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Outranking relations are most often built using a concordance-discordance principle. Such relations
are, in general, neither transitive nor complete. This is not to say that the concordance-discordance
principle does not impose some "structural" restrictions on these relations. We show why this
guestion may be of some importance for analyzing the various techniques designed to build a
recommendation on the basis of such relations. These restrictions are studied for the ELECTRE and
PROMETHEE methods.
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|. Introduction.

This paper is concerned with the outranking approach to Multiple Criteria Decision Aid
(useful references concerning these methods include Scharlig (1985), Vincke (1992a), Roy
(1991) and Roy and Bouyssou (1993)). Methods related to this approach, including the
well-known family of ELECTRE methods, are often presented as the combination of two
steps:

* a"construction step” in which one or several outranking relations are built and

* an "exploitation step” in which outranking relations are used to derive a recommendation.
The construction step consists in comparing alternatives taking all criteria into account. This
leads to a preference model taking the form of one or several binary relations — the so-called
"outranking relations” — that may be crisp or valued (our definitions and notations
concerning binary relations are introduced at the end of this section). Outranking relations, in
most methods, are built using a concordance-discordance principle. This principle leads to
declaring that an alternative is "at least as good as" another when:

» a"sufficient” majority of criteria supports this proposition (concordance principle) and

» the opposition of the minority is not "too strong" (non-discordance principle).

It is well-known that this principle does not, in general, lead to binary relations possessing
"remarkable properties" such as transitivity and completeness (this being true for valued
relations independently on how we interpret these properties in the valued casgj.see,
Perny (1992) or Perny and Roy (1992)).

The exploitation step aims at building a recommendation on the basis of such preference
models. Depending on the problem, this recommendation may take the form of the selection
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of a subset of alternatives, the ranking of all alternatives or the sorting of alternatives into dif-
ferent categories. Since the preference models that are used do not, in general, possess
"remarkable properties” this is not an obvious task. This calls for the application of specific
techniques that depend on the type of recommendation that is looked for (see Vanderpooten
(1990) or Roy and Bouyssou (1993)).
Outranking methods have often been criticized for their lack of axiomatic foundations.
Recently some papers have attempted a theoretical analysis of the construction gep (see,
Bouyssou (1986 and 1992a), Bouyssou and Vansnick (1986), Perny (1992), Vansnick
(1986)) and of the exploitation step (seey, Bouyssou (1992b and 1995), Bouyssou and
Perny (1992), Pirlot (1995) or Vincke (1992b)) of various outranking methods. In these
papers outranking methods are not considered as a whole. They analyze their two steps in a
separate way. The absence of "remarkable properties” of outranking relations has often been
seen as the rationale for separating the analysis of the exploitation step from that of the
construction step. In particular, papers dealing with the exploitation step have attempted to
analyze the properties of several exploitation techniques assuming that these techniques are to
be applied t@ny preference structure. This is a weak line of reasoning however. Even if we
know that outranking relations do not possess "remarkable properties” they may well
possess some "structural properties” when they are built using a concordance-discordance
principle, i.e. it may well be impossible to obtamny preference structure using a
construction technique based on concordance-discordance. The existence of such "structural
properties" would render difficult the interpretation of the above-mentioned analyses of
exploitation techniques. Exploitation techniques could be envisaged that would not be
appealing when applied to any relation but that would behave more nicely when applied to
relations possessing some "structural properties”.
The aim of this paper is to investigate the existence of such "structural properties”. We
summarize our main conclusions below:

— with the construction techniques used in ELECTRE | and ELECTRE Il outranking

relations do not possess "structural properties™: with ELECTRE 1 it is possible to obtain

any crisp reflexive binary relation as an outranking relation. The same is true for

ELECTRE l1ll in the valued case. In these methods, this allows, to some extent, to

separate the analysis of the exploitation step from that of the construction step ;

— the situation is different when turning to methods, such as PROMETHEE, that do not

make use of the discordance concept: they lead to outranking relations having "structural

properties"” ;

— the characterization of these "structural properties” turns out to be a difficult task. This

problem is deeply linked with classic problems in the theory of choice ;

— in spite of the absence of a complete characterization of the "structural properties” of

outranking relations in PROMETHEE-like methods, we outline how an axiomatic



analysis of exploitation techniques can be conducted taking into account these properties.
The paper is organized as follows. The case of ELECTRE | and Il is examined in section 2.
In section 3 we turn to methods, such as PROMETHEE, that do not make use of the discor-
dance concept. A final section presents some directions for future research. In the rest of this
section we introduce our basic notations and definitions.
A valued(binary)relation T on a set X is a function fromxX into [0 ; 1]. It is said to be
reflexive (resp.irreflexive) if T(x, x) = 1 (resp. 0), for all X] X. A valued relation T on
X such that T(x, y)1 {0, 1}, for all x, y [0 X, is said to berisp. As is usual, we note x Ty
instead of T(x, y) = 1 when T is a crisp relation. Concerning crisp relations, we will make
use of the following classic definitions (see Fishburn (1970) or Roubens and Vincke
(1985)). Let T be a crisp relation on X. This relation is said to be:

