, 4.

Example 1 Let X be any product set with Xi non-empty and at most de-
numerable, for all i = 1, . . . n. Let % be the empty relation on X. Obviously
% is neither complete nor reflexive and conditions RC1, RC2, TC, AC1,
AC2, AC3 are trivially satisfied as well as independence; axioms TAC1 and
TAC2 are not contradicted either.

Example 2 Let X = {a, b, c} × {d, e, f}; x % y iff F (p1(x1, y1), p2(x2, y2))
≥ 0 with

F (α, β) =

{

α + β if |α + β | > 2
0 otherwise

and p1 and p2 given in the following tables

p1 a b c
a 0 −2 −1
b 2 0 1
c 1 −1 0

p2 d e f
d 0 0 −2
e 0 0 −2
f 2 2 0

F is odd and nondecreasing and p1, p2 are skew-symmetric; hence % is
complete, satisfies RC1, RC2 and is independent. TC is violated since
(c, d) % (a, f), (a, e) % (c, d), (a, d) % (b, e) but Not [(a, d) % (b, f)]. It
is easily checked that AC1, AC2 and AC3 hold with b ≻±

1 c ≻±
1 a and

f ≻±
2 [d, e]; TAC1 and TAC2 are not in force.

Example 3 Let X = {a, b, c} × {d, e}; x % y iff F (p1(x1, y1), p2(x2, y2))
≥ 0 with p1 and p2 given in the following tables

p1 a b c
a 0 2 −1
b −2 0 −1
c 1 1 0

p2 d e
d 0 2
e −2 0
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and F such that:
F −2 0 2
−2 −41 −21 0
−1 −31 −9 10

0 −19 0 19
1 −10 9 31
2 0 21 41

F is odd and increasing in its two arguments and p1, p2 are skew-symmetric
implying that % is complete, satisfies TC and hence satisfies RC1, RC2 and
is independent. It is easy to check that we have: c ≻−

1 a, a ≻−
1 b, c ≻−

1 b,
c ≻+

1 b, a ≻+
1 b, Not [c %+

1 a], Not [ a %+
1 c ], d ≻±

2 e. Hence AC2 and
AC3 hold but AC11 is violated (while AC12 holds). One verifies indeed
that we have (c, d) % (c, d) and (a, e) % (b, d) but neither (a, d) % (c, d) nor
(c, e) % (b, d). TAC11 is therefore not in force since %+

1 is incomplete (Lemma
4.8). One easily verifies, using condition (25), that TAC2 holds. It suffices
to check that, for all (x1, x2), (y1, y2) ∈ X1 ×X2, with (x1, x2) ∼ (y1, y2), the
indifference between (x1, x2) and (y1, y2) becomes strict preference as soon
as y1 (resp. y2) is substituted by z1 (resp. z2) such that y1 ≻−

1 z1 (resp.
y2 ≻

−
2 z2).

Example 4 This example is defined as the previous one (example 3) except
that p1 becomes −p1. The effect of this modification is to interchange the
roles of AC11 and AC21 since the value associated to the pair (y1, x1) is the
value that was formerly associated to (x1, y1) in Example 3. The relation %

is complete and verifies TC, RC1, RC2 and independence. We have: b ≻+
1

a ≻+
1 c, b ≻−

1 c, b ≻−
1 a, Not [ a %−

1 c ], Not [ c %−
1 a ], d ≻±

2 e. Hence
AC1 and AC3 hold but AC21 is violated (while AC22 holds). One verifies
indeed that (c, d) % (c, d) and (b, e) % (a, d) but neither (c, d) % (a, d) nor
(b, e) % (c, d). Hence %−

1 is not complete and TAC21 is violated (Lemma
4.9). One verifies as in Example 3 that TAC1 holds.
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Example 5 Let X = {a, b, c, d} × {w, x, y, z}; % is defined as in Example
3 with the same table for F and p1, p2 given in the following tables

p1 a b c d
a 0 1 2 2
b −1 0 1 0
c −2 −1 0 −2
d −2 0 2 0

p2 w x y z
w 0 2 2 2
x −2 0 2 2
y −2 −2 0 2
z −2 −2 −2 0

Since F is odd and increasing and p1, p2 are skew-symmetric, we know that
% is complete and verifies TC (and hence RC1, RC2 and independence). It
can be checked that we have: w ≻±

2 x ≻±
2 y ≻±

2 z; a ≻+
1 d ≻+

1 b ≻+
1 c; a ≻−

1

b ≻−
1 d ≻−

1 c. Hence AC1 and AC2 hold but AC3 is violated since neither
d ≻±

1 b nor b ≻±
1 d.

