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Abstract

This paper analyzes conjoint measurement models allowing for intransitive
and/or incomplete preferences. This analysis is based on the study of marginal
traces induced on coordinates by the preference relation and uses conditions
guaranteeing that these marginal traces are complete.

Within the framework of these models, we propose a simple axiomatic
characterization of preference relations compatible with the notion of domi-
nance. We show that all such relations have a nontrivial numerical represen-
tation.

Our results allow us to establish useful connections between two lines of
thought in the area of decision analysis with multiple attributes that have
largely remained unrelated: the one based on conjoint measurement and the
one emphasizing the idea of dominance.

Keywords: Conjoint measurement, Nontransitive preferences, Decision anal-
ysis with multiple attributes, Dominance, Traces.



1 Motivation and outline

Two distinct traditions underlie most of the work done in the area of decision
analysis with multiple attributes. The conjoint measurement tradition has
deep roots both in Mathematical Psychology and Decision Theory (see De-
breu, 1960; Krantz, Luce, Suppes, and Tversky, 1971; Luce and Tukey, 1964;
Roberts, 1979; Scott, 1964; Scott and Suppes, 1958; Wakker, 1989). Starting
with a binary relation % defined on a product set X = X1 × X2 × · · · × Xn,
its aim is to find conditions under which it is possible to build a convenient
numerical representation of %. The model that has been most studied in this
framework is the additive utility model:

x % y ⇔
n

∑

i=1

ui(xi) ≥
n

∑

i=1

ui(yi), (1)

where ui is a real-valued function on Xi and it is understood that x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Besides their theoretical interest and the fact that they exhibit condi-
tions likely to be subjected to empirical tests, many conjoint measurement
results are constructive in nature and, therefore, give hints on how to devise
assessment procedures of utility functions and, thus, preferences. Indeed,
the framework of conjoint measurement has been adopted in many impor-
tant works in decision analysis (see French, 1993; Keeney and Raiffa, 1976;
Winterfeldt and Edwards, 1986) giving rise to many specialized assessment
techniques (see Belton and Stewart, 2001; Bouyssou et al., 2000; Keeney
and Raiffa, 1976) that have often been applied in real-world settings. Note
that most developments in conjoint measurement require that % is very well
behaved being, in particular, complete and transitive.

A more pragmatic tradition starts with alternatives evaluated along sev-
eral attributes. Along each attribute, alternatives are supposed to be com-
pared using a well behaved preference relation. The central problem is then
to build a preference relation between alternatives taking all attributes into
account, i.e. a global preference relation, based on the preference relations
on each attribute and “inter-attribute” information such as weights or trade-
offs (Pomerol and Barba-Romero, 2000; Roy, 1996; Roy and Bouyssou, 1993;
Steuer, 1986; Vincke, 1992). The notion of dominance plays a crucial role
here. An alternative x is said to dominate an alternative y if x is judged
“at least as good as” as y on all attributes. Suppose that z dominates x
and that y dominates w. If we have reasons to believe that “x is at least
as good as y” and if we want the global preference relation to be compati-
ble with dominance then we should judge z at least as good as w. When a

1



global preference relation is compatible with dominance, it makes sense to
limit the search for “good” alternatives in the set of efficient alternatives, i.e.
alternatives that are undominated. Most techniques related to the pragmatic
tradition heavily rely on the notion of dominance (see Pomerol and Barba-
Romero, 2000; Vincke, 1992). When the set of alternatives is “large”, e.g. in
the case of multiobjective optimization, many methods have been devoted to
the identification of efficient alternatives (see Steuer, 1986).

These two lines of thought seem to coexist since the beginning of deci-
sion analysis with multiple attributes, in the late ’60s (see Raiffa, 1968; Roy,
1971). Both have generated important theoretical and practical achieve-
ments. Their setting differ significantly. The conjoint measurement tradi-
tion starts with a well behaved preference relation taking all attributes into
account. The pragmatic one starts with a well behaved preference relation
defined on each attribute and derives a global preference relation using the
notion of dominance and inter-attribute information. The principles used in
order to build the global preference relation do not always guarantee that
this relation will be transitive or complete, e.g. if a qualified weighted major-
ity of attributes is used (see Roy, 1991; Vincke, 1992). The sad consequence
is that these two traditions have largely remained unrelated. Indeed, the
idea of dominance receives little attention in most books related to the con-
joint measurement tradition (see French, 1993; Keeney and Raiffa, 1976).
Conversely, in many books related to the pragmatic tradition, conjoint mea-
surement approaches, are either omitted or treated apart from anything else
(see Goicoechea, Hansen, and Duckstein, 1982; Steuer, 1986; Zeleny, 1982).

This paper is an attempt to establish connections between these two tra-
ditions. In order to do so, we adopt a classical conjoint measurement setting,
while not requiring transitivity or completeness. We provide a simple ax-
iomatic characterization of preference relations compatible with dominance
and show that all such relations admit a nontrivial numerical representation.
This extends the traditional scope of conjoint measurement to include bi-
nary relations that are not well behaved. Furthermore this shows that many
techniques developed in the pragmatic tradition can usefully be analyzed in
a conjoint measurement framework.

Technically, we pursue a line of investigation started in a series of ear-
lier papers (Bouyssou, Pirlot, and Vincke, 1997; Bouyssou and Pirlot, 1999,
2002), and anticipated in Goldstein (1991), analyzing conjoint measurement
models that involve neither transitivity nor additivity. The key tool for the
analysis of such preference relations is the consideration of various kinds of
traces on coordinates induced by the original relation.

This paper is organized as follows. Section 2 presents some background
material: we introduce our vocabulary concerning binary relations and recall
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some well known facts on traces. Section 3 studies binary relations defined
on product sets and introduces the notion of marginal trace. Using condi-
tions implying that marginal traces are complete, section 4 offers a simple
characterization of preference relations compatible with the notion of domi-
nance. Section 5 shows that all such preference relations admit several kinds
of nontrivial numerical representations whether or not they are transitive or
complete. Section 6 discusses our results and presents directions for future
research. Examples and technical details are relegated in appendix.

2 Background: Binary relations and traces

2.1 Binary relations

A binary relation % on a set A is a subset of A×A. We write a % b instead
of (a, b) ∈ %. A binary relation % on A is said to be:

• reflexive if [a % a],

• complete if [a % b or b % a],

• symmetric if [a % b] ⇒ [b % a],

• asymmetric if [a % b] ⇒ [Not[b % a]],

• transitive if [a % b and b % c] ⇒ [a % c],

• Ferrers if
a % b
and

c % d







⇒







a % d
or

c % b,

• semi-transitive if
a % b
and
b % c







⇒







a % d
or

d % c,

for all a, b, c, d ∈ A.
The asymmetric (resp. symmetric) part of % is the binary relation ≻

(resp. ∼) on A defined letting, for all a, b ∈ A, a ≻ b ⇔ [a % b and Not[b %

a]] (resp. a ∼ b ⇔ [a % b and b % a]). A similar convention will hold when
% is subscripted and/or superscripted.

A weak order (resp. an equivalence relation) is a complete and transitive
(resp. reflexive, symmetric and transitive) binary relation (a weak order is
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also sometimes called a complete preorder). A complete order is a weak order
with a symmetric part limited to loops. An interval order is a complete and
Ferrers binary relation; a semi-order is a semi-transitive interval order. If %

is an equivalence on A, A/% will denote the set of equivalence classes of %

on A.

2.2 Traces of binary relations

The idea that any binary relation generates various reflexive and transitive
binary relations called traces dates back at least to Luce (1956) (in order
to distinguish them from traces on coordinates when studying product sets,
we will later designate these traces as global traces). The use of traces have
proved especially useful in the study of preference structures tolerating imper-
fect discrimination such as semi-orders, interval orders or valued preference
relations (Doignon, Monjardet, Roubens, and Vincke, 1988; Fishburn, 1985;
Pirlot and Vincke, 1997) and in Social Choice Theory under the name of
“covering relations” (Laslier, 1997). These relations will also prove to be
important in what follows.

Definition 1 (Global traces)
Let % be a binary relation on a set A. We associate to % three binary
relations, called traces, letting, for all a, b ∈ A:

Left Trace a %+ b ⇔ [b % c ⇒ a % c],

Right Trace a %− b ⇔ [c % a ⇒ c % b],

Trace a %± b ⇔ [a %+ b and a %− b].

Following our conventions, ∼+ and ≻+ will denote the symmetric and asym-
metric parts of %+, the same being true for %− and %±. Useful connec-
tions between % and its traces are summarized below for the ease of future
reference. All of them are straightforward consequences of the preceding
definition.

Proposition 1 (Properties of global traces)
1. ∼+, ∼− and ∼± are equivalence relations (reflexive, symmetric and

transitive).

2. %+, %− and %± are reflexive and transitive binary relations.

3. For all a, b, c, d ∈ A:

[a % b, b %− c] ⇒ a % c, (2)
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[a % b, c %+ a] ⇒ c % b, (3)

[d %± a, b %± c] ⇒







a % b ⇒ d % c,
and
a ≻ b ⇒ d ≻ c

(4)

[a ∼± c, b ∼± d] ⇒







a % b ⇔ c % d,
and
a ≻ b ⇔ c ≻ d.

(5)

4. %± = % ⇔ % is reflexive and transitive.

5. [%± = % and %± is complete] ⇔ % is a weak order.

The following proposition summarizes a number of well known facts about
traces (see Fishburn, 1985; Monjardet, 1978; Pirlot and Vincke, 1997; Roubens
and Vincke, 1985).

Proposition 2 (Completeness of global traces)
1. %+ is complete ⇔ %− is complete ⇔ % is Ferrers.

2. %± is complete ⇔ % is Ferrers and semi-transitive.

For a detailed analysis of the role of traces in various domains of preference
modelling we refer to Aleskerov and Monjardet (2002), Doignon et al. (1988),
Laslier (1997), Monjardet (1978), Pirlot and Vincke (1997), Roubens and
Vincke (1985).

3 Binary relations on product sets

We consider now a set X =
∏n

i=1
Xi with n ≥ 2. Elements x, y, z, . . . of X

will be interpreted as alternatives evaluated on a set N = {1, 2, . . . , n} of
attributes. A typical binary relation on X is still denoted as %. It is useful
to interpret % as an “at least as good as” preference relation between multi-
attributed alternatives with ∼ interpreted as indifference and ≻ as strict
preference.

For any non empty subset J of the set of attributes N , we denote by
XJ (resp. X−J) the set

∏

i∈J Xi (resp.
∏

i/∈J Xi ). With customary abuse
of notation, (xJ , y−J) will denote the element w ∈ X such that wi = xi if
i ∈ J and wi = yi otherwise. When J = {i} we shall simply write X−i and
(xi, y−i).