—reflexiveif [x T x],

—completef [x Tyory T x],

—weakly completd [x 2y xTyoryTX],

—transitiveif [ x Tyandy T z[0 x T z],

—antisymmetridf [x Ty andy T xOI x =],

—asymmetridf [x Ty O Not(y T x)],

—Ferrersif ([x Tyand z Tw)ld (x TworzTy)],

—semi-transitivaf [(x Tyandy T z)0 (x Tworw T 2z)],
for all x, y, z, wll X.
We say that a crisp relation is:

— alinear orderif it is complete, antisymmetric and transitive,

— astrict linear orderif it is weakly complete, asymmetric and negatively transitive,

— aweak order(sometimes called a pre-order) if it is complete and transitive,

— astrict weak ordeif it is asymmetric and negatively transitive,

— asemi-ordeiif it is complete, Ferrers and semi-transitive,

— astrict semi-ordeif it is irreflexive, Ferrers and semi-transitive,

— aninterval orderif it is complete and Ferrers

— astrict interval orderif it is irreflexive and Ferrers,

— astrict partial orderif it is irreflexive and transitive,
We note2O'x (resp.SEOX, WOx, SO x, SOx, SSOx, 10x, S10x, SPOX) the set
of all linear orders (resp. strict linear orders, weak orders, strict weak orders, semi-orders,
strict semi-orders, interval orders, strict interval orders, strict partial orders) on a set X,
dropping the subscript when there is no risk of confusion about the underlying set. It is well-
known (see Fishburn (1970) or Roubens and Vincke (1985) hgt0 i/0Ox O SOx O
10x andSLOx OSWOx 0880y 0810y OS8POx, all inclusions being strict as
soon as X is large enough.
We notel(T) (resp.a(T)) the symmetric (resp. asymmetric) part of the crisp relatioreT,



the crisp relations respectively defined by:

XMy = [xTyandy T x] and

xa(T)y = [x Tyand Not(y T x)].

It is easy to see (see,g, Roubens and Vincke (1985)) that for any crisp relation T on a set
X,

TOLOX - a(M) OSLOX, TOWOX « a(T) OSKOx, TOSOX < a(T) OSSOx

and TO10x < o(T) OST0x.

Throughout this paper A = {a, b, c, ...} will denotdimite set with |A| = n& 2 elements.

We interpret the elements of A as "alternatives” to be compared using an outranking method.

II. ELECTRE | and ELECTRE I1I.
I1-1. A basic result.
ELECTRE | (Roy (1968)) and ELECTRE Il (Roy (1978)) are among the most popular
outranking methods. ELECTRE | aims at building a crisp outranking relation starting with a
set of alternatives evaluated on several "true-criteria". ELECTRE Il builds a valued
outranking relation starting with a set of alternatives evaluated on several "pseudo-criteria”
(on the notions of true and pseudo criterion, see Roy (1985)). We briefly recall here, from a
purely algorithmic point of view, the principles of the construction techniques that are used
in these two methods (for a thorough discussion of these methods, see Roy and Bouyssou
(1993)). As indicated in section 1, we denote by A a finite set (of "alternatives™) with m
elements.
Consider an "ELECTRE I situation on A" consisting in:
— a strictly positive integer n (the "number of criteria™),
— areal number (the "concordance threshold?)[8,5 ; 1],
— n functions (the "criteria") g g2, ..., th from Ainto 1,

— n functions (the "veto thresholds™,w2, ..., vn from 1 into 1+ such thatJ i O {1,

2, ...nfandda, bO A, gi(a) 2 gi(b) U gi(a) + M(gi(a)) = gi(b) + vi(gi(b)),
— n strictly positive real numbers (the "weights?) ko, ..., kn.
Starting with an "ELECTRE | situation on A", the construction technique of ELECTRE |
builds a crisp relation S on A€., a subset of RA) letting, for all a, b1 A:
aSb- [aCbandNot (aV b)

where
Ki
aCb 1 97e = 9B :gj(r‘?zgj(b)zs
2 K
i=1
and

avVb - [0i0{1 2, ..., n} suchthat gi(b)>g;(a + v;(gi(a))]

The crisp relation C (resp. V) is called the concordance (resp. discordance) relation of



ELECTRE I.
Consider an "ELECTRE Il situation on A" consisting in:
— a strictly positive integer n (the "number of criteria™),
— nfunctions (the "criteria") g g2, ..., th from A'into 1,
— 3n functions (the "indifference, preference and veto thresholdsBigvi, a2, p2,
V2, ..., 0, Pn, Vn from 1 into 1+ such thatdi O {1, 2, ..., n},0 a, bO A:
di(gi(a)) < pi(gi(a)) < vi(gi(a)) and
gi(@)=gi(b) O [gi(a) + q(gi(a)) 2 gi(b) + ¢(gi(b)), d(a) + p(gi(a)) = gi(b) + p(gi(b))
and g(a) + v(gi(a)) = gi(b) + vi(gi(b))]
— n strictly positive real numbers (the "weightsi) ko, ..., kn.
Starting with an "ELECTRE Il situation on A", the construction technique of ELECTRE III
builds a valued relation S on Ad. a function from AA into [0 ; 1]) letting, for all a, k1
A
S(a, b) = C(a, b)-(1 - D(a, b))

