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Abstract

The notion of concordance is central to many multiple criteria techniques relying
on ordinal information, e.g. outranking methods. It leads to compare alternatives
by pairs on the basis of a comparison of coalitions of attributes in terms of “im-
portance”. This paper proposes a characterization of the binary relations that can
be obtained using such comparisons, within a general framework for conjoint mea-
surement that allows for intransitive preferences. We show that such relations are
mainly characterized by the very rough differentiation of preference differences that
they induce on each attribute.
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1 Introduction

A classical problem in the field of decision analysis with multiple attributes is
to build a preference relation on a set of multi-attributed alternatives on the
basis of preferences expressed on each attribute and “inter-attribute” infor-
mation such as weights. The classical way to do so is to build a value function
that aggregates into a real number the evaluations of each alternative on the
set of attributes (see French, 1993; Keeney and Raiffa, 1976). The construction
of such a value function requires a detailed analysis of the tradeoffs between
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the various attributes. When such an analysis appears difficult, one may resort
to techniques for comparing alternatives that have a more ordinal character.
Several such techniques, the so-called outranking methods, were proposed by
B. Roy (for presentations in English, see Bouyssou, 2001; Roy, 1991, 1996;
Vincke, 1992, 1999). Most outranking methods use the notion of concordance.
It leads to compare alternatives by pairs on the basis of a comparison of coali-
tions of attributes in terms of “importance”. Such pairwise comparisons do
not lead to preference relations having nice transitivity properties (Bouyssou,
1996). These relations, henceforth called concordance relations, are therefore
quite distinct from the transitive structures usually dealt with in conjoint mea-
surement (Krantz, Luce, Suppes, and Tversky, 1971; Roberts, 1979; Wakker,
1989).

The aim of this paper is to propose a characterization of concordance rela-
tions within a general framework for conjoint measurement allowing for in-
complete and/or intransitive relations that was introduced in Bouyssou and
Pirlot (2002b). It will turn out that, within this framework, the main dis-
tinctive feature of concordance relations is the very rough differentiation of
preference differences that they induce on each attribute. Our results extend
to the case of—possibly incomplete—reflexive preference relations (interpreted
as “at least as good as” relations), the results proposed in Bouyssou and Pirlot
(2002a,c) for asymmetric relations (interpreted as “strict preference”). Pirlot
(1997) proposes an alternative approach to the analysis of concordance rela-
tions that is not based on a conjoint measurement model.

The paper is organized as follows. Section 2 introduces our main definitions
and notation. Concordance relations are defined and illustrated in section 3.
Section 4 characterizes concordance relations within our general framework
for conjoint measurement. A final section compares our results with other ap-
proaches to concordance relations and presents directions for future research.
All proofs are relegated in appendix.

2 Definitions and Notation

A binary relation R on a set A is a subset of A x A; we write a R b instead
of (a,b) € R. A binary relation R on A is said to be:

reflexive if [a R al,

complete if [a R b or b R al,

symmetric if [a R b] = [b R al,

asymmetric if [a R b] = [Not[b R a]],

transitive if [a R b and b R ¢] = [a R ¢,

Ferrers if [([a R band ¢ Rd) = (a RdorcRD),



o semi-transitive if [(a R band bR ¢) = (a Rd or d R ¢)]
for all a,b,c,d € A.

A weak order (resp. an equivalence) is a complete and transitive (resp. reflex-
ive, symmetric and transitive) binary relation. If R is an equivalence on A,
A/R will denote the set of equivalence classes of R on A. An interval order
is a complete and Ferrers binary relation. A semiorder is a semi-transitive
interval order.

In this paper =~ will always denote a reflexive binary relation on a set X =
[T, X; with n > 2. Elements of X will be interpreted as alternatives evalu-
ated on a set N = {1,2,...,n} of attributes and - as an “at least as good
as” relation between these alternatives. We note > (resp. ~) the asymmetric
(resp. symmetric) part of Z. A similar convention holds when >~ is starred,
superscripted and/or subscripted.