We say that % is marginally complete for i ∈ N if (xi, a−i) % (yi, a−i) or
(yi, a−i) % (xi, a−i), for all xi, yi ∈ Xi and all a−i ∈ X−i, i.e. if no incompara-
bility occurs when comparing alternatives differing only on attribute i ∈ N .
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3.1 Independence and marginal preferences

In conjoint measurement, one starts with a preference relation % on X. It is
then of vital importance to investigate how this information makes it possible
to define preference relations on attributes or subsets of attributes.

Let J ⊆ N be a nonempty set of attributes. We define the marginal
relation %J induced on XJ by % letting, for all xJ , yJ ∈ XJ :

xJ %J yJ ⇔ (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J ,

with asymmetric (resp. symmetric) part ≻J (resp. ∼J). Note that if % is
reflexive (resp. transitive), the same will be true for %J . This is clearly not
true for completeness however.

We define two other binary relations R
%
J and R≻

J induced by % on XJ ,
letting for all xJ , yJ ∈ XJ ,

xJ R
%
J yJ ⇔ (xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ,

and
xJ R≻

J yJ ⇔ (xJ , z−J) ≻ (yJ , z−J), for some z−J ∈ X−J .

Definition 2 (Independence and separability)
Consider a binary relation % on a set X =

∏n
i=1

Xi and let J ⊆ N be a
nonempty subset of attributes. We say that % is:

1. independent for J if R
%
J ⊆ %J ,

2. separable for J if R≻
J is asymmetric.

If % is independent (resp. separable) for all non empty subsets of N , we say
that % is independent (resp. separable). If % is independent (resp. sepa-
rable) for all subsets containing a single attribute, we say that % is weakly
independent (resp. weakly separable).

Independence is a classical notion in conjoint measurement. It states that
common evaluations on some attributes do not influence preference. Whereas
independence implies weak independence, it is well know that the converse
is not true (see Wakker, 1989).

Independence implies separability but not vice versa. Separability is a
weakening of independence that can be motivated considering aggregation
models based on “max” or “min”. It forbids strict reversals of preference
when varying common evaluations on some attribute. In special contexts, it
has already been considered in Blackorby, Primont, and Russell (1978), Färe

6



and Primont (1981), Mak (1984), Segal and Sobel (2002). It is easy to see
that weak separability does not entail separability. It should be noted that
our use of (weak) separability differs from the one in Wakker (1989).

Let us observe that when % is complete and independent for i ∈ N then
%i is clearly complete. It is not difficult to see that %i is complete if and
only if % is marginally complete and weakly separable for i ∈ N .

3.2 Marginal traces

The definitions and results from section 2.2 clearly apply here. Hence the
binary relation % on X =

∏n
i=1

Xi has a left trace (resp. right trace and
trace) %+ (resp. %− and %±) that is reflexive and transitive.

Consider an attribute i ∈ N . Sticking to the notation introduced above,
%+

i (resp. %−
i and %±

i ) will denote the marginal preference relation induced
on Xi by %+ (resp. %− and %±), i.e.

xi %+

i yi ⇔ [(xi, z−i) %+ (yi, z−i), for all z−i ∈ X−i],
xi %−

i yi ⇔ [(xi, z−i) %− (yi, z−i), for all z−i ∈ X−i],
xi %±

i yi ⇔ [(xi, z−i) %± (yi, z−i), for all z−i ∈ X−i].

Since, by construction, %+, %− and %± are reflexive and transitive, the same
is true for %+

i , %−
i and %±

i . From proposition 2, we know that % = %± if
and only if % is reflexive and transitive. When this is the case, we clearly
have %i = %±

i , for all i ∈ X. As shown in the following lemma, %+

i (resp.
%−

i and %±
i ), the marginal relation induced on i ∈ N by the global trace %+

(resp. %−
i and %±

i ) can also be usefully interpreted as a marginal trace on
attribute i ∈ N .

Lemma 1 (Marginal relations induced by global traces)
For all i ∈ N , all xi, yi ∈ Xi, all a−i ∈ X−i and all z ∈ X:

1. xi %+

i yi ⇔ [(yi, a−i) % z ⇒ (xi, a−i) % z],

2. xi %−
i yi ⇔ [z % (xi, a−i) ⇒ z % (yi, a−i)],

3. xi %±
i yi ⇔







(yi, a−i) % z ⇒ (xi, a−i) % z,
and
z % (xi, a−i) ⇒ z % (yi, a−i).

Proof

We give the proof of part 1, the proof of the other parts being similar. By
definition we have: xi %+

i yi ⇔ [(xi, a−i) %+ (yi, a−i), for all a−i ∈ X−i] ⇔
[(yi, a−i) % z ⇒ (xi, a−i) % z, for all a−i ∈ X−i and all z ∈ X]. 2
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As before, the symmetric and asymmetric parts of %+

i are respectively de-
noted ∼+

i and ≻+

i , the same convention applying to %−
i and %±

i . Although
it is clearly possible to define marginal traces on subsets of attributes more
general than singletons, we do not envisage this possibility here.

As in proposition 1, there are many interesting connections between
marginal traces and %. We list some of them in the following lemma, for the
ease of future reference, omitting its obvious proof.

Lemma 2 (Properties of marginal traces)
For all i ∈ N and x, y, z, w ∈ X:

[x % y, zi %+

i xi] ⇒ (zi, x−i) % y, (6)

[x % y, yi %−
i wi] ⇒ x % (wi, y−i), (7)

[zi %±
i xi, yi %±

i wi] ⇒







x % y ⇒ (zi, x−i) % (wi, y−i),
and
x ≻ y ⇒ (zi, x−i) ≻ (wi, y−i),

(8)

[xi ∼
±
i zi, yi ∼

±
i wi for all i ∈ N ] ⇒







x % y ⇔ z % w,
and
x ≻ y ⇔ z ≻ w.

(9)

It is clear that the marginal traces %+

i , %−
i and %±

i need not be complete.
Interesting consequences will arise when this is the case. This is explored in
what follows.

3.3 Complete marginal traces

As was the case with the Ferrers and semi-transitivity conditions when study-
ing global traces, we envisage here conditions that will guarantee that marginal
traces are complete and, hence, weak orders. As with interval orders and
semi-orders, these conditions will prove useful to analyze the underlying
structures and to build numerical representations.

Definition 3 (Conditions AC1, AC2 and AC3)
We say that % satisfies:
AC1i if

x % y
and

z % w







⇒







(zi, x−i) % y,
or

(xi, z−i) % w,

AC2i if
x % y
and

z % w







⇒







x % (wi, y−i),
or

z % (yi, w−i),
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AC3i if
z % (xi, a−i)

and
(xi, b−i) % y







⇒







z % (wi, a−i),
or
(wi, b−i) % y,

for all x, y, z, w ∈ X, all a−i, b−i ∈ X−i and all xi, wi ∈ Xi.

We say that % satisfies AC1 (resp. AC2, AC3) if it satisfies AC1i (resp.
AC2i, AC3i) for all i ∈ N .

These three conditions are transparent variations on the theme of the Fer-
rers (AC1 and AC2) and semi-transitivity (AC3) conditions that are made
possible by the product structure of X. The rationale for the name “AC” is
that these conditions are “intrA-attribute Cancellation” conditions.

Condition AC1i suggests that the elements of Xi (instead of the elements
of X had the original Ferrers condition been invoked) can be linearly or-
dered considering “upward dominance”: if xi “upward dominates” zi then
(zi, c−i) % w entails (xi, c−i) % w. Condition AC2i has a similar interpreta-
tion considering now “downward dominance”. Condition AC3i ensures that
the linear arrangements of the elements of Xi obtained considering upward
and downward dominance are not incompatible.

Conditions AC1, AC2 and AC3 were introduced in Bouyssou et al. (1997)
and Bouyssou and Pirlot (1999) and later used in Greco, Matarazzo, and
SÃlowiński (2002). The strong links between AC1, AC2, AC3 and marginal
traces are noted in the following:

Lemma 3 (Completeness of marginal traces)
We have:

1. %+

i is complete iff AC1i holds,

2. %−
i is complete iff AC2i holds,

3. [Not[xi %+

i yi] ⇒ yi %−
i xi] iff [Not[xi %−

i yi] ⇒ yi %+

i xi] iff AC3i

holds,

4. %±
i is complete iff AC1i, AC2i and AC3i hold,

5. In the class of complete binary relations on X, AC1i, AC2i and AC3i

are independent conditions.

Proof

Part 1 is proved observing that the negation of AC1i is equivalent to the
negation of the completeness of %+

i . The proof of part 2 is similar. Part 3
is proved observing that the negation of AC3i is equivalent to Not[yi %+

i xi]
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and Not[xi %−
i yi] for some xi, yi ∈ Xi. Part 4 immediately results from

parts 1, 2 and 3.
Part 5: see examples 1, 2 and 3 in appendix A. 2

Comparing lemma 3 with proposition 2 shows an important difference be-
tween global traces and marginal traces: in the latter case, the right trace
may be complete without implying the completeness of the left trace. This
explains our use of three conditions (AC1, AC2 and AC3) when studying
marginal traces instead of the two classical conditions (Ferrers and semi-
transitivity) used when studying global traces.

The combination of our three conditions (AC1, AC2 and AC3) implies
that the marginal traces induced by % are weak orders. Unsurprisingly, this
implies that marginal relations %i do have special properties even when they
differ from marginal traces (which is the general case). We summarize them
in the following:

Proposition 3 (Properties of marginal preferences)
1. If % is reflexive and either AC1i or AC2i holds then % is marginally

complete and weakly separable for i ∈ N .

2. If % is reflexive and either AC1i or AC2i holds then %i is an interval
order.

3. If, in addition, % satisfies AC3i then %i is a semi-order.

Proof

Part 1. We give the proof using AC1i, the proof using AC2i being similar.
Using the reflexivity of %, we know that (xi, a−i) % (xi, a−i) and (yi, a−i) %

(yi, a−i). Since AC1i holds, %+

i is complete so that xi %+

i yi or yi %+

i xi. If
xi %+

i yi then, using (6), we have (xi, a−i) % (yi, a−i). Similarly if yi %+

i xi

then (yi, a−i) % (xi, a−i). Hence, % is marginally complete for i ∈ N .
Suppose now that % is not weakly separable for i ∈ N . Then we

have (xi, a−i) ≻ (yi, a−i) and (yi, b−i) ≻ (xi, b−i), for some xi, yi ∈ Xi and
some a−i, b−i ∈ X−i. Since % is reflexive, we have (yi, a−i) % (yi, a−i) and
(xi, b−i) % (xi, b−i). This would imply Not[xi %+

i yi] and Not[yi %+

i xi],
violating AC1i. Hence, % is weakly separable for i ∈ N .