where
. Aifg(b)-g(@ < ai(g(a)
S ki OCi(a, b) Difg(0)-9@ > p(E(E)
Cla b) = =L — withC(a b) = O
> ki PG ~ @0 ~ 5@ L ice
= ECTERETCIC |
and

g)if D = {j 0{L1 2, ..., n} : Dja b)>C(a b)} = O
D@ b)=0 _ 1-Di(a, b)
-

otherwise
ODgp 1- C(a1 b)

with
1 if gi(b) - gi(@ > vi(gi(a)
if gi(b) - gi(d) < pi(ai(a))
Di(a b) = 0O
i(b) - 6i(8) - pi(gi(a))
B Vvi(g(a) - pi(ai(a)
The valued relation C is called the concordance relation of ELECTRE IlI.
It is easily seen that an outranking relation S built with either method is necessarily reflexive

otherwise.

(i,e,0al A, a S ain the crisp case and S(a, a) = 1 in the valued case). Apart from
reflexivity, do these relations possess any "structural property” ? The following simple
proposition shows that this is not the case.

Proposition 1.

(a) Let T be any reflexive crisp relation on a finite set A. There is an "ELECTRE | situation
on A" such that applying the construction technique of ELECTRE | to this situation leads to



an outranking relation identical to T.
(b) Let T be any reflexive valued relation on a finite set A. There is an "ELECTRE Il
situation on A" such that applying the construction technique of ELECTRE llI to this
situation leads to an outranking relation identical to T.
Proof. It consists in exhibiting the appropriate "situation". In both cases the "situation”
consists in:
one criterion having "much weight" on which all alternatives have identical evaluations;
several criteria having "little weight". On each of them we introduce a "discordance
effect” for a selected pair of alternatives.
(a) Let T be a reflexive crisp relation on a finite set A. Let u= |, where m = |A|. If u =
0, ELECTRE I will lead to T using a "situation” consisting in a unique criterion on which all
alternatives have an identical evaluation. WhenOy consider a one-to-one correspondence
between {2, 3, ..., u+1} and the ordered pairs (&, 82 such that Not(a T b). Let us build
a "situation" such that:

- n=1+u,
- s=1/2,
— 0g1(c)=0,0cOA,and v(x)=1,0x01,
—fori=2,3, ..., utl, suppose that i corresponds to the ordered pair (a, b) such that

Not(a T b) and let us choose the functiopamy y so that:

gi(d =0, g(b) =1, g(c) =0.5,0 cO A\{a, b},

vi(x)=0.6,0x01.

—-k1=1/2, =k3=... = ki+y = 1/2u.
It is easily seen that applying ELECTRE 1 to this "situation” will lead to an outranking
relation identical to T. Since all alternatives have an identical evaluatiopa@mdgq = s =
1/2, the concordance relation C is complete. For each ordered pair (a, b) such that Not(a T b)
we have introduced a criterion for which a V b which allows to recover T.
(b) Let T be a reflexive valued relation on a finite set A. If T(a, b) £ 5, b0 A,
ELECTRE Il will lead to T using a "situation™ consisting in a single criterion on which all
alternatives have an identical evaluation. When this is not the case, let:
U={(a b)OAZ2: T(a, b)# 1}, u = |U| and

M = Max T(a b).
(a by OU

By hypothesis, we haveMex 0 [0 ; 1[ and uJ {1, 2, ..., m(m-1)}.
Let t be such thaMax <t < 1. We note:

y=t+(u —J)u.

u
It is clear thatMaxX <y < 1. Consider a one-to-one correspondence between U and {2, 3,
.., U1}

Let us build a "situation" such that:



- n=1+u,
— 0g1(c)=0,0cOA, and gq(x) = p1(X) =0, vi(x) = 1,0x O 1,
—fori=2,3, ..., utl, suppose that i corresponds to the ordered pairf{a) and let
us choose the functions, @j, pi and \ so that:
gi(b) =1, g(a) =0, g(c) = 0.5,0 c A\{a, b},
gi(x) = p(x)=0.5,0x 01,
vi(x) =¢j, Ox O 1, where:

Z=05+— 0N
y-(1-y)T@b)

- k1=t k=(1-t)ufori=2,3, ..., utl.

Observe thafj=>1,i= 2, 3, ..., u+l, so that the functionsave admissible for ELECTRE
1.

The application of ELECTRE llI to this "situation™ leads to an outranking relation S.
Consider an ordered pair (a, b) such that T(a, b) = 1. It is easy to see that wg{agve=C
land DQ(a,b)=00i0{1, 2, ..., u+l} so that S(a, b) = 1.

Consider now an ordered pair (a,[b)J, i.e. such that T(a, b) < 1. Let us denote by i the
unique element in {2, 3, ..., u+1} corresponding to this ordered pair. We have for the
concordance part:

Cj(a, b) =10j #1, and G(a, b) = 0 so that

C(a, b) =yand T(a, b) < C(a, b) < 1.