Example 6 Let X = {a, b} × {z, w}; x % y iff p1(x1, y1) + p2(x2, y2) ≥ 0
with p1 and p2 given by the following tables

p1 a b
a −1 1
b −1 1

p2 z w
z 1 0
w 1 1

% is clearly complete: the only two pairs missing in % are Not [(a, z) % (a, w)]
and Not [(b, z) % (a, w)]. Relation % satisfies RC1 (by construction) but
violates RC2 because it is not independent: [(b, z) % (b, w)] but Not [(a, z) %

(a, w)]. Relation % satisfies AC1, AC2, AC3 with w %±
2 z and a ≻−

1 b,
a ∼+

1 b.

Example 7 Let X = X1×X2, with X1 = {a, b, c, d} and X2 = {w, x, y, z}.
For all x, y ∈ X, x % y iff F (p1(x1; y1); p1(x2; y2)) ≥ 0, with

F (p1, p2) =

{

p1 + p2 if |p1 + p2| > 2,
0 otherwise.

Let p1 and p2 be defined by the following tables:

p1 a b c d
a 0 1 3 3
b −3 0 0 3
c −4 0 0 1
d −4 −2 −2 0

p2 w x y z
w 0 0 2 4
x 0 0 2 4
y −2 −2 0 4
z −4 −4 −4 0
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Since F is nondecreasing in both its arguments, RC1 holds. The relation % is
independent and reflexive since p1(u, u) = p2(v, v) = 0 for all u ∈ X1 and
v ∈ X2 and F (0, 0) = 0. We have a %±

1 b %±
1 c %±

1 d and [w, x] %±
2 y %±

2 z;
% thus satisfies AC123.

RC21 does not hold since one can verify that (b, z) % (d, y), Not [(a, z) %

(b, y)], (d, x) % (b, x) and Not [(b, x) % (a, x)].

Example 8 The following example appears as Example 4 in Bouyssou and
Pirlot (2004). Let X = X1×X2 with X1 = {x1, y1, z1} and X2 = {x2, y2, z2}.
Consider the reflexive binary relation % identical to the complete order:
(x1, x2) ≻ (x1, y2) ≻ (y1, x2) ≻ (x1, z2) ≻ (y1, y2) ≻ (z1, x2) ≻ (y1, z2) ≻
(z1, y2) ≻ (z1, z2), except that (y1, y2) ∼ (x1, z2) and (z1, x2) ∼ (y1, y2).
It is shown in Bouyssou and Pirlot (2004) that this relation is complete,
independent and satisfies TAC12 (it is a nontransitive semi-order). The
relation % does not verify RC11 since %∗

1 is not a complete relation; we have
indeed neither (z1, y1) %∗

1 (y1, x1) nor (y1, x1) %∗
1 (z1, y1) since (z1, x2) %

(y1, y2), (y1, y2) % (x1, z2) but Not [(y1, x2) % (x1, y2)] and Not [(z1, x2) %

(y1, z2)]. The incomplete (yet transitive) relation %∗
1 is the following :

(x1, z1)
↓

(x1, y1) ↔ (y1, z1)
↓

(x1, x1) ↔ (y1, y1) ↔ (z1, z1)
↓

(y1, x1) ; (z1, y1)
↓

(z1, x1)

(the pointing down arrows represent ≻∗
1; the left-right arrows represent ∼∗

1;
the non-represented pairs of ≻∗

1 and ∼∗
1 obtain by transitive closure of the

diagram). Note that (y1, x1), (z1, y1) are not joined by a left-right arrow since
they are incomparable, as proven above. Property RC12 is violated; the same
example implies that neither (x2, y2) %∗