Part 2. We know from part 1 that % is marginally complete and weakly
separable for i ∈ N . Hence, %i is complete. It remains to prove that %i is
Ferrers. Suppose that xi %i yi and zi %i wi. Since AC1i holds, we know that
either xi %+

i zi or zi %+

i xi. If xi %+

i zi, zi %i wi implies, using the definition
of %i and (6), xi %i wi. Similarly if zi %+

i xi, xi %i yi implies zi %i yi. Hence,
%i is Ferrers. The proof using AC2i is similar.

10



Part 3. In view of part 2 above, all we have to show is that %i is semi-
transitive. Suppose that xi %i yi and yi %i zi. Using AC1i, we know that
either wi %+

i yi or yi ≻
+

i wi. If wi %+

i yi, yi %i zi implies, using the definition
of %i and (6), wi %i zi. Suppose now that yi ≻

+

i wi. Using AC3i and part 3
of lemma 3, we know that yi %−

i wi. Using the definition of %i and (7),
xi %i yi and yi %−

i wi imply xi %i wi. Hence, %i is semi-transitive. The
proof using AC2i is similar. 2

3.4 Strict responsiveness to marginal traces

Keeping in mind the classical constant threshold numerical representation
for finite semi-orders (see Pirlot and Vincke, 1997; Scott and Suppes, 1958),
it is clear that, in general, in a semi-order we may have x % y, y ≻± z and
x ∼ z. Hence, % may not be strictly responsive to ≻± even when % and %±

are complete. Indeed, it is easy to see that a semi-order for which

[x % y and y ≻± z] ⇒ x ≻ z, (10)

must be a weak order.
Considering marginal traces, it is now possible to envisage binary relations

that are strictly responsive to each of their marginal traces without implying
that they are (semi-)transitive or Ferrers.

Definition 4 (Condition AC4, TAC1, TAC2)
We say that % satisfies:
AC4i if it satisfies AC3i and when one of the two conclusions of AC3i is
false then the other one holds with ≻ instead of %,
TAC1i if

(xi, a−i) % y
and

y % (zi, a−i)
and

(zi, b−i) % w























⇒ (xi, b−i) % w,

TAC2i if
(xi, a−i) % y

and
y % (zi, a−i)

and
w % (xi, b−i)























⇒ w % (zi, b−i),

for all xi, zi ∈ Xi, all a−i, b−i ∈ X−i and all y, w ∈ X.

We say that % satisfies AC4 (resp. TAC1, TAC2) if it satisfies AC4i

(resp. TAC1i, TAC2i) for all i ∈ N .
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Condition AC4i is a clear strengthening of AC3i. As soon as % is reflexive,
AC4i will imply both AC1i and AC2i. Conditions TAC1i and TAC2i (the
rationale for the names being that TAC1 and TAC2 are intrA-attribute Can-
cellation conditions involving Three premises) will prove equivalent to AC4i

when % is complete. The first two premises of TAC1i and TAC2i suggest
that the level xi is not worse than the level zi. TAC1i (resp. TAC2i) then
imply than xi should upward dominate (resp. downward dominate) zi.

Lemma 4 (Strict responsiveness to marginal traces)
1. AC4i is equivalent to AC3i and the conjunction of the following two

conditions:

x % y and Not[xi %+

i zi] ⇒ Not[y % (zi, x−i)], (11)

x % y and Not[wi %−
i yi] ⇒ Not[(wi, y−i) % x]. (12)

2. If % is reflexive, AC4i is equivalent to the completeness of %±
i and the

conjunction of the following two conditions:

[x % y and zi ≻
±
i xi] ⇒ (zi, x−i) ≻ y, (13)

[x % y and yi ≻
±
i wi] ⇒ x ≻ (wi, y−i). (14)

3. If % is reflexive and satisfies AC4i then

• % is independent for {i},

• %i is a weak-order and

• %i = %±
i .

4. If % is complete, TAC1i is equivalent to the completeness of %+

i and
the following condition:

[x % y and zi ≻
+

i xi] ⇒ (zi, x−i) ≻ y. (15)

5. If % is complete, TAC2i is equivalent to the completeness of %−
i and

the following condition:

[x % y and yi ≻
−
i wi] ⇒ x ≻ (wi, y−i). (16)

6. If % is complete, [TAC1i and TAC2i] ⇔ AC4i.

7. In the class of complete relations, TAC1 and TAC2 are independent
conditions.
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8. There are weakly independent semi-orders verifying TAC1 and TAC2
that are not weak orders.

Proof

Part 1. [⇒]. By definition, AC4i implies AC3i. We prove that [AC4i ⇒
(11)], the proof for (12) being similar. Suppose that (11) is violated so that
x % y, (zi, a−i) % w, Not[(xi, a−i) % w] and y % (zi, x−i). Applying AC3i to
(zi, a−i) % w and y % (zi, x−i) yields (xi, a−i) % w or y % (xi, x−i). Since, by
hypothesis, Not[(xi, a−i) % w], AC4i implies y ≻ x, a contradiction.

[⇐]. Suppose that (xi, a−i) % y and z % (xi, b−i). Using AC3i, we have ei-
ther (wi, a−i) % y or z % (wi, d−i). Suppose, in addition, that Not[(wi, a−i) %

y] and z ∼ (wi, d−i). From (xi, a−i) % y and Not[(wi, a−i) % y], we know
that Not[wi %+

i xi]. Using (11), (wi, d−i) % z and Not[wi %+

i xi] imply
Not[z % (xi, d−i)], a contradiction. The proof is similar, using (12), if we
suppose that: (wi, a−i) ∼ y and Not[z % (wi, d−i)].

Part 2. [⇒]. Let us first show that [AC4i ⇒ AC1i and AC2i] when % is
reflexive. Suppose AC1i is violated so that, for some xi, zi ∈ Xi, Not[xi %+

i

zi] and Not[zi %+

i xi]. Since AC3i holds, this implies xi ∼
−
i zi. Now, x % x

and Not[xi %+

i zi] imply, using (11), Not[x % (zi, x−i)]. But x % x and
Not[x % (zi, x−i)] imply Not[xi %−

i zi], a contradiction. The proof for AC2i

using (12) is similar. Hence, AC1i and AC2i hold. Since AC3i holds by
construction, %±

i is complete.
Let us now show that (13) holds. Suppose that x % y and zi ≻±

i xi.
From the definition of %±

i we know that (zi, x−i) % y. Suppose now that, in
contradiction with the thesis, y % (zi, x−i). Since %±

i is complete, zi ≻
±
i xi

implies either Not[xi %+

i zi] or Not[xi %−
i zi]. If Not[xi %+

i zi], then, using
(11), x % y would imply Not[y % (zi, x−i)], a contradiction. Similarly if
Not[xi %−

i zi], y % (zi, x−i) would imply, using (12), Not[x % y], a contra-
diction. The proof for (14) is similar.

[⇐]. Since %±
i is complete, we know that AC3i holds. We show that

the part of AC4i not covered by AC3i holds. Suppose that (xi, a−i) % y,
z % (xi, b−i), Not[(wi, a−i) % y] and z ∼ (wi, b−i). From (xi, a−i) % y and
Not[(wi, a−i) % y], we know that Not[wi %+

i xi], so that xi ≻
±
i wi. Using

(13), (wi, b−i) % z would imply (xi, b−i) ≻ z, a contradiction. The proof is
similar, using (14), if (wi, a−i) ∼ y and Not[z % (wi, b−i)].

Part 3. Suppose that (xi, a−i) % (yi, a−i) and Not[(xi, b−i) % (yi, b−i)].
Since % is reflexive, we know that (yi, b−i) % (yi, b−i). Thus, since we know
from part 2 that %±

i is complete, we have yi ≻
±
i xi. Using (13), yi ≻

±
i xi and

(xi, a−i) % (yi, a−i) would imply (yi, a−i) ≻ (yi, a−i), a contradiction. Hence,
% is independent for {i}.

Since % is reflexive, we know, from part 2 that %±
i is complete. Using

reflexivity and (8), we have: xi %±
i yi ⇒ xi %i yi. Let us show that xi ≻

±
i
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yi ⇒ xi ≻i yi, which will complete the proof. Suppose that xi ≻
±
i yi. Since

% is reflexive, we have (yi, a−i) % (yi, a−i), for all a−i ∈ X−i. Using (13), we
obtain (xi, a−i) ≻ (yi, a−i), for all a−i ∈ X−i. We thus have xi ≻i yi.

Part 4. [⇒]. Let us first show that when % is complete, TAC1i ⇒
AC1i. Suppose that AC1i is violated so that (xi, a−i) % y, (zi, b−i) % w
Not[(zi, a−i) % y] and Not[(xi, b−i) % w]. Since % is complete, we know that
y % (zi, a−i). Using TAC1i, (xi, a−i) % y, y % (zi, a−i) and (zi, b−i) % w
imply (xi, b−i) % w, a contradiction. Hence AC1i holds and %+

i is complete.
Suppose now, in contradiction with (15) that x % y, zi ≻

+

i xi and y %

(zi, x−i). We know that Not[xi %+

i zi], so that (zi, a−i) % w and w ≻ (xi, a−i),
for some w ∈ X and some a−i ∈ X−i. Using TAC1i, x % y, y % (zi, x−i) and
(zi, a−i) % w imply (xi, a−i) % w, a contradiction.

[⇐]. Suppose that TAC1i is violated so that (xi, a−i) % y, y % (zi, a−i)
(zi, b−i) % w and w ≻ (xi, b−i). This implies Not[xi %+

i zi]. Since %+

i is
complete, we have zi ≻

±
i xi. Using (15), (xi, a−i) % y and zi ≻

±
i xi would

imply (zi, a−i) ≻ y, a contradiction.
The proof of part 5 is similar.
Part 6. [⇒]. In view of parts 2, 4 and 5, all we have to show is that %±

i

is complete, i.e. that AC3i holds.
Suppose that AC3i is violated so that (xi, a−i) % y, w % (xi, b−i),

Not[(zi, a−i) % y] and Not[w % (zi, b−i)], for some xi, zi ∈ Xi, a−i, b−i ∈ X−i

and y, w ∈ X. Since % is complete, we have (zi, b−i) % w. Using TAC1i,
(zi, b−i) % w, w % (xi, b−i) and (xi, a−i) % y imply (zi, a−i) % y, a contradic-
tion.