For the discordance part, we have:

Dj(a,b)=00j#1i, and

M A - . Gi(0) - 9@ - Pi(gi@)yy — ppira - . 1-05
Di(a, b) = Min[1; Max[0; = Min[1; Max[0;
(& D) = Minlt: Mad0: =\ g@ -pa@ © - i Mede 7o)
— Minf1 - 0.5 _ Y-(A-v)T@abh)
= Min[1; ] = .
05+ 0¥ 1 05 v
y-QA-y)T@b)
since Y _(1_\>/)T(a’ b) >y, we have:
1_Y~-@=y)T@ab
_ 1-Di(ab)_ y _
S b) = C@ By Sy =T@b).
This completes the proof. O

Proposition 1 implies that for the axiomatic investigation of exploitation techniques to be
coupled with ELECTRE | and ELECTRE III, it makes sense to suppose that they will be
confronted to any (reflexive) preference structure. Such investigations were conducted in the
crisp case by Vincke (1992b) and in the valued case by Pirlot (1995), Bouyssou (1992b and
1995) and Bouyssou and Perny (1992). However, one should not conclude from
proposition 1 that it is legitimate for ELECTRE | and ELECTRE 1l to completely separate
the construction and the exploitation step. In particular in the valued case, this proposition



says nothing about the nature and the interpretation of the "valuations" used to model
preferences and consequently, about the operations that we can legitimately use on them so
as to stay consistent with the way they have been built. This difficult problem concerning
valued relations is still widely open (see Perny (1992)).

I1-2. Remarks and extensions.

In this subsection, we add some comments to the very simple proposition 1.

i) The construction step of ELECTRE | being a particular case of that of ELECTRE IS (see
Roy and Skalka (1984) or Roy and Bouyssou (1993)), part (a) of proposition 1 directly
applies to ELECTRE IS. A simple modification of this proof shows that any two nested
crisp reflexive relations on a finite set can be obtained as the result of the ELECTRE Il
construction technique (see Roy and Bertier (1973)).

il) The proof proposition 1 uses "situations" involving up to m(m-1) + 1 criteria (the next

remark shows that m(m+1) criteria are always sufficient for ELECTRE I). In most cases, it
is possible to use more "realistic" "
number of criteria. For each method it would be interesting to know what is the minimum

situationisg, "situations” using a more reasonable

number of criteria that has to be used in order to be able to recover any reflexive relation.
This raises interesting combinatorial problems that will not be dealt with here (similar
problems arise with the method of majority decisions; a basic reference on the subject is
Stearns (1957)).

iii) The proof of part (a) of proposition 1 makes great use of the possibility to introduce
discordance effects "at will" with ELECTRE I. Building upon a famous result of McGarvey
(1953) concerning the method of majority decision, let us show that part (a) of the
proposition remains true even if when there are no discordance eifiectd)en the veto
thresholds are large enough to imply V = @. Let T be a reflexive crisp relation on A. For any
pair of distinct alternatives {a, b} we have one and only one of the following situations:

i- [aTbandbTa]

ii- [aTbandNot(b T a)]

ii- [Not(a T b) and Not(b T a)].

Consider a one-to-one correspondence between {1, 3, ..., m(m-1) - 1} and the m(m-1)/2
pairs of distinct alternatives in A. Consider a "situation" such that:
— n=m(m-1)

- 1/2<s<1/2+1/m(m-1)
—fori=1, 3, ..., m(m-1) - 1. Suppose that i corresponds to the pair {a, b} of distinct
alternatives. Consider a one-to-one correspondence f between A\{a, b} and {1, 2, ..., m
- 2} and define pand g+1 letting:
gi(@) =g(b) =m-1, ¢g(c) =1f(c),0 cA\a, b} and
gi+1(a) =g+1(b) =1, g+1(c) =m-f(c),0 cOAa, b}if[aTband b T a],



gi(@ =m, g(b)=m -1, g(c) =f(c),00 c A\{a, b} and

gi+1(a) =1, g+1(b) = 0, g+1(c) =m - f(c),d c O A\{a, b} if [a T b and Not(b T a)],

gi(@ =m, g(b)=m -1, g(c) =f(c),00 c A\{a, b} and

gi+1(a) =0, g+1(b) = 1, g+1(c) = m - f(c),d c U A\{a, b} if [Not(a T b) and Not(b T
a)],

—-ki=k2=...=ky=1/n.
Let us show that C =T, C being the concordance relation obtained by applying ELECTRE |
to this "situation”. Let {a, b} be a pair of distinct alternatives in A.
Wenotery, - Z ki and fy, - Z K;.