2 (y2, z2) nor (y2, z2) %∗
2 (x2, y2). One

easily checks % satisfies RC21 using the equivalence RC2i iff [∀a, b, c, d ∈
Xi, Not[(a, b) %∗

i (c, d)] ⇒ (b, a) %∗
i (d, c)] (see Bouyssou and Pirlot (2002,

Lemma 1, part 2)). One similarly proves that RC22 holds and % thus satisfies
RC2. Property TC does not hold since RC1 is violated.
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Example 9 Let X = Q2 and, for all x, y ∈ X, x % y ⇔ F (p1(x1, y1),
p2(x2, y2)) ≥ 0, with pi(xi, yi) = 2

Π
arctan (xi − yi) and F (p1, p2) = p1 + p2 +

p1p2.

A variant of this example, where X = R2 instead of Q, was shown to satisfy
AC123 in Bouyssou and Pirlot (2002, Example 3). It is easily checked that %

satisfies model (M2 ′– D1) since all functions pi are skew symmetric, increas-
ing in their first argument and decreasing in the second and F is increasing
in all its arguments (since the latter take their values in the ]−1, 1[ interval).
The relation % is not complete (taking (x, y) such that p1(x1, y1) = 1/4 and
p2(x2, y2) = −1/4, we have neither (x1, x2) % (y1, y2) nor (y1, y2) % (x1, x2)).
Hence % cannot be represented in model (M3– D1). Note that the above
properties also hold (or not) in case X = R2.

Example 10 Let X = Q2 and, for all x, y ∈ X, x % y ⇔ F (p1(x1, y1),
p2(x2, y2)) ≥ 0, with pi(xi, yi) = xi − yi and

F (p1, p2) =

{

p1 + p2 if |p1 + p2| ≥ 1,
0 otherwise.

A variant of this example (with X = R2 instead of Q2), was shown to satisfy
AC123 in Bouyssou and Pirlot (2002, Example 4). By construction, % has
a representation in (M3– D1). Simple examples show that % violates TC so
that it cannot be represented in model (M3 ′– D1). One shows similarly that
neither TAC1 nor TAC2 holds. All the above properties are also valid (or
not) in case X = R2.

Example 11 Let X = {a, b, c, d} × {0, 1}; x % y iff p1(x1, y1) + p2(x2, y2)
≥ 0 with p2(x2, y2) = x2 − y2 and p1 given by the following table

p1 a b c d
a 0 1 −1 −1
b −1 0 1 1
c 1 −1 0 1
d 1 −1 −1 0

Since p1 and p2 are skew-symmetric and F odd and increasing in its two
arguments, % satisfies RC12 and TC. It satisfies none of AC1, AC2, AC3.
It satisfies neither AC11 nor AC21 since, for any x2 ∈ X2, (a, x2) % (b, x2),
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(c, x2) % (d, x2), Not ((c, x2) % (b, x2)) and Not ((a, x2) % (d, x2)). It does
not satisfy AC31, since for any x2 ∈ X2, (a, x2) % (b, x2), (d, x2) % (a, x2),
Not ((c, x2) % (b, x2)) and Not ((d, x2) % (c, x2)).

Example 12 Let X = X1 × X2 × X3 = Q3
+ (where Q+ denotes the set of

positive rational numbers) and for all x, y ∈ Q3
+, x % y iff F (x1, x2, x3) ≥

F (y1, y2, y3), with F (x1, x2, x3) = (x+y)×z. This relation is a weak order and
hence is complete. Since F is increasing in its three arguments, % satisfies
AC123 and TAC12.

It satisfies neither RC1 nor RC2. To show the former, consider the
following sets of elements belonging to X1, X2 and X3:

X1 X2 X3

a = 0.1 i = 5 α = 1
b = 0.1 j = 0.1 β = 5
c = 5 k = 0.1 γ = 5
d = 5 l = 5 δ = 1.