[⇐]. We show that AC4i ⇒ TAC1i, the proof for TAC2i being similar.
Suppose that TAC1i is violated so that (xi, a−i) % y, y % (zi, a−i), (zi, b−i) %

w and w ≻ (xi, b−i). This implies, since %±
i is complete, zi ≻±

i xi. Using
(13), (xi, a−i) % y and zi ≻

±
i xi would imply (zi, a−i) ≻ y, a contradiction.

Parts 7 and 8: see examples 4 and 5 in appendix A. 2

As soon as % is reflexive, condition AC4i is therefore exactly what is needed
to ensure the strict responsiveness of % with respect to ≻±

i . This also implies
that % is independent for {i} and that %i = %±

i . Note that, while AC4i

implies that % is strictly responsive to %±
i , it does not imply that it is (semi-

)transitive or Ferrers. When % is complete, condition AC4i can be factorized
as the conjunction of TAC1i and TAC2i. Using (13) and (14) (resp. (15) and
(16)) can facilitate the test of AC4i (resp. TAC1i and TAC2i).
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4 Relations compatible with dominance

A binary relation % on a set X =
∏n

i=1
Xi is said to be compatible with a

dominance relation if it possible to define a weak order Si on each Xi in such
a way that these weak orders “combine nicely” with %. The intuitive idea
underlying the following definition the following. Suppose that x % y. If z
is “at least as good” as x on all attributes (i.e. zi Si xi for all i ∈ N) and
y is at least as good as w on all attributes (i.e. yi Si wi for all i ∈ N) then
it should follow that z % w. Note that we only define below dominance-
compatibility for reflexive binary relations, interpreting % as an “at least
good as” preference relation between alternatives. Although it is not difficult
to study the case of asymmetric binary relations, we do not investigate this
point here.

Definition 5 (Dominance-compatible relations)
A reflexive binary relation % on a set X =

∏n
i=1

Xi is compatible with a
dominance relation if, for all i ∈ N , there is a weak order Si on Xi such
that, for all x, y ∈ X and all zi, wi ∈ Xi,

[x % y, zi Si xi and yi Si wi for all i ∈ N ] ⇒ z % w. (17)

This compatibility is said to be strict when the conclusion of condition (17)
is modified to z ≻ w as soon as zj Pj xj or yj Pj wj for some j ∈ N , where
Pj denotes the asymmetric part of Sj.

Intuition might suggest the following alternative definition of dominance-
compatibility:

[xi Si yi for all i ∈ N ] ⇒ x % y. (18)

It is however easy to convince oneself that such a definition is too weak
to capture the whole idea of compatibility with dominance when % is not
supposed to be complete or transitive. Indeed, when % has cycles in its
asymmetric part, it might obey (18) while there may exist x, y, z ∈ X such
that x ∆ y, y ≻ z and z ≻ x (where ∆ denotes the dominance relation, i.e.
x ∆ y ⇔ xi Si yi for all i ∈ N). In such a case, the search for efficient
alternatives would be of little help so that it seems difficult to say that % is
compatible with dominance.

The definition of dominance-compatibility used here is similar to the one
used in Roy (1996), Roy and Bouyssou (1993), Vincke (1992), when defining
the notion of a “consistent family of criteria”. It clearly implies (18) since
% is reflexive. It should be noted that condition (17), which requires that Si

combines nicely with %, also implies that Si combines nicely with ≻. It is

15



easy to see that condition (17) implies that:

[x ≻ y, zi Si xi and yi Si wi, for all i ∈ N ] ⇒ z ≻ w. (19)

From the preceding section, it is expected that if a binary relation % is
dominance-compatible, the weak orders Si on each attribute should be closely
linked to the marginal traces induced by % on each Xi. Similarly it is also
expected that strict compatibility with dominance should be related with
the strict responsiveness of % to its marginal traces. As shown below this is
indeed the case.

Theorem 1 (Dominance-compatibility)
A reflexive binary relation % on a set X =

∏n
i=1

Xi is

1. compatible with a dominance relation if and only if it satisfies AC1,
AC2 and AC3,

2. strictly compatible with a dominance relation if and only if it satisfies
AC4.

Proof

Part 1. The necessity of AC1, AC2 and AC3 is easily shown. We take the
example of AC1, the other cases being similar. Suppose that (xi, a−i) % y
and (zi, b−i) % w. The relation Si being complete, we have either xi Si zi

or zi Si xi. If zi Si xi then, using the definition of dominance compatibility,
(xi, a−i) % y implies (zi, a−i) % y. If xi Si zi, then (zi, b−i) % w implies
(xi, b−i) % w. Hence AC1 holds.

The sufficiency of AC1, AC2 and AC3 is obvious, in view of part 4 of
lemma 3 and (8), letting Si = %±

i for all i ∈ N .

Part 2. When % is reflexive, we know from part 2 of lemma 4 that AC4i

implies all of AC1i, AC2i and AC3i. In view of part 1 above, we only have
to show the necessity of the part of AC4i not covered by AC3i. Suppose
that z % (xi, a−i) and (xi, b−i) % y. The relation Si being complete, we have
either xi Ii wi, xi Pi wi or wi Pi xi, where Ii and Pi respectively denote the
symmetric and asymmetric part of Si. If xi Ii wi then, using the definition
of dominance-compatibility, z % (wi, a−i) and (wi, b−i) % y, so that there is
nothing to prove. If xi Pi wi then, using the definition of strict dominance-
compatibility, we obtain z ≻ (wi, a−i). Similarly, if wi Pi xi, we obtain
(wi, b−i) ≻ y. Thus AC4i holds.

The sufficiency of AC4 results from part 1 above and part 2 of lemma 4,
letting Si = %±

i for all i ∈ N . 2
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Within a conjoint measurement framework, theorem 1 gives necessary
and sufficient conditions for a binary relation to be (strictly) dominance-
compatible. It should be noticed that these conditions do not imply that
% is complete or has “nice” transitivity properties. In fact, using examples
inspired from Condorcet’s paradox (see e.g. Sen, 1986), it is easy to build a
strictly dominance-compatible binary relation % having circuits in its asym-
metric part (e.g. building % via the simple majority method applied to the
relations Si).

Let us note that if a binary relation % is strictly compatible with a domi-
nance relation, the weak orders Si are necessarily unique (indeed suppose that
there are two distinct such families of weak orders Si and Si

′; then xi Pi yi

and yi Si
′ xi would imply, using the reflexivity of %, both (xi, x−i) ≻ (yi, x−i)

and (yi, x−i) % (xi, x−i)). This is not so when only dominance-compatibility
is required since elements in the same equivalence class of ∼±

i may be ranked
in whatever order by Si. It is nevertheless easy to see that we always have:

xi ≻
±
i yi ⇒ xi Pi yi,

so that Si are unique on Xi/∼
±
i .

When % is complete, it is clearly possible to combine part 6 of lemma 4
with theorem 1 to modify the characterization of strict compatibility with
dominance using TAC1 and TAC2 instead of AC4.

It is worth noting at that point that the characterization of (strict) com-
patibility with a dominance relation can be greatly simplified when % is a
weak order. This case is indeed highly specific since it implies that the global
trace %± is equal to % and the marginal trace %±

i is equal to the marginal
preference relation %i.

Lemma 5 (Dominance and weak orders)
Let % be a weak order on a set X =

∏n
i=1

Xi. Then:

1. [% is weakly separable] ⇔ [% satisfies AC1] ⇔ [% satisfies AC2] ⇔ [%
satisfies AC3],

2. [% is weakly independent] ⇔ [% satisfies AC4].

Proof

Part 1. We show that, when % is a weak order, weak separability holds if
and only if AC1 holds. The proof of the other equivalences is similar.

[AC1 ⇒ Weak separability]. Suppose that % is not weakly separable.
Therefore there is an i ∈ N and xi, yi ∈ Xi such that (xi, z−i) ≻ (yi, z−i)
and (yi, w−i) ≻ (xi, w−i), for some z−i, w−i ∈ X−i. Since % is reflexive, we
have (xi, z−i) % (xi, z−i) and (yi, w−i) % (yi, w−i). Using AC1, we have either
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xi %+

i yi or yi %+

i xi so that either (yi, z−i) % (xi, z−i) or (xi, w−i) % (yi, w−i),
a contradiction.

[Weak separability ⇒ AC1]. Suppose that AC1 is violated so that, since
% is complete, (xi, a−i) % y, (zi, c−i) % w, y ≻ (zi, a−i) and w ≻ (xi, c−i), for
some xi, zi ∈ Xi, some a−i, c−i ∈ X−i and some y, w ∈ X. Since % is a weak
order, we obtain (xi, a−i) ≻ (zi, a−i) and (zi, c−i) ≻ (xi, c−i), which violates
weak separability.

Part 2. [AC4 ⇒ Weak independence]. Suppose that % is not weakly
independent, i.e. there is an i ∈ N and xi, yi ∈ Xi such that (xi, z−i) %

(yi, z−i) and (yi, w−i) ≻ (xi, w−i) for some z−i, w−i ∈ X−i. Since % is reflexive
we have (xi, z−i) % (xi, z−i) and (xi, w−i) % (xi, w−i). Using AC3 we must
have either (yi, z−i) % (xi, z−i) or (xi, w−i) % (yi, w−i). The second condition
being false by hypothesis, AC4 implies (yi, z−i) ≻ (xi, z−i), a contradiction.

[Weak independence ⇒ AC4]. In view of part 1 above, we only have
to show the necessity of the part of AC4 not covered by AC3. Suppose,
using the completeness of %, that (xi, a−i) % y, w % (xi, b−i) and either
[y ≻ (zi, a−i) and w ∼ (zi, b−i)] or [(zi, a−i) ∼ y and (zi, b−i) ≻ w]. We
deal with the first case, the other one being similar. We have y ≻ (zi, a−i)
and (xi, a−i) % y, which imply, since % is a weak order, (xi, a−i) ≻ (zi, a−i).
Similarly, w % (xi, b−i) and w ∼ (zi, b−i) imply (zi, b−i) % (xi, b−i), which
violates weak independence. 2

As shown by examples 1 to 3 in appendix A, it is not possible to simplify
the characterization of dominance-compatibility in a similar way for semi-
orders. Indeed, there are weakly independent semi-orders which may violate
AC1, AC2 or AC3. Again, this shows that the case of weak orders is highly
specific.

5 Traces and numerical representations

5.1 Background

Following the strategy of Bouyssou and Pirlot (2002) we shall use very general
numerical representations as a guideline for our study. We recall here some
well known facts about trivial numerical representations of binary relations
on sets without special structure. Although the results in this section may
be part of the folklore of binary relations (see Ebert, 1985), we outline their
proof, the logic of which being useful in the sequel.