j 0@ = gj(b) j 1gj(b) = gj(@

It is easy to see that:
rab=rtpba=m(m-1)/2+1lifaTbandbT a,
rap= m(m-1)/2 + 1 andga=m(m-1)/2 - 1 ifa T b and Not(b T a),
rab= rpa= m(m-1)/2 if Not(a T b) and Not(b T a).
Thus, for all §1]1/2 ; 1/2 + 1/m(m-1)[, we have T = C.
Extending in a similar way a previous result by Deb (1976), it is not difficult to show that the
following stronger result holds:
Let T be a reflexive crisp relation on a finite set A and ]0.5 ; 1[. There is an "ELECTRE
| situation on A" with s 2A such that applying the construction technique of ELECTRE I to
this situation leads to a concordance relation C identical to T.
This result does not hold far= 1 (resp. 0.5) since, in that case, C is necessarily transitive
(resp. complete).
Let us finally mention that these techniques can easily be transposed to other ways of
building crisp concordance relations. For instance, it can be shown that every asymmetric
crisp relation T can be obtained as a concordance relation in the TACTIC method (see
Vansnick (1986); let us recall that concordance relations in TACTIC are necessarily asym-
metric).
iv) Contrary to the situation with ELECTRE 1, it is not possible to obtain any reflexive
valued relation as the result of ELECTRE llI if the discordance part of the method is not
used,.e.when S(a, b) = C(a, b)j a, bl A, which amounts to choosing "very large" veto
thresholds p Consider the following valued relation T (valued relations in matrix form are
always read from row to column):

Tla|b|c
all(1|0
b|0o|1]|1
c|1/0|1

Suppose that there is an "ELECTRE Il situation on A" such that C = T (from part (b) of
proposition 1, we know that there is a "situation” such that S = T). In such a "situation" we



have,0i0{1, 2, ..., n}, g(a) > g(b) + [(gi(b)), d(b) > da(c) + p(gi(c), d(c) > dg(a) +
pi(gi(a)), which is contradictory sincg s always non-negative. Thus, concordance
relations in ELECTRE Il possess "structural properties”. We study them in the next section.

I11. Valued concordance relations and "binary choice probabilities”.
I11-1. Valued concordance relations, stepped relations and semi-orders.
In order to analyze the "structural properties” of valued concordance relations, we use the
following general framework. Consider a "Generalized Strict Concordance situation on A"
consisting in:
— a strictly positive integer n,
— nfunctions @, g2, ..., tnh from Aiinto 1,

— n functions 1, t2, ..., th from 12 into [0 ; 1] such that]i O {1, 2, ..., n}, § is non-

decreasing (resp. non-increasing) in its first (resp. second) argumenfamn) £ 0,

O0x 01,
— n strictly positive real numberg kk2, ..., kn.
On the basis of such a "situation", the "Generalized Strict Concordance" method or more
briefly the GSC method (inspired by Perny (1992) and Perny and Roy (1992)) leads to a
valued relation P on A letting] a, b[J A:

n

Z ki Cti(gi(a), gi(0))
P(a b) = =L

n .

We denote by;SCa (or simplyGSC when there is no risk of confusion) the set of alll
valued relations on A that can be obtained with the GSC method on the basis of a
"Generalized Strict Concordance situation on A". Since it was supposeixhe) £ 0, all
relations in;SC are obviously irreflexiveife., T(a, a) = 0 all A).

The interest of the GSC method lies in its links with the PROMETHEE method (see Brans
and Vincke (1985) or Braret al. (1984)) and the concordance part of ELECTRE lll. First,

it is easy to show that the PROMETHEE method is a particular case of the GSC method with
ti(gi(a), d(b)) =Aj(gi(a) - d(b)), the functionsAj used in PROMETHEE being non-
decreasing and such tig{0) = 0. Second consider an "ELECTRE III situation" and let:
ti(gi(a), (b)) =1 - G(b, a).

Such functionsjtare clearly admissible in the GSC method. Thus to each concordance
relation C obtained with ELECTRE Il corresponds a valued relation P obtained with the
GSC method such that P(a, b) = 1 - C(b,(ap, bO A.

In what follows we study the structural properties of relation§diC. The following
definitions will prove useful for this purpose.

Definition 1. Let T be a valued relation on a finite set A. The relation T is said td-ge a

10



relation if there are:
— areal-valued function g on A and

—a function t from g[A%g[A] into [0 ; 1] being non-decreasing (resp. non-increasing) in