It is easy to verify that (a, i, α) % (b, j, β) and Not [(c, i, α) % (d, j, β)], which
implies that Not [(c, d) %∗

1 (a, b)]. We have similarly, (c, k, γ) % (d, l, δ) and
Not [(a, k, γ) % (b, l, δ)], which implies that Not [(a, b) %∗

1 (c, d)]. Hence %∗
1

is incomplete and RC11 does not hold.
To show that RC21 is also violated, one verifies that (b, l, δ) % (a, k, γ)

and Not [(d, l, δ) % (c, k, γ)], which implies Not [(d, c) %∗
1 (b, a)]. This to-

gether with the previously obtained Not [(c, d) %∗
1 (a, b)] invalidates RC21.

As a consequence, TC does not hold either. Note that the above properties
also hold (or not) in case X = R3

+.

Example 13 Let X = Q×Q , where Q denotes the set of rational numbers;
for x, y ∈ X, say that x % y iff p1(x1, y1) + p2(x2, y2) ≥ 0 with

pi(xi, yi) =

{

xi − yi if |xi − yi| > 1,
0 otherwise

It is easily checked that % is complete and satisfies TC as well as AC1, AC2,
AC3; it does not satisfy TAC1 since we have (0, 0) % (1, 0), (1, 0) % (2, 0),
(2, 0) % (0, 2) and Not [(0, 0) % (0, 2)], contrary to TAC11. One similarly
shows that TAC2 fails to be true since we have (−2, 0) % (−1, 1), (−1, 1) %

(0, 0), (0, 0) % (−2, 2) and Not [(0, 0) % (0, 2)], contrary to TAC21.
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Example 14 Let X1 = X2 = R and X = X1 × X2 = R2. For x =
(x1, x2), y = (y1, y2) ∈ X, we say that x % y iff x1 − y1 > y2 − x2 or
[x1 − y1 = y2 − x2 and ∆(x1, y1) ≥ 0], with

∆(x1, y1) =







1 if (x1 > 0 and y1 ≤ 0) or (x1 = 0 and y1 < 0),
0 if x1, y1 > 0 or x1 = y1 = 0 or x1, y1 < 0,

−1 if (y1 > 0 and x1 ≤ 0) or (y1 = 0 and x1 < 0).

In other words, the objects are ranked in order of decreasing value of the
sum of their coordinates (x1 + x2); if x and y are tied, the tie is possibly
broken when the sign of x1 is greater than the sign of y1 (the sign of a real
number r being 1 if r > 0, 0 if r = 0 and −1 if r < 0. It is easy to check
that % is complete and verifies TC; we have %∗∗

i =%∗
i for i = 1, 2; (x1, y1) %∗

1

(z1, w1) iff x1 − y1 > z1 −w1 or [x1 − y1 = z1 −w1 and ∆(x1, y1) ≥ ∆(z1, w1)];
(x2, y2) %∗

2 (z2, w2) iff x2 −y2 ≥ z2−w2. Clearly, the weak order %∗
2 admits a

representation on the reals, while %∗
1 does not; OD∗

1 is not verified. Relations
%±

1 and %±
2 are the usual ordering on R; AC1, AC2, AC3 and OD± are thus

satisfied. So are TAC12 since (24) and (25) hold. Property Σ∗∗
2 is clearly

satisfied and the same holds for Σ∗∗
1 since (x1, z1) ∼∗∗

1 (y1, z1) implies x1 = y1.

Example 15 Let X1 = (R+ ∪ {0}) × {0, 1}, where R+ denotes the set of
positive real numbers, and X2 = R; X = X1 × X2. If x denotes an element
of X, its first coordinate x1 ∈ X1 has itself two components that we denote
respectively x1

′ (∈ R+) and x1
′′ (∈ {0, 1}). For x, y ∈ X, we say that x % y

iff p1(x1, y1) + p2(x2, y2) ≥ 0 with p2(x2, y2) = x2 − y2 and

p1(x1, y1) =























2 if x1
′ > y1

′ = 0 and x1
′′ = 1

1 if x1
′ > y1

′ 6= 0 or [x1
′ > y1

′ = 0 and x1
′′ = 0]

0 if x1
′ = y1

′

−1 if y1
′ > x1

′ 6= 0 or [y1
′ > x1

′ = 0 and y1
′′ = 0]

−2 if y1
′ > x1

′ = 0 and y1
′′ = 1.