In order to concentrate on the core arguments, we suppose in this section
that binary relations are defined on countable (i.e. finite or countably infinite)
sets. The general case is studied in appendix B.
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Let % be a binary relation of a set A. It is clearly always possible to build
a, trivial, numerical representation of % such that:

a % b ⇔ G(a, b) ≥ 0, (20)

where G is a real-valued function on A2 defined letting, for all a, b ∈ A:

G(a, b) =

{

+1 if a % b,
−1 otherwise.

It is possible to further specify the trivial numerical representation given by
(20). Remember that we defined an equivalence relation ∼± on the basis
of %. Since we suppose here that A is countable (in fact, as soon as the
cardinality of A/∼± is not “too large”), there is a real-valued function u on
A such that, for all a, b ∈ A:

a ∼± b ⇔ u(a) = u(b). (21)

As shown below, such a function can be integrated in a numerical represen-
tation of type (20).

Proposition 4 (Trivial numerical representations)
Let % be a binary relation on a countable set A.

1. There is a real-valued function u on A and a real-valued function F on
u(A)2 such that, for all a, b ∈ A:

a % b ⇔ F(u(a), u(b)) ≥ 0, (22)

2. The function F in (22) can be chosen so that F(α, α) ≥ 0, for all
α ∈ u(A), if and only if % is reflexive,

3. The function F in (22) can be chosen so as to be skew symmetric (i.e.
F(α, β) = −F(β, α), for all α, β ∈ u(A)) if and only if % is complete.

Proof

Part 1. Take any function u satisfying (21) and define F letting, for all
a, b ∈ A:

F(u(a), u(b)) =

{

+1 if a % b,
−1 otherwise.

(23)

We have to show that F is well defined, i.e. that [u(a) = u(c) and u(b) = u(d)]
implies [a % b ⇔ c % d]. This is (5). The proof of part 2 is obvious.
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Part 3. Take any function u satisfying (21) and define F letting, for all
a, b ∈ A:

F(u(a), u(b)) =







+1 if a ≻ b,
0 if a ∼ b,

−1 otherwise.
(24)

Using the completeness of % and (5), it is easy to see that F is well defined
and skew symmetric. The converse is immediate. 2

Requiring some monotonicity properties linking F and u in representation
(22) unsurprisingly leads to much more constrained structures. We have:

Proposition 5 (Semi-orders and weak orders)
Let % be a binary relation on a countable set A. Then:

1. % has a representation of type (22) with F increasing in its first argu-
ment and decreasing in its second argument if and only if % is Ferrers
and semi-transitive.

2. % has a representation of type (22) with F skew symmetric, nonde-
creasing in its first argument and nonincreasing in its second argument
if and only if % is a semi-order,

3. % has a representation of type (22) with F skew symmetric, increasing
in its first argument and decreasing in its second argument if and only if
% is a weak order. In that case, it is always possible to take F(α, β) =
α − β.

Proof

Part 1. The necessity of Ferrers and semi-transitivity is easily established
using the properties of F . Let us for instance show that % is semi-transitive.
Suppose that a % b and b % c. Hence F(u(a), u(b)) ≥ 0 and F(u(b), u(c)) ≥
0. If u(b) ≥ u(d) then F(u(a), u(d)) ≥ F(u(a), u(b)) ≥ 0 so that a % d. Oth-
erwise we have u(d) > u(b), which implies F(u(d), u(c)) > F(u(b), u(c)) ≥ 0
so that d % c.

In order to show sufficiency, remember from part 2 of proposition 2 that,
when % is Ferrers and semi-transitive, %± is a weak order. Since A is count-
able, there is a real-valued function u such that, for all a, b ∈ A:

a %± b ⇔ u(a) ≥ u(b). (25)

Using any function u satisfying (25), define F letting, for all a, b ∈ A,

F(u(a), u(b)) =

{

+ exp(u(a) − u(b)) if a % b,
− exp(u(b) − u(a)) otherwise.

(26)
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That F is well defined follows from (5). Its monotonicity properties follow
from (4) and its definition.

Part 2. The necessity of completeness, Ferrers and semi-transitivity is
easily established.

Sufficiency. Since % is Ferrers and semi-transitive and A is countable,
there is a function u satisfying (25). Using any such function u, define F
as in (24). That F is well defined follows from part 3 of proposition 4 since
∼± is the symmetric part of %±. The skew symmetry of F follows from the
completeness of %. The monotonicity properties of F follow from (4).

Part 3. The necessity of completeness is obvious. Suppose that a % b
and b % c. Hence F(u(a), u(b)) ≥ 0 and F(u(b), u(c)) ≥ 0. Since F is
skew symmetric we know that F(u(c), u(b)) ≤ 0. Using the increasingness
of F , F(u(a), u(b)) ≥ 0 and F(u(c), u(b)) ≤ 0 imply u(a) ≥ u(c). Since
F(u(a), u(a)) = 0, because F is skew symmetric, we have F(u(a), u(c)) ≥ 0
so that a % c. Hence, % is transitive.

Sufficiency. Since % is a weak order and A is countable, there is a function
u such that, for all a, b ∈ A:

a % b ⇔ u(a) ≥ u(b).

Using any such function u, define F letting, for all a, b ∈ A, F(u(a), u(b)) =
u(a) − u(b). 2

When A is a product set, it is possible to use the marginal traces of % much
in the same way we have just used the global trace %± in order to obtain
numerical representations. This is explored in what follows.

5.2 Trivial numerical representations on product sets

Arbitrary binary relations on product sets have trivial numerical represen-
tations of many different kinds (see Bouyssou and Pirlot, 2002, 2003). We
present one below that will be easily compared with the general representa-
tions introduced above. Again, we suppose in this section that X =

∏n
i=1

Xi

is countable, the general case being studied in appendix B. We abuse nota-
tion in the sequel, writing F ([ui(xi)]; [ui(yi)]) instead of F (u1(x1), u2(x2), . . . ,
un(xn), u1(y1), u2(y2), . . . , un(yn)) when there is no risk of confusion.

Proposition 6 (Trivial numerical representations on product sets)
Let % be a binary relation on a countable set X =

∏n
i=1

Xi. There are real-
valued functions ui on Xi and a real-valued function F on [

∏n
i=1

ui(Xi)]
2 such

that, for all x, y ∈ X:

x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0. (27)
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Furthermore, the function F in (27) can be taken so that, for all x, y ∈ X,

1. F ([ui(xi)]; [ui(xi)]) ≥ 0 iff % is reflexive,

2. F ([ui(xi)]; [ui(yi)]) = −F ([ui(yi)]; [ui(xi)]) iff % is complete.

Proof

Let i ∈ N . By construction, ∼±
i is an equivalence being a reflexive, symmetric

and transitive binary relation. Since Xi is countable, we know that there is
a real-valued function ui on Xi such that, for all xi, yi ∈ Xi:

xi ∼
±
i yi ⇔ ui(xi) = ui(yi). (28)

For each i ∈ N , consider any real-valued function ui on Xi satisfying (28).
Define F on [

∏n
i=1

ui(Xi)]
2 letting, for all x, y ∈ X,

F ([ui(xi)]; [ui(yi)]) =

{

+1 if x % y,
−1 otherwise.

The well-definedness of F follows from (9). The impact of reflexivity on the
above representation is obvious.

In order to deal with the “skew symmetric” case (F ([ui(xi)]; [ui(yi)]) =
−F ([ui(yi)]; [ui(xi)])), consider, for each i ∈ N , a real-valued function ui on
Xi satisfying (28) and define F on [

∏n
i=1

ui(Xi)]
2 letting, for all x, y ∈ X,

F ([ui(xi)]; [ui(yi)]) =







+1 if x ≻ y,
0 if x ∼ y,

−1 otherwise.

The well-definedness of F follows from (9). 2

The above proposition is the counterpart of proposition 4 taking the under-
lying product structure of the set of objects into account.

5.3 Marginal traces and numerical representations

In proposition 6, the role of ui is merely to attach a number to each equiv-
alence class of Xi/∼

±
i while F passively recodes as +1’s and −1’s (possibly

using 0 in the skew symmetric case) the presence or absence of % for every
possible combination of elements of Xi/∼

±
i . Clearly, as was the case in sec-

tion 5.1, the situation radically changes as soon as F is supposed to have
some monotonicity properties w.r.t. the ui’s. The, important, difference here
is that these additional properties do not imply that % is complete, Ferrers
or (semi-)transitive.
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Theorem 2 (Numerical representations on product sets)
Let % be a binary relation on a countable set X =

∏n
i=1

Xi. There is a
numerical representation of type (27) in which F is increasing in its first n
arguments and decreasing in its last n arguments iff % satisfies AC1, AC2
and AC3. In addition, F can be taken so that F ([ui(xi)]; [ui(xi)]) ≥ 0 iff %

is reflexive.

Proof

The necessity of AC1, AC2 and AC3 is easily shown using the properties of
F . We take the case of AC3. Suppose that (xi, a−i) % y and w % (xi, b−i)
so that, abusing notation, F ([ui(xi), uj(aj)j 6=i]; [uj(yj)]) ≥ 0 and F ([uj(wj)];
[ui(xi), uj(bj)j 6=i]) ≥ 0. If ui(zi) > ui(xi) then F ([ui(zi), uj(aj)j 6=i]; [uj(yj)]) >
0 so that (zi, a−i) % y. Otherwise ui(xi) ≥ ui(zi) leads to F ([uj(wj)];
[ui(zi), uj(bj)j 6=i]) ≥ 0 so that w % (zi, b−i).

Sufficiency. Since AC1, AC2 and AC3 hold, we know from part 4 of
lemma 3 that %±

i is a weak order. Since Xi is countable, there is a real-
valued function ui on Xi such that, for all xi, yi ∈ Xi:

xi %±
i yi ⇔ ui(xi) ≥ ui(yi). (29)

Consider, for each i ∈ N , any real-valued function ui on Xi satisfying (29)
and define F on [

∏n
i=1

ui(Xi)]
2 letting, for all x, y ∈ X,

F ([ui(xi)]; [ui(yi)]) =

{

+ exp(
∑n

i=1
(ui(xi) − ui(yi))) if x % y,

− exp(
∑n

i=1
(ui(yi) − ui(xi))) otherwise.

The well-definedness of F follows from (9). The monotonicity properties of
F follow from (8) and its definition.

The impact of the reflexivity of % on F is obvious. 2

It should be noted that a somewhat weaker form (using nondecreasingness
and nonincreasingness) of theorem 2 was noted in Greco et al. (2002, Theorem
2.1) using our conditions AC1, AC2 and AC3.