its first (resp. second) argument and such that t(x, x)3H, O g[A],
such that, for all a, bl A, T(a, b) =t(g(a), g(b)).
The notion of t-g relation is very closely related to that of "monotone scalability” used in
Monjardet (1984) (after Fishburn (1973)), the only difference being the addition here of a
restriction on t(x, x). By construction, relationsG&'C are “"convex mixtures" of t-g
relations.
Definition 2. Let T be a valued relation on a finite set A. We say thatupper diagonal
steppedf there is a linear order.¢., a complete, antisymmetric and transitive crisp relation)
V on A such that, for all a, B A:
aVbl T(b,a)=0and
aVbOd T(a, c)=T(b, c) and T(c, ax T(c, b),00 cO A.
Apart from the restriction that a VIB T(b, a) = 0, an upper diagonal stepped relation is
identical to a relation having a "monotone board" as defined in Monjardet (1984).
Definition 3. Let T be a valued relation on a finite set A. We say thatliifesr if, for all
a, b,c,dl A, [T(a, c)>T(b, c)or T(c, a) < T(c, b)] [T(a, d)= T(b, d) and T(d, a¥
T(d, b)].
The following lemma is a direct consequence of Theorem 13 in Monjardet (1984). For the
sake of completeness we outline its proof.
Lemma 1. Let T be a valued relation on a finite set A. The following statements are e-
quivalent:
() Tisat-g relation,
(i) T is irreflexive and linear,
(i) T is upper diagonal stepped.
Proof.
() O (ii). Obvious.
(i) O (iii). Define the crisp relation the strict trace of T, letting, for all a[bA,
aSrbe [T(a, c)>T(b,c)orT(c, a)<T(c, b) for some&l@A]. The relation § is clearly
negatively transitive. It is easy to see that it is also asymmetric when T is linear spthat S
St/O . Consider now any linear order V such thatfSa(V) (such a linear order exists by
Szpilrajn's lemma). Using the irreflexivity and the linearity of T, it is easy to prove that T is
upper diagonal stepped using such a linear order.
(@ii) O (i). Since A is a finite set and V is a linear order, there is a real-valued function g on
A such that, for all a, bl A, g(a)= g(b) = a V b (seee.g. Roubens and Vincke (1985)).
Given such a function g define t(g(a), g(b)) = T(a, b). The valued relation T being upper
diagonal stepped, it is easy to prove that t is a well-defined real-valued function on
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g[A]xg[A], has the required monotonicity property and is such that t(g(a), g(a)) = 0, for all a
[0 A (for details see theorems 1 and A in Fishburn (1973)). O

Following the terminology used in Doignat al. (1986), a valued relation satisfying the
conditions of lemma 1 will be calledstrict linear semiordered valued relatipar, more
briefly, avalued strict semi-orderMore general forms of linearity and closely related
definitions and results can be found in Doigmaral. (1986). This paper also gives many
references and a thorough historical background on the subject.

Definition 4. Let & be a set of crisp relations on a finite set A. The valued relation T on A
is said to beepresentablén & if there is a functioh from & into [0 ; 1] such that:

S oK) = 1
KOK
for which:
T(a b) = 5 ¢(K)OK(a b), Oa bOA.

KTK
From lemma 1, we know that relation&C are "convex mixtures" of upper diagonal
stepped relations.e., valued strict semi-orders. We proceed by showing that valued strict
semi-orders are particular convex mixtures of element6f, i.e. crisp strict semi-orders.
Lemma 2. Let T be a crisp relation on a finite set A. The relation T is upper diagonal
stepped if and only if TI SSOA.

Proof. Results immediately from the classical properties of strict semi-orderg.gee,
Fishburn (1970) or Roubens and Vincke (1985).n

Lemma 3. Let T be a valued relation on a finite set A. If T is upper diagonal stepped then it
is representable iSO A.

Proof. Since A is finite and T is upper diagonal stepped, it takes at most m(m-1)/2 strictly
positive values. These m(m-1)/2, non-necessarily distinct, strictly positive are such that:
O<arsg2<...<gm(m-1)/2< 1. Let g* = 1 - gn(m-1)/2

Foranyi=1, 2, ..., m(m-1)/2, define the crisp relatipmiT A letting, for all a, ] A:

aTib e T(a, b)>q. Since T is upper diagonal stepped, it is easy to see thaupper
diagonal stepped, for i =1, 2, ..., m(m-1)/2. Thus, we know from lemma 2, ihat T
SSOA. Let T* be the (crisp) empty relation on ie. the relation such that Not(a T* b), for

all a, b0 A. It is clear that T SSCA.

Define a functiorp from SSC p into [0 ; 1] letting, for all WO SSOA:

Mm* ifW=T*

Ryifw=T,

-G if W=T, fori = 2,3, ..., m(m-1)/2

FD otherwise.

o(W) =

It is easy to see that:
S oW) =1

W 0SS0,
and that, with this function, T is representabl&#{ A. O
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Simple examples show that the converse of lemma 3 not true. Combining lemmas 1, 2 and 3
allows for a first characterization of the element§8€, showing that a valued relation is a
convex mixture of valued strict semi-orders if and only if it is a convex mixture of crisp strict
semi-orders.

Proposition 2.

Let P be a valued relation on a finite set A. Thén@SCa if and only if it representable in

the setSS0 A of all strict semi-orders on A.

Proof.

a) [P is representable BS0A O POGSCA] LetK ={T1, T2, ..., Ty} be the set of all

strict semi-orders T i#S0 A such thath(T) > 0 (since A is finite so i§SC and, hence,

K). The set A being finite, for anyjTi = 1, 2, ...,£, there is (seeg.g, Roubens and
Vincke (1985)) a functionjufrom A intol such thatd a, b0 A, [a Tj b] = [uj(a) > y(b)

+ 1].