% is reflexive, independent and complete; it satisfies TC (and hence RC1
and RC2). It satisfies AC11 and AC21 : x1 ≻±

1 y1 iff x1
′ > y1

′ or [x1
′ =

y1
′ 6= 0 and x1

′′ = 1 and y1
′′ = 0]; x1 ∼

±
1 y1 iff x1 = y1 or [x1

′ = y1
′ = 0]; %±

1

is complete and, hence, AC31 is satisfied. Clearly, % does not satisfy OD±
1 .

Property AC1232 as well as OD±
2 are obviously in force. On the contrary,

TAC11 is not in force since taking for instance x1 = (3, 0), y1 = (2, 0) and
z1 = (1, 0), we have (y1, 0) ∼ (z1, 1) and (x1, 0) ∼ (z1, 1); we also have
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x1 ≻+
1 y1, which, in view of (24) is not compatible with TAC11. Finally,

since %∗∗
1 has only five equivalence classes, condition Σ∗∗

1 is trivially fulfilled;
this is also the case of Σ∗∗

2 .

Example 16 Let X1 = {x1 = (x11, x12) : x11 ∈ R ; x12 = 0 if x11 6=
0 and x12 ∈ {0, 1} if x11 = 0}; X2 = Q, the set of rational numbers. De-
fine, for all x, y ∈ X,

(x1, x2) % (y1, y2) iff







x11 − y11 > y2 − x2 or
{

x11 − y11 = y2 − x2 and
x12 − y12 ≥ 0

This relation is complete, independent, satisfies TC, TAC12, OD∗ and OD±

but not Σ∗. Completeness and independence are straightforward. The rela-
tion %∗

1 is as follows:

(x1, y1) %∗
1 (z1, w1) iff















x11 − y11 > z11 − w11 or
x11 − y11 = z11 − w11 6∈ Q or
{

x11 − y11 = z11 − w11 ∈ Q and
x12 − y12 ≥ z12 − w12

This relation is complete and equal to %∗∗
1 , hence % satisfies RC121. It also

verifies OD∗
1 because the union of the three sets {(x1, y1) ∈ X2

1 such that x11−
y11 ∈ Q and x12 − y12 = k} for k = −1, 0, 1 forms a denumerable set that
is dense in X2

1 for the weak order %∗∗
1 . Using Lemma 9 below—a useful

counterpart, for TC, of Lemma 4, parts 5 and 6, that concerns TAC12—one
sees that %∗∗

1 satisfies TC1 since (x1, x2) ∼ (y1, y2) and (z1, w1) ≻∗∗
1 (x1, y1)

implies (z1, x2) ≻ (w1, y2).
Since the relation %∗∗

2 can be represented by the function p2(x2, y2) =
x2 − y2; it is easy to see that it is complete and that % satisfies RC122, TC2

and OD∗
2. We hence get that % is complete and satisfies TC and OD∗.

The relation %±
1 is as follows:

x1 %±
1 y1 iff

{

x11 > y11 or
(x11 = y11 = 0 and x12 ≥ y12)

Since the additional condition in the case in which x11 = y11 = 0 applies
only when x11 = 0, this does not raise any problem for the existence of a
numerical representation of %±

1 and OD±
1 holds. This relation is obviously
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complete and, thus, % verifies AC1231. One easily checks, using conditions
(24) and (25) that TAC121 is in force. Since %±

2 is just the natural order
on Q, one can show without difficulty that %±

2 enjoys the same properties as
%±

1 .
Finally, Σ∗ and Σ∗∗ do not hold. Let r ∈ R\Q. In the equivalence class of

∼∗
1 (= ∼∗∗

1 ) defined by {(x1, y1) such that x11 − y11 = r}, the following two
pairs can be found: ((0, 0), (−r, 0)) and ((0, 1), (−r, 0)); we have: (0, 0) ≻±

1

(0, 1). The set S∗
i (= S∗∗

i , in this example) thus contains every equivalence
class associated with an irrational number r and this set is not denumerable,
in violation of Σ∗ and Σ∗∗.