The situation is slightly more complex with complete relations % if we
insist on using a “skew symmetric” function F (i.e., such that F ([ui(xi)];
[ui(yi)]) = −F ([ui(yi)]; [ui(xi)])). When F is skew symmetric, the value “0”
plays a special role. This leads to distinguish the increasing case from the
nondecreasing one, as in proposition 5 with semi-orders and weak orders.

Theorem 3 (Skew symmetric representations on product sets)
Let % be a binary relation on a countable set X =

∏n
i=1

Xi.

1. There is a numerical representation of type (27) in which F is skew
symmetric, nondecreasing in its first n arguments and nonincreasing
in its last n arguments
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iff

% is complete and satisfies AC1, AC2 and AC3.

2. There is a numerical representation of type (27) in which F is skew
symmetric, increasing in its first n arguments and decreasing in its last
n arguments

iff

% is complete and satisfies TAC1 and TAC2.

Proof

Part 1. The necessity of completeness, AC1, AC2 and AC3 is easily shown
using the properties of F . We establish sufficiency. Consider, for each
i ∈ N , any real-valued function ui on Xi satisfying (29) and define F on
[
∏n

i=1
ui(Xi)]

2 letting, for all x, y ∈ X,

F ([ui(xi)]; [ui(yi)]) =







+ exp(
∑n

i=1
(ui(xi) − ui(yi))) if x ≻ y,

0 if x ∼ y,
− exp(

∑n
i=1

(ui(yi) − ui(xi))) otherwise.
(30)

The well-definedness of F follows from (9). It is skew symmetric by con-
struction since % is complete. Let us show that F is nondecreasing in its
first n arguments. Suppose that ui(zi) > ui(xi) so that zi ≻

±
i xi. If x ≻ y,

we know, using (8), that (zi, x−i) ≻ y and the conclusion follows from the
definition of F . If x ∼ y, we have, using (8), (zi, x−i) % y and the conclusion
follows from the definition of F . If Not[x % y] we have either (zi, x−i) ≻ y,
(zi, x−i) ∼ y, or Not[(zi, x−i) % y]. In either case, the conclusion follows from
the definition of F . The proof that F is nonincreasing in its last n argument
is similar.

Part 2. Necessity. The necessity of completeness is clear. Suppose that
(xi, a−i) % y, y % (zi, a−i), (zi, b−i) % w and Not[(xi, b−i) % w]. Using the
increasingness of F in its first n arguments, the last two conditions imply that
ui(zi) > ui(xi). But (xi, a−i) % y and ui(zi) > ui(xi) imply (zi, a−i) ≻ y, a
contradiction. Hence the necessity of TAC1. The necessity is TAC2 is proved
similarly.

Sufficiency. Since % is complete, we know that TAC1 and TAC2 imply
AC1, AC2 and AC3. Define ui and F as in the proof of part 1 above. We
have to show that F is increasing. This results from the definition of F and
parts 2 and 6 of lemma 4. 2
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5.4 Weak-orders

In this section, we show how the preceding results particularize when it is
supposed that % is a weak order. Since marginal traces are then confounded
with marginal preferences, much simplification is expected.

Our first elementary result shows that the technique of proposition 6
applies to the classical numerical representation of weak orders.

Proposition 7
Let % be a binary relation on a countable set X =

∏n
i=1

Xi. There are real-
valued functions ui on Xi and a real-valued function U on

∏n
i=1

ui(Xi) such
that, for all x, y ∈ X,

x % y ⇔ U(u1(x1), . . . , un(xn)) ≥ U(u1(y1), . . . , un(yn)) ≥ 0, (31)

iff % is a weak order.

Proof

Necessity is obvious. Since % is a weak order and X is countable, there is a
real-valued function u on X such that, for all x, y ∈ X, x % y ⇔ u(x) ≥ u(y).
Consider, for each i ∈ N , a real-valued function ui on Xi satisfying (28) and
define U on

∏n
i=1

ui(Xi) letting, for all x ∈ X,

U([ui(xi)]) = u(x). (32)

Using the reflexivity and transitivity of ∼ and (9) it is easily shown that U
is well defined. 2

Combining the results in lemmas 3, 4 and 5 leads to the following.

Proposition 8
Let % be a weak order on a countable set X =

∏n
i=1

Xi. The function U in
(31) can be chosen to be:

1. nondecreasing in each of its arguments

iff

% is weakly separable,

2. increasing in each of its arguments

iff

% is weakly independent.
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Proof

Part 1. Necessity of weak separability directly results from the nondecreas-
ingness of U in all its arguments and the reflexivity of %. In order to prove
sufficiency, we know from part 1 of lemma 5 that AC1, AC2 and AC3 hold
so that, using part 4 of lemma 3, %±

i is a weak order. Since Xi is count-
able, there is a real-valued function ui on Xi satisfying (29). Consider, for
each i ∈ N , a real-valued function ui on Xi satisfying (29) and define U on
∏n

i=1
ui(Xi) as in (32). The well-definedness of U results from proposition 7.

The nondecreasingness of U follows from (8) and its definition.
Part 2. Necessity of weak independence directly results from the increas-

ingness of U in all its arguments and the reflexivity of %. Using functions ui

and U as in part 1, increasingness follows from (8) together with part 2 of
lemma 5 and lemma 4. 2

Part 1 of proposition 8 generalizes a result obtained in Blackorby et al. (1978)
in case X ⊆ R

n and was anticipated, in a different framework, in Greco,
Matarazzo, and SÃlowiński (2001a). Part 2 is a well known result (see Krantz
et al., 1971, theorem 7.1).

5.5 Remarks

The results in this section prompt a number of remarks.

1. Combining the results of theorems 1 and 2 shows, as announced, that all
binary relations compatible with dominance, whether or not transitive
and complete, have a nontrivial numerical representation. We therefore
hope that our framework and results may serve to establish connections
between the two traditions in decision analysis with multiple attributes
mentioned in introduction. Using the idea of traces makes it possible to
extend the traditional framework of conjoint measurement to analyze
binary relations that may not be well behaved. The need for study-
ing such extensions was forcefully advocated in Bouyssou and Pirlot
(2002), Fishburn (1990, 1991a, 1991b), May (1954), Tversky (1969).
Conversely the very intuitive but sometimes rather ad hoc aggregation
models based on the notion of dominance can be subjected to a stan-
dard axiomatic analysis in the framework of conjoint measurement.

2. The price to pay for such an extension of the scope of conjoint measure-
ment is that our results, although constructive, are not well adapted
to serve as a basis for assessment procedures. The general idea here is
to use numerical representations as guidelines to understand the con-
sequences of a limited number of cancellation conditions, without im-
posing any transitivity or completeness requirement on the preference
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relation and any structural assumptions on the set of objects. As al-
ready noticed in Bouyssou and Pirlot (2002), such a poor framework
happens to be surprisingly rich.

3. It should be clear that the numerical representations envisaged in this
paper (see theorems 2 and 3) do not possess any remarkable uniqueness
properties. Again, this is in line with our use of numerical representa-
tions as guidelines to investigate the consequences of some particular
conditions on % and not as a direct basis to derive assessment proce-
dures. We analyze the uniqueness properties of the representations in
theorems 2 and 3 in appendix C

4. Most of our results are technically simple. Their extension to the case
in which X is no more supposed to be countable, as shown in ap-
pendix B, do not raise any serious difficulty beyond the well known one
of guaranteeing that traces have a numerical representation. Therefore
we refrained from spelling out the various possible extensions of our
results beyond what we felt necessary for our purposes. Let us simply
mention that we did not cover in this paper the case in which AC1
and AC2 hold but AC3 is not imposed. The similarity of that case
with that of interval orders (see Fishburn, 1970a, 1973b, 1985) should
be clear at this point. Many of our results on product sets can easily
be modified to cover that case using two real-valued functions ui and
vi instead of one. We do not develop this point.

5. We restricted our attention in this paper to the analysis of conditions
AC1i, AC2i, AC3i, AC4i, TAC1i and TAC2i when imposed for all i ∈
N . As observed in Greco et al. (2002), this might be overly restrictive.
It is not difficult however to study the, rather awkward, models that
are obtained when these conditions are only imposed on some, but not
all attributes.

Similarly, it is easy to generalize our conditions to subsets of attributes
more general than a singleton. The study of the resulting models cer-
tainly deserves attention. In fact, when aggregating attributes, it might
well happen that attributes interact in such a way that weak separa-
bility is violated. This would forbid the use of AC1 or AC2 as done
here. Imposing these conditions on the groups of “strongly interacting”
attributes might however lead to useful models. Such models would be
in the spirit of the process of “building criteria” by sub-aggregation as
described in e.g. Bouyssou (1990), Roy (1996).

27



6 Discussion

The main aim of this paper was to establish connections between the two
separate traditions in decision analysis with multiple attributes mentioned
in introduction. We believe that our framework based on the analysis of
marginal traces does so. Although further research in this direction is obvi-
ously needed, our results give reasonable hope that it could be fruitful.

We conclude with some remarks and the indication of possible directions
for future research.

1. The idea that the study of traces on attributes may offer insights on
the structure of multi-attributed preferences also underlies the results
in Bouyssou and Pirlot (2002). Instead of studying traces on elements
of Xi, we study traces on ordered pairs of elements of Xi interpreted
as a relation comparing “preference differences” defined from %. More
precisely, it is clear that the binary relation %∗

i on X2
i defined letting,

for all xi, yi, zi, wi ∈ Xi,

(xi, yi) %∗
i (zi, wi) iff

[for all a−i, b−i ∈ X−i, (zi, a−i) % (wi, b−i) ⇒ (xi, a−i) % (yi, b−i)].

is always reflexive and transitive. This suggests a numerical represen-
tation of the type:

x % y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0, (33)

where pi are real-valued functions on X2
i and F is a real-valued func-

tion on
∏n

i=1
pi(X

2
i ), Imposing additional conditions on pi (e.g. their

skew symmetry) and/or on F (e.g. its oddness or nondecreasingness
in all arguments) leads to a large variety of models that require the
completeness of %∗

i .

As shown in Bouyssou and Pirlot (2003), this family of models exploit-
ing traces on “differences” is, in general, quite independent of the family
of models exploiting traces on “levels” as studied here. This gives room
for the study of models combining these two aspects, which is under-
taken in Bouyssou and Pirlot (2003). These hybrid models combining
traces on “levels” and traces on “differences” are of the following type:

x % y ⇔ F (φ1(u1(x1), u1(y1)), . . . , φn(un(xn), un(yn))) ≥ 0, (34)

where ui is a real-valued function on Xi and φi is a real-valued function
on ui(Xi)

2, F is a real-valued function on
∏

i∈N φi(ui(Xi), u(Xi)) and
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φi and F may have additional properties (e.g., φi is skew symmetric
and/or nondecreasing in its first argument and nonincreasing in its
second arguments, F is odd and/or nondecreasing in its arguments).