For any nonempty subset J of the set of attributes N, we denote by X,
(resp. X_) the set [[;c s Xi (resp. [1;¢; Xi). With customary abuse of notation,
(x7,y_s) will denote the element w € X such that w; = z; ifi € J and w; = y;
otherwise. When J = {i} we shall simply write X_; and (z;,y_;).

Let J be a nonempty set of attributes. We define the marginal preference - ;
induced by =~ on X letting, for all z;,y; € X,

xymgys it (zg,2-0) 75 (yg,2—y), forall z_; € X_j.
When J = {i} we write 7Z; instead of 2.

If, for all x;,y; € Xy, (xvy,2-5) 2 (ys,2_y), for some z_; € X_; implies
xy 2y Ys, we say that 2~ is independent for J. If 77 is independent for all
nonempty subsets of attributes we say that 7~ is independent. It is not difficult
to see that a binary relation is independent if and only if it is independent
for N\ {i}, for all i € N (Wakker, 1989). A relation is said to be weakly
independent if it is independent for all subsets containing a single attribute;
while independence implies weak independence, it is clear that the converse is

not true (Wakker, 1989).

We say that attribute i € N is influent (for 27) if there are x;, y;, z;, w; € X; and
x_i,y—;i € X_;such that (x;, z_;) = (y;, y—;) and Not[ (z;, x_;) 7= (wy,y—;) ] and
degenerate otherwise. It is clear that a degenerate attribute has no influence

whatsoever on the comparison of the elements of X and may be suppressed
from N.

We say that attribute i € N is weakly essential for 2~ (resp. essential) if
(xi,a_;) = (yi,a_;), for some z;,y; € X; and some a_; € X_; (resp. if >; is not



empty). For a weakly independent relation, weak essentiality and essentiality
are equivalent. It is clear that an essential attribute is weakly essential and that
a weakly essential attribute is influent. The reverse implications do not hold.
In order to avoid unnecessary minor complications, we suppose henceforth
that all attributes in N are influent. This does not imply that all attributes
are weakly essential.

3 Concordance relations

3.1 Definition

The following definition, building on Bouyssou and Pirlot (2002a) and Fargier
and Perny (2001), formalizes the idea of a concordance relation, i.e. a prefer-
ence relation that has been obtained comparing alternatives by pairs on the
basis of the “importance” of the attributes favoring each element of the pair.

Definition 1 (Concordance relations). Let 7~ be a reflezive binary relation
on X = J[, X;. We say that = is a concordance relation (or, more briefly,
that - is a CR) if there are:

e a complete binary relation S; on each X; (i = 1,2,...,n),

e a binary relation > between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e. for all A, B,C, D C N such that AU B = N and
CUD=N,

[A>B,CDOABDOD|=CD> D, (1)

such that, for all z,y € X,

v Zy e Sry) &Sy, ), (2)
where S(z,y) = {i € N : z; S; y;}. We say that (&>, S;) is a representation of
”.

Hence, when 7~ is a CR, the preference between x and y only depends on
the subsets of attributes favoring = or y in terms of the complete relation 5;.
It does not depend on “preference differences” between the various levels on
each attribute besides the distinction between levels indicated by S;. As shown
below, although our definition imposes a comparison between two coalitions
of attributes in order to decide whether or not x is at least as good as vy, it is
sufficiently flexible to include the case in which x is declared at least as good

as y as soon as the attributes in S(z,y) are “sufficiently” important, as in
ELECTRE I (see Roy, 1968).



Let 22 be a CR with a representation (&>, S;). We denote by I; (resp. P;) the
symmetric part (resp. asymmetric part) of S;. We define the relations =, >
and 1 between subsets of N having N for union letting, for all A, B C N
such that AUB =N, A2 B& [A>Band B> A, A> B & [AD>
B and Not[B> A]], A B < [Not| A> B| and Not| B> Al].

The following lemma takes note of some elementary properties of concordance
relations; it uses the hypothesis that all attributes are influent.