Lemma 9 If % is complete, TCi is equivalent to RC12i and the following
condition:

[(x % y and ((zi, wi) ≻
∗∗
i (xi, yi)) ⇒ ((zi, x−i) % (wi, y−i))] (46)

Proof of Lemma 9
It is shown in Bouyssou and Pirlot (2002, Lemma 2, part 4), that if % is
complete, TCi implies RC12i. In Lemma 3, part 5 of the same paper, one
proves that under the same completeness hypothesis, TCi implies condition
(46). The only thing that remains to be proven is thus the indirect part of
the lemma. Suppose to the contrary that TCi does not hold, i.e. that there
are xi, yi, zi, wi ∈ Xi and a−i, b−i, c−i, d−i ∈ X−i such that:

(xi, a−i) % (yi, b−i) (47)

and (zi, b−i) % (wi, a−i) (48)

and (wi, c−i) % (zi, d−i) (49)

and Not [(xi, c−i) % (yi, d−i)] (50)

Since % satisfies RC12i, %∗∗
i is complete. In view of the latter, (49) and (50)

yield (wi, zi) ≻∗∗
i (xi, yi) and consequently (yi, xi) ≻∗∗

i (zi, wi). Applying (46)
to the latter together with (48) yields (yi, b−i) ≻ (xi, a−i) contradicting (47).

2

Example 17 Modify the set on which the relation in Example 16 is defined
without changing the definition of % itself. Let X1 = {x1 = (x11, x12) : x11 ∈
Q ; x12 = 0 if x11 6= 0 and x12 ∈ {0, 1} if x11 = 0}; X2 = Z, the set of signed
integers. It is straightforward to adapt the definitions of %∗∗

i and %±
i ; all
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properties that were satisfied by % in Example 16 remain valid here; Σ∗∗ is
now valid since Q\Z is a denumerable set. For each r ∈ Q\Z, the equivalence
class of ∼∗∗

1 defined by {(x1, y1) such that x11 − y11 = r} contains the two
pairs ((0, 0), (−r, 0)) and ((0, 1), (−r, 0)) with (0, 0) ≻±

1 (0, 1). The set S∗∗
i is

denumerable and % has a representation in model (M3 ′– D1 ′).

Example 18 Let % be the relation “is not included in” defined on X = 2R,
the set of subsets of R. In this example, n = 1 and X1 = X. The cardinality
of X is strictly larger than that of R. We have x % y iff F (p1(x1, y1)) =
p1(x1, y1) ≥ 0 , with

p1(x1, y1) =







1 if x1 ! y1

−1 if x1 Ã y1

0 otherwise .

Indeed, p1(x1, y1) is non-negative iff the subset of R that is labeled by x1 is
not strictly included in the subset labeled by y1. It is clear that % satisfies the
(M3 ′) model. The equivalence relation ∼∗∗

1 has only three classes, namely the
set of pairs (x1, y1) such that x1 ⊃ y1, the pairs such that x1 ⊂ y1 and all the
other pairs; OD∗ holds. On the contrary, relation ∼±

1 is quite discriminant
since x1 ∼±

1 y1 iff x1 = y1 (x1 is not-included in exactly the same subsets
of R as y1). As a consequence, there are as many classes of the relation ∼±

1

than there are elements in X, LCC is violated and ∼±
1 is not representable

by a function u1 : X1 → R.
One can easily build a more typical example where % is a relation on

a product of two (or more) sets and retains the properties of the relation
above. Consider e.g. the relation % defined on X = X1 × X2, with X1, X2

two copies of the set 2R. Define % by x % y iff p1(x1, y1) + p2(x2, y2) ≥ 0;
p1 and p2 in the latter expression are two copies respectively defined on the
set X1 and X2 of the function p1 introduced in the 1–dimensional case. As
in that case, % can be represented in model (M3 ′); it satisfies OD∗ but not
LCC.
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