Consider a "situation" involving criteria and let:

ki =¢(Ti), g = U, ti(x, y) = 1if x >y + 1 and O otherwise. It is obvious that applying the
GSC method to this "situation” leads to P.

b) [POGSCA O P is representable S50 A]. To prove that P is representableSifiC A,

it is sufficient to prove that the relations defined p{aPb) = t(gi(a), d(b)), O a, b A, are
representable idSC A, since P is a convex mixture of the relatiopsfPom lemma 1, we
know that the relationsjRre upper diagonal stepped and the use of lemma 3 completes the
proof. O

We already know that PROMETHEE is a particular case of the GSC method. The above
proof shows that if a valued relation is representdbl@, it can be obtained as the result of
PROMETHEE since the functiongx, y) used in the proof of proposition 2 only depend on

X - y. Thus, a valued relation can be obtained with the GSC method if and only if it can be
obtained with PROMETHEE

Consider now the "Generalized Large Concordance” method (GLC) which is identical to
GSC except that it uses functiorjsstich thatij{x, xX) = 1. The concordance part of
ELECTRE Ill is obviously a particular case of the GLC method. The immediate
transposition of proposition 2 and the preceding remark to this case shows the equivalence of
the following three propositions:

— R can be obtained with the GLC method,

— R can be obtained as a concordance relation in ELECTRE llI,

— Risrepresentable i p, the set of all semi-orders on A.

[11-2. " Generalized Concordance” and binary choice probabilities.

2 This does not imply that any t-g relation can be obtained with PROMETHEE witlyle criterion,i.e.
with a function t depending only on the difference g(a) - g(b). On this point see Marchant (1995).
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Proposition 2 leads us to study the conditions for a valued relation to be representable in the
setSS0 of strict semi-orders. Observe that irreflexivity is clearly a necessary condition for
the representation in any set of irreflexive crisp relations and, th&sGh In the rest of

this subsection, we therefore concentrate on conditions between "off-diagonal” elements.
Before turning to the representation problen®&{, let us recall that the characterization of
valued relations representable in theS£€ of strict linear orders (notice that, apart from
reflexivity conditions, this problem is equivalent to that of the representatifbf Jrhas
received much attention in literature in which it is known as the "binary choice probabilities”
problem (among the numerous papers dealing with that problem, dating back to the early
fifties, let us mention the recent contributions of Cohen and Falmagne (1990), Dridi (1980),
Fishburn (1987 and 1990), Fishburn and Falmagne (1989), Gilboa (1990), Gilboa and
Monderer (1992), Koppen (1995) and Suck (1992); Fishburn (1992) offers an excellent
survey of the available results). This is a difficult problem. Apart from the trivial irreflexivity
requirement, it amounts to characterizing the set of all facets of a polyhedk&m(-1)

having F£0| = m! vertices. We will not try here to give an exhaustive survey of the
important and complex literature on the subject. We will just mention a few points that are
important for our purposes.

Let P be a valued relation on A. Consider the following conditions, for all distinct &j b, c

A

P(a, b) + P(b, a) =1 and (1)

P(a, b) + P(b, cx 1 + P(a, ¢). 2

Since a strict linear order is weakly complete, asymmetric and transitive, the necessity of (1)
and (2) for the representability of PSC follows. Let us notice that (2) is a necessary
condition for the representation in any set of transitive crisp relagogsi¢/C, Siv/0, S10

or S7). Condition (2) is more often presented under the form of the "triangle inequality":
P(a, b) + P(b, c: P(a, c). (2)

which, together with (1), is equivalent to (2).

Together with irreflexivity, conditions (1) and (2) are known to be sufficient for the
representation i £C when m< 5 (see Dridi (1980) and Fishburn (1987)). They are no
more sufficient as soon asab6 as shown by the following well-known example (seg,

Dridi (1980) or Gilboa (1990); Dridi (1980) offers a whole family of such examples):
Pl a|b c | d e | f

0O |2 |12 1 1 |12
V2| 0 (V2| 1 |V2)| 1
V2|12 0 |2 1 1

0| 0 |1/2] O |1/2]|1/2

0 |1/2| O |1/2| O |1/2
/2| 0 | 0 |1/2|1/2| O

D |Q|(O|T|D
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Routine verification shows that P is irreflexive and satisfies (1) and (2). It is not
representable i £C0 however. This is shown observing that strict linear orders T can be
used to represent P only if they are such that:

aTd,aTe,bTd,bTf,cTeandcTHf, 3)

Any strict linear order T satisfying (3) can include at most one of the following relations: f T
a,eTbanddTc. Thus, it is impossible to have at the same time P(f, a) = 1/2, P(e, b) =
1/2 and P(d, c) = 1/2.

It is known that ndinite set of necessary and sufficient conditions can guarantee the
representation of a relationdC for all m (see Fishburn (1990) or Fishburn and Falmagne
(1989)). Such conditions exist for each value of m however. The discovery of such condi-
tions for m = 6, 7, ... is an open — and difficult — problem (Fishburn (1992) mentions a
recent result, obtained by enumeration, of G. Reinelt giving such conditions for m = 6).