2. It has sometimes been claimed that rule-based preference modelling is
more “flexible” than “functional” preference modelling (see e.g. Azibi
and Vanderpooten, 2002, p. 275). As far as “rules” are designed so as
to obey dominance (which is the case in the above-mentioned paper),
our results show that such claims are not founded. Although it is true
that rule based preference modelling may offer some advantages (i.e.
the possibility to “explain” in a language close to the natural language
the preference relation linking two alternatives), it is clearly very closely
related to models admitting numerical representations as studied here.
In fact our function F , the precise functional form of which being un-
specified, is a model that can be viewed as a “set of rules” indicating
how to combine the various levels (the ui(xi)’s) on each attribute. The
close links between functional and rule-based models of preference have
been already noted in Greco et al. (1999a, 1999b, 2001a, 2001b, 2002)

3. Our framework and results seem to be well adapted to formalize the no-
tion of “consistent family of criteria” as introduced in Roy and Bouys-
sou (1993), Roy (1996), Vincke (1992). Although this definition is
somewhat more restrictive (requiring that combining “close levels”, i.e.
levels that are not identical but are related by ∼i, should have a lim-
ited overall impact), it implies that any preference relation built on
the basis of a consistent family of criteria is dominance compatible in
the exact sense of definition 5. This shows that all preference relations
obtained on the basis of a consistent family of criteria in the sense of
Roy and Bouyssou (1993), Roy (1996), Vincke (1992) have a numerical
representation of the type investigated in theorem 2. Therefore, sub-
jecting our conditions to extensive empirical tests could offer a fresh
view on the adequateness of common hypotheses adopted in decision
analysis with several attributes.

Future research on the topics discussed in this paper could include:

• the extension of our results to the case of valued preference relations, an
area in which the use of traces has already proved extremely useful (see
Doignon et al., 1988; Monjardet, 1984; Roubens and Vincke, 1985),

• the specialization of our results to the case of an homogeneous product
set (Xi = Xj,∀i, j ∈ N), with applications to the field of decision under
uncertainty,
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• the use of the analogy between numerical representations used here and
rule-based preference modelling to derive assessment procedures using
the classical machinery of “rule induction” in Artificial Intelligence.
This aspect has already been tackled in Greco et al. (1999b, 2001b,
2001a).
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Appendices

A Examples

We first give three examples showing that, in the class of complete binary
relations on X, AC1i, AC2i and AC3i are independent conditions. This will
prove part 5 of lemma 3. We leave to the reader the tedious, but easy, task
of checking that AC1i, AC2i and AC3i are in fact completely independent in
the class of complete binary relations.

Examples 1 to 3 have a common structure. In all of them X = X1 ×
X2 × X3 with X1 = {a, b, c}, X2 = {w, x, y} and X3 = {q, r, s}. We abuse
notation and write an element of X as awq instead of (a, w, q).

Example 1
Let % = X2 except that Not[ayq % cwr], Not[ayq % cxr], Not[ays % cwr],
Not[ays % cxr], Not[bwq % cwr], Not[bwq % cxr], Not[byq % cwr] and
Not[byq % cxr].

It is not difficult to check that % is complete (it is in fact a weakly
independent semi-order). A routine check shows that ACki hold for all k ∈
{1, 2, 3} and i ∈ {1, 2, 3} except that AC11 fails. Indeed, we have Not[b %+

1 a]
(since awq % cxr and Not[bwq % cxr]) and Not[a %+

1 b] (since bys % cwr
and Not[ays % cwr]). It is not difficult to check that we have (using obvious
notation for weak orders): c ≻−

1 [a, b], x ≻+

2 w ≻+

2 y, [x,w] ≻−
2 y, r ≻+

3 s ≻+

3

q, and r ≻−
3 [q, s].

Hence we have an example of a complete binary relation satisfying AC2,
AC3 and AC1i on all attributes but i = 1. 3

Example 2
Let % = X2 except that Not[cwr % ayq], Not[cwr % ays], Not[cwr % bwq],
Not[cwr % byq], Not[cxr % ayq], Not[cxr % ays], Not[cxr % bwq] and
Not[cxr % byq].

It is not difficult to check that % is complete (it is in fact a weakly
independent semi-order). A routine check shows that ACki hold for all k ∈
{1, 2, 3} and i ∈ {1, 2, 3} except that AC21 fails. We have Not[a %−

1 b] (since
cwr % awq and Not[cwr % bwq]) and Not[b %−

1 a] (since cwr % bys and
Not[cwr % ays]). It is not difficult to check that we have (using obvious
notation for weak orders): [a, b] ≻+

1 c, y ≻+

2 [x,w], y ≻−
2 w ≻−

2 x, [q, s] ≻+

3 r
and q ≻−

3 s ≻−
3 r.

Hence we have an example of a complete binary relation satisfying AC1,
AC3 and AC2i on all attributes but i = 1. 3
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Example 3
Let % = X2 except that Not[cyq % awq].

It is not difficult to check that % is complete (it is in fact a weakly
independent semi-order). A routine check shows that ACki hold for all k ∈
{1, 2, 3} and i ∈ {1, 2, 3} except that AC33 fails. Indeed, we have: [a, b] ≻+

1 c,
a ≻−

1 [b, c], [w, x] ≻+

2 y, w ≻−
2 [x, y], [r, s] ≻+

3 q and q ≻−
3 [r, s]. This violates

AC33 since r ≻+

3 q and q ≻−
3 r.

Hence we have an example of a complete binary relation satisfying AC1,
AC2 and AC3i on all attributes but i = 3. 3

We leave to the reader the, easy, task of finding an example of a weakly
independent semi-order satisfying AC1, AC2 and AC3 but violating AC4.
The next two examples are related to lemma 4. We first show that there are
weakly independent semi-orders satisfying AC4 that are not weak orders.

Example 4
Let X = X1 × X2 with X1 = {x1, y1, z1} and X2 = {x2, y2, z2}. Consider
the binary relation % identical to the complete order: (x1, x2) ≻ (x1, y2) ≻
(y1, x2) ≻ (x1, z2) ≻ (y1, y2) ≻ (z1, x2) ≻ (y1, z2) ≻ (z1, y2) ≻ (z1, z2), except
that (y1, y2) ∼ (x1, z2) and (z1, x2) ∼ (y1, y2).

This relation is clearly complete. It is not transitive since (z1, x2) %

(y1, y2), (y1, y2) % (x1, z2) but (x1, z2) ≻ (z1, x2).
It is easily checked that this relation is a semi-order having the preceding

weak order for trace. This semi-order is independent. Its marginal relations
are weak orders identical to its marginal traces. We have x1 ≻1 y1 ≻1 z1 and
x2 ≻2 y2 ≻2 z2.

This relation has only a few pairs of alternatives linked by ∼. It is then
easy to check that AC4 holds using conditions (13) and (14). For instance,
starting with (y1, y2) % (x1, z2) we should have (x1, y2) ≻ (x1, z2), (y1, x2) ≻
(x1, z2) and (y1, y2) ≻ (y1, z2), because x1 ≻

±
1 y1 and x2 ≻

±
2 y2. This is indeed

the case.
Hence we have an example of a nontransitive weakly independent semi-

order satisfying AC4. 3

The final example shows that for complete relations, TAC2 may hold without
TAC1. An example of a complete relation verifying TAC1 but not TAC2 is
easily built using a similar principle.

Example 5
Let X = X1 × X2 with X1 = R × {0; 2} and X2 = R.

Define % letting:

((a1, b1), x2) % ((c1, d1), y2) ⇔ a1 + x2 > c1 + y2 or







a1 + x2 = c1 + y2

and
a1 + b1 ≥ c1
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It is easy to check that % is complete.
On the second attribute, it is clear that x2 %+

2 y2 ⇔ x2 %−
2 y2 ⇔ x2 ≥ y2.

Suppose that a1 ≥ c1. Then, we clearly have w % ((a1, b1), y2) ⇒ w %

((c1, d1), y2), for all b1, d1 ∈ {0; 2}.
As soon as c1 > a1, it is clearly possible to have w % ((a1, b1), y2) and

Not[w % ((c1, d1), y2)]. Therefore (a1, b1) %−
1 (c1, d1) ⇔ a1 ≥ c1.

If a1 > c1, it is clear that ((c1, d1), y2) % z ⇒ ((a1, b1), y2) % z.
If a1 = c1, we have ((c1, 0), y2) % z ⇒ ((a1, 0), y2) % z, ((c1, 2), y2) % z

⇒ ((a1, 2), y2) % z and ((c1, 2), y2) % z ⇒ ((a1, 0), y2) % z. However we may
have ((c1, 2), y2) % z and Not[((a1, 0), y2) % z]. Therefore, we have

(a1, b1) %+

1 (c1, d1) ⇔

{

a1 > c1 or
a1 = c1 and b1 ≥ d1.

A simple check shows that % is strictly responsive to %+

2 , %−
2 and %−

1 . This
not so for %+

1 . In fact, we have, ((10, 0), 10) ∼ ((8, 2), 12) and ((10, 2), 10) ∼
((8, 2), 12), while (10, 2) ≻+

1 (10, 0) (because ((10, 2), 10) % ((11, 0), 9) and
Not[((10, 0), 10) % ((11, 0), 9)]).

Hence we have an example of a complete relation satisfying TAC2 and
TAC12 but violating TAC11. 3

B Numerical representations: the general case

Let E be an equivalence on a set A. We say that A satisfies the low car-
dinality condition w.r.t. E (denoted by LCC[A/E]) if there is a one-to-one
correspondence between A/E and some subset of R. As soon as E is an
equivalence relation, condition LCC[A/E] is clearly necessary and sufficient
for the existence of a real-valued function f on A such that, for all a, b ∈ A:

a E b ⇔ f(a) = f(b). (35)

Condition LCC[A/E] is very mild and is clearly satisfied as soon as A is some
subset of R

k.
Let S be a binary relation on a set A and let B ⊆ A. Following e.g.