Lemma 2. If 77 is a CR with a representation (>, 5;), then:

(1) for alli € N, P; is nonempty,

(2) for all A,B C N such that AU B = N ezactly one of A> B, B> A,
A2 B and A B holds and we have N £ N,

(3) for all AC N, N> A,

(4) N> 2,

(5) 7 is independent,

(6) = is marginally complete, i.e., for all i € N, all x;,y; € X; and all
ai € Xy, (wi,a-) Z (Yi,a—i) or (ys,a—i) Z (w5, a),

(7) for alli € N, either 7; = S; or x; ~; y; for all x;,y; € X,

(8) 7= has a unique representation.

PROOF. See appendix.

We say that a CR 7 is responsive if, for all A C N, [A # @] = N > N\ A. As
shown by the examples below, there are CR that are not responsive. It is not
difficult to see that a CR is responsive if and only if all attributes are (weakly)
essential on top of being influent. This implies ~; = S;. This shows that in
our nontransitive setting, assuming that all attributes are (weakly) essential
is far from being as innocuous an hypothesis as it traditionally is in conjoint

measurement.

The main objective of this paper is to characterize CR within a general frame-
work of conjoint measurement, using conditions that will allow us to isolate
their specific features.

Remark 3. In most outranking methods, the concordance relation is mod-
ified by the application of the so-called discordance condition (Roy, 1991).
Discordance amounts to refuse to accept the assertion x 77 y when y is judged
“far better” than x on some attribute. This leads to defining a binary relation
Vi € P, on each X; and to accept the assertion x 7~ y only when (2) holds
and it is not true that y; V; x;, for some j € N. Our analysis does not take
discordance into account.



3.2 FExamples

The following examples show that CR arise with a large variety of ordinal
aggregation models that have been studied in the literature.

Example 4 (Simple Majority preferences (Sen, 1986)). The binary
relation - is a simple majority preference relation if there is a weak order S;
on each X; such that:

rmys i €Nz S;yt| > |{i € Ny Si v} .

A simple majority preference relation is easily seen to be a CR defining >
letting, for all A, B C N such that AUB = N,

A B |Al > B

It is easy to see that 7~ is complete but that, in general, neither >~ nor > are
transitive. This CR is responsive. For all A, B C N such that AUB = N, we
have either A> B or B > A.

Example 5 (ELECTRE I (Roy, 1968, 1991)). The binary relation - is
an ELECTRE I preference relation if there are a real number s € [1/2;1] and,
for all i € N,

e a semiorder S; on X;,
e a positive real number w; > 0,

such that, for all z,y € X,

2ieS(ay) Wi >

Ty S
> jeN Wj

An ELECTRE 1 preference relation is easily seen to be a CR defining >
letting, for all A, B C N such that AUB = N,

> icA Wi
ZjeN w;

A> B &

Such a CR may not be responsive. It may well happen that, for some A, B C N
such that AUB = N, neither A> B nor B> A, i.e. A< B. The importance
relation > is such that, for all A, BC N, A> B= AD> N. Simple examples
show that, in general, >~ is neither complete nor transitive. It may happen
that > is not transitive and has circuits.

Example 6 (Semiordered weighted majority (Vansnick, 1986)). The
binary relation 7~ is a semiordered weighted majority preference relation if
there are a real number € > 0 and, for all 2 € N,



e a semiorder S; on X;,
e a real number w; > 0,

such that:
T Y& Z w; > Z w; — €.
1€5(z,y) j€S(y,x)
An additive weighted majority preference relation is easily seen to be a CR
defining &> letting, for all A, B C N such that AUB = N:

AP B& Y w > ) w;—e.

i€A jeB

The relation 2 may not be transitive (the same is true for >). It is always
complete. Unless in special cases, this CR is not responsive. Clearly, for all
A, B C N such that AU B = N, we have either A> B or B > A.

4 A characterization of concordance relations
4.1 Concordance relations without attribute transitivity

Our general framework for conjoint measurement tolerating intransitive and
incomplete relations is detailed in Bouyssou and Pirlot (2002b). We briefly
recall here its main ingredients and its underlying logic. It mainly rests on
the analysis of induced relations comparing preference differences on each
attribute. The importance of such relations for the analysis of conjoint mea-
surement models is detailed in Wakker (1988, 1989).

Definition 7 (Relations comparing preference differences). Let 2= be
a binary relation on a set X = [, X;. We define the binary relations 2~} and
= on X? letting, for