The preceding remarks lead us for the representation probléh¥ihto consider the
following conditions, for all distinct a, b,[C A:

P(a, b) + P(b, & 1 and (1)

P(a, b) + P(b, cx 1 + P(a, ¢). 2

Together with irreflexivity, their necessity for the representatia®d@’ is obvious (notice

that in presence of (i1 (2) is no more equivalent to (2)). Since they are also necessary for
the representation in any set of asymmetric and transitive relaap&10 or SPQ0), we

have good reasons to believe that they are not sufficient as soon as m is large iemough (
when m= 4, since in that case there are asymmetric and transitive relations which are not

strict semi-orders). The following example shows that this is indeed the case:
Pla|b|c|d

a| 0|0 |V2 12
b| 0|0 |20
c|O0|VY2| 0 |12
d | V2] 0| 0|0

It is obvious to see that P is irreflexive and satisfi®saidd (2). Suppose that P is represen-
table inSSC. The sum of the "weights(T) of the strict semi-orders T for which b T ¢ has

to be 1/2. For these strict semi-orders it is impossible to have ¢ T d since transitivity would
imply b T d. The sum of the weights of the strict semi-orders for which ¢ T b has to be 1/2.
For these strict semi-orders it is impossible to have a T ¢ since transitivity would imply a T
b. If P is representable S0, it has to be representable using only two families of strict
semi-orders that are respectively such that:

bTc,aTcand

cTh,cTd.

No strict semi-order of the first family can have d T a because transitivity would imply d T c.
Butd T a is also impossible in the second family since transitivity would lead to ¢ T a. We
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have thus shown that P cannot be represent8dih

Let us notice that the preceding argument only makes use of the transitivity of the elements of
SS80. Thus this example shows that)(dnd (2) together with irreflexivity are not sufficient

for the representability of P in any set of asymmetric and transitive crisp relations as soon as
m= 4,e.g.570 or SPQ). A tedious but simple proof shows that) @nd (2) together with
irreflexivity are sufficient for the representationd®C' when m = 3. We do not reproduce it
here.

The preceding remarks lead us to believe that the problem of the characterization of the
elements i;SC is not easier than the "binary choice probabilities” problem as soon as m is
moderately large. In view of the preceding example with m = 4, we will not, in this paper,
pursue any further in that direction. We conclude this section with two remarks.

i) Not having a simple characterizationFC for all values of m is an incentive to try to
directly infer from proposition 2 a number of useful properties of this set. In particular, if we
choose the functiong and the weightsijlso as to be rational, every relation B¥C can be
interpreted as the summary of an "election” in which each voter would indicate her
preference for the elements of A through a strict semi-order. The values P(a, b) in this
context represent the percentage of voters having declared that "a is strictly preferred to b".
For instance, in such a context, the "net flow" exploitation technique used in PROMETHEE
Il is equivalent to ranking alternatives according to Borda's rule. This simple analogy can
easily be exploited to transfer in our context many useful results in Social Choice Theory
concerning the characterization of choice or ranking procedures (concerning Borda's rule see
Young (1974), Hansson and Sahlquist (1976) and Debord (1987, 1993)). Such
transpositions are often self-evident since most results of this type in Social Choice Theory
are valid whenever the "voters" have (strict) preferences included in any set of relations
containing the set of strict linear ordéf£C. Bouyssou (1993) offers examples of such
transpositions.

ii) The absence of simple characterization of the elemenis>@f does not facilitate the
analysis of exploitation techniques to be coupled with the GSC method when the above-
mentioned analogy cannot be used. The following very simple proposition might be helpful
to quickly eliminate "bad" exploitation techniques.

Proposition 3. Let P be an irreflexive valued relation on A. We have:
> Plab) <10 POGSCh.
ablOA

Proof. Given proposition 2, we only have to show that P is representahiin. For all
distinct a, blJ A, consider the crisp relatiorggon A such that, for all ¢, d A, ¢ Papd =
[c = aand d = b]. It is clear from lemma 2 that, for all distinct &, A, Pap 0 SSCA.
Since

Y Pab)<1

ablA
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and P is irreflexive, it is obvious that P is representabledi@' o using the relations g
with the weights P(a, b) and the strict semi-order corresponding to the empty relation on A

with the weight:
1- Z P(ab).
ablA []
Since most exploitation techniques give a similar result when applied to P or when applied to
a relation Q such that QaP,a [ ]0 ; 1[, this proposition might prove useful in building
"counter-examples" for exploitation techniques to be coupled with the GSC method.

V- Conclusion.

These few remarks concerning the construction and exploitation of outranking relations leave
many important questions open. We mention here what we consider to be interesting
directions for future research.

We already mentioned that propositions 1 and 2 were far from exhausting all the links
between construction and exploitation techniques that would be interesting to investigate in
order to obtain a good "interface" between them. The problem of the interpretation of
"valuations" in methods leading to valued outranking relations and its corollary in terms of
"admissible operations" on these valuations remains widely open. A profitable line of
research would consist in trying to entirely characterize and/or analyze a pair consisting of a
method of construction and a method of exploitation. In the valued case, it seems that only
such an analysis would settle the already-mentioned questions of the "interpretation of the
valuations" and of the "admissible operations" on them.

Concerning the characterization of outranking relations that can be obtained with a given
construction method, many questions are still pending. We already noticed some open
interesting combinatorial problems concerning proposition 1. Moreover a lot of work
remains to be done in order to go beyond proposition 2. Fishburn (1987) mentions a long
list of open problems concerning the problem of representability. To this list we can add the
ones mentioned in section 3-2: problem of the representation in the set of strict semi-orders,
strict interval orders and strict partial orders when #n
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