Krantz et al. (1971, Chapter 2), we say that B is dense in A for S if, for all
a, b ∈ A, [a S b and Not[b S a]] ⇒ [a S c and c S b, for some c ∈ B]. The
existence of a finite or countably infinite set B dense in A for S is a necessary
condition for the existence of a real-valued function f on A such that, for
all a, b ∈ A, a S b ⇔ f(a) ≥ f(b). Together with the fact that S is a weak
order on A, it is also sufficient for the existence of such a representation (see
Fishburn, 1970b; Krantz et al., 1971).
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We say that a binary relation % on A satisfies condition OD (Order
Density) if there is a countable subset B ⊆ A that is dense in A for %. We
say that % on A satisfies condition OD± if there is a countable subset B ⊆ A
that is dense in A for %±. Clearly, if % is a weak order on A, OD and OD±

are equivalent since in this case % = %±. The formulation of OD± in terms
of % is cumbersome and apparently uninformative; for a thorough analysis of
various conditions guaranteeing that traces have a numerical representation,
we refer to Beja and Gilboa (1992), Candeal, Induráin, and Zudaire (2002),
Doignon, Ducamp, and Falmagne (1984), Fishburn (1985), Nakamura (2002),
Narens (1994), Oloriz, Candeal, and Induráin (1998).

Let % and %′ be two weak orders on A. We say that %′ refines % if, for
all a, b ∈ A, a %′ b ⇒ a % b. It is easy to see that if %′ refines % and %′

satisfies OD then % satisfies OD.
When % is a binary relation on a product set X = X1 × X2 × · · · × Xn

we say that it satisfies condition OD±
i if there is a countable set B that is

dense in Xi for %±
i .

Using these conditions, we first tackle the case of trivial representations
on sets without structure. For the sake of completeness, we spell out the
following:

Proposition 9 (Generalization of propositions 4 and 5)
When removing the restriction that A is finite or countably infinite,

1. Proposition 4 holds iff % satisfies LCC[A/∼±].

2. Parts 1 and 2 of proposition 5 hold iff % satisfies OD±.

3. Part 3 of proposition 5 holds iff % satisfies OD.

Proof

Part 1 is obvious. The sufficiency of OD± (resp. OD) for part 2 (resp. part 3)
is clear.

Let us prove the necessity of OD±. Suppose that a ≻± b. By definition,
there is a c ∈ A such that either [a % c and Not[b % c]] or [c % b and Not[c %

a]]. In the first case, we have: F(u(a), u(c)) ≥ 0 and F(u(b), u(c)) < 0. In the
second case, we obtain: F(u(c), u(b)) ≥ 0 and F(u(c), u(a)) < 0. Therefore,
when F is nondecreasing in its first argument and nonincreasing in its second
argument, representation (22) implies:

a ≻± b ⇒ u(a) > u(b). (36)

The necessity of OD± follows since the weak order induced on A by u refines
%±. The necessity of OD for part 3 is proved in a similar way. 2
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The generalization of proposition 6 is done along the same lines. When X is
no longer supposed to be countable, it is necessary and sufficient to require
that condition LCC[Xi/∼

±
i ] holds for all i ∈ N . This is not worth spelling

out in detail (note however that it is not difficult to show that condition
LCC[X/∼±] implies that condition LCC[Xi/∼

±
i ] holds for all i ∈ N).

Similarly to what has been done in the proof of proposition 9, it is not
difficult to show that when % has a numerical representation of type (27)
with F being nondecreasing (resp. nonincreasing) in its first (resp. last) n
arguments then, for all i ∈ N and all xi, yi ∈ Xi:

xi ≻
±
i yi ⇒ ui(xi) > ui(yi). (37)

The necessity of condition OD±
i for all i ∈ N therefore follows. We have:

Proposition 10 (Generalization of theorems 2 and 3)
When removing the condition that X is finite or countably infinite, Theo-
rems 2 and 3 hold iff % satisfies OD±

i for all i ∈ N .

We leave to the interested reader the construction of examples showing that
OD±

i may hold for all i ∈ N \ {j} while OD±
j fails.

In order to generalize proposition 7, it must clearly be supposed that
% satisfies OD. Since we do not suppose here substituability as in Krantz
et al. (1971, Theorem 7.1), we also have to suppose LCC[Xi/∼

±
i ] holds for

all i ∈ N . The following example shows that LCC[Xi/∼
±
i ] is independent

from OD.

Example 6 (OD and LCC[Xi/∼
±

i
])

Let X = X1 × X2 with X1 = X2 = 2R, the set of all subsets of R. Define %

on X letting, for all A,B,C,D ∈ 2R, (A,B) % (C,D) ⇔ f(A,B) ≥ f(C,D),
where f is a real-valued function on [2R]2 such that f(A,B) = 1 ⇔ B ⊆ A
and f(A,B) = 0 otherwise.

By construction, % is a weak order satisfying OD. However, as soon as
A 6= B, it is clear that Not[A ∼±

1 B] and Not[A ∼±
2 B]. Hence, LCC[Xi/∼

±
i ]

is violated. 3

The generalization of part 2 of proposition 8 is classical (Krantz et al., 1971,
theorem 7.1). Since for weak orders, marginal preferences and marginal traces
coincide, it suffices to impose that the weak order % has a numerical rep-
resentation, i.e., that OD holds. The generalization of part 1 is somewhat
trickier since there are weakly separable weak orders that have a numerical
representation while their marginal traces do not (see Fishburn, 1973a, The-
orem A(ii)). Hence it must also be added that condition OD±

i holds for all
i ∈ N . We summarize our observations below.
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Proposition 11 (Generalization of propositions 7 and 8)
When removing the condition that X is finite or countably infinite,

1. Proposition 7 holds iff % satisfies OD and LCC[Xi/∼
±
i ], for all i ∈ N .

2. Part 1 of proposition 8 holds iff % satisfies OD and OD±
i , for all i ∈ N .

3. Part 2 of proposition 8 holds iff % satisfies OD.

C Uniqueness

Let us first envisage the case of theorem 2 (without reflexivity). The numer-
ical representation is such that:

x % y ⇔ F ([ui(xi)]; [ui(yi)]) ≥ 0, (38)

with F increasing in its first n arguments and decreasing in its last n argu-
ments. The proof of theorem 2 shows that it is always possible to build a
numerical representation such that:

xi %±
i yi ⇔ ui(xi) ≥ ui(yi). (39)

This not compulsory however. Let us show that any function ui such that:

xi ≻
±
i yi ⇒ ui(xi) > ui(yi), (40)

can be used in a representation of type (38).
The necessity of (40) is clear since xi ≻±

i yi implies either xi ≻+

i yi or
xi ≻

−
i yi. In the first case, we know that (xi, a−i) % z and Not[(yi, a−i) % z],

for some z ∈ X and some a−i ∈ X−i. In the second case, we obtain w %

(yi, b−i) and Not[w % (xi, b−i)], for some w ∈ X and some b−i ∈ X−i. Using
the increasingness of F , either case implies ui(xi) > ui(yi).

Conversely, it is clear that if ui satisfies (40) then

ui(xi) = ui(yi) ⇒ xi ∼
±
i yi, (41)

so that defining F , as in the proof of theorem 2, letting:

F ([ui(xi)]; [ui(yi)]) =

{

+ exp(
∑n

i=1
(ui(xi) − ui(yi))) if x % y,

− exp(
∑n

i=1
(ui(yi) − ui(xi))) otherwise.

(42)

leads to a well defined function being increasing in its first n arguments and
decreasing in its last n arguments.
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It should be noted that any nonnegative (resp. negative) real-valued func-
tion f (resp. g) on R

2n that is increasing in its first n arguments and de-
creasing in its last n arguments when restricted to [

∏n
i=1

ui(Xi)]
2 may be

used to define F letting F ([ui(xi)]; [ui(yi)]) = f([ui(xi)]; [ui(yi)]) if x % y and
F ([ui(xi)]; [ui(yi)]) = g([ui(xi)]; [ui(yi)]) otherwise. It is not difficult to see
that only such functions may be used. We have therefore described the set
of all possible numerical representations of type (38).

Let us now consider the case of the skew symmetric representations of
theorem 3. When it is only required that F is nondecreasing in its first
n arguments and nonincreasing in its last n arguments, it is not difficult
to see that the above reasoning applies. Any real-valued function ui on
Xi satisfying (40) is a legitimate choice and only such functions may be
used. Furthermore, any positive real-valued function f on R

2n that is non-
decreasing in its first n arguments and nonincreasing in its last n argu-
ments when restricted to [

∏n
i=1

ui(Xi)]
2 may be used to define F letting

F ([ui(xi)]; [ui(yi)]) = f([ui(xi)]; [ui(yi)]) if x ≻ y, F ([ui(xi)]; [ui(yi)]) = 0 if
x ∼ y and F ([ui(xi)]; [ui(yi)]) = −f([ui(yi)]; [ui(xi)]) otherwise. Clearly only
such functions may be used.

The situation is slightly more complex in the skew symmetric case with
F increasing in its first n arguments and decreasing in its last n arguments.
In that case, any function satisfying (40) will not do any more. To see why
this happens, suppose that xi ∼

±
i zi and ui(xi) > ui(zi). This is acceptable

as long as it never happens that (xi, a−i) ∼ w because the increasingness
of F would then imply (zi, a−i) ≻ w, violating (9). However, it is clear
that the presence of ∼ is the only additional constraint preventing from
choosing different values of ui for elements linked by ∼±

i . Therefore, in the
increasing/decreasing skew symmetric model any ui such that:

xi ≻
±
i yi ⇒ ui(xi) > ui(yi)

and
xi ∼

±
i yi

and
(xi, a−i) ∼ w for some a−i ∈ X−i and some w ∈ X







⇒ ui(xi) = ui(yi),

is acceptable. It is easy to see that only such functions ui may be used.
Furthermore, any positive real-valued function f on R

2n that is increasing in
its first n arguments and decreasing in its last n arguments when restricted to
[
∏n

i=1
ui(Xi)]

2 may be used to define F letting F ([ui(xi)]; [ui(yi)]) = f([ui(xi)]; [ui(yi)])
if x ≻ y, F ([ui(xi)]; [ui(yi)]) = 0 if x ∼ y and F ([ui(xi)]; [ui(yi)]) = −f([ui(yi)]; [ui(xi)])
otherwise. Only such functions may be used.
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Ph. (2000). Evaluation and decision models: A critical perspective.
Dordrecht: Kluwer.

Bouyssou, D., and Pirlot, M. (1999). Conjoint measurement without additiv-
ity and transitivity. In N. Meskens and M. Roubens (Eds.), Advances
in decision analysis (pp. 13–29). Dordrecht: Kluwer.

Bouyssou, D., and Pirlot, M. (2002). Nontransitive decomposable conjoint
measurement. Journal of Mathematical Psychology, 46, 677–703.

Bouyssou, D., and Pirlot, M. (2003). ‘Additive difference’ models without
additivity and subtractivity. (Working Paper, submitted)

Bouyssou, D., Pirlot, M., and Vincke, Ph. (1997). A general model of
preference aggregation. In M. H. Karwan, J. Spronk, and J. Wallenius
(Eds.), Essays in decision making (pp. 120–134). Berlin: Springer
Verlag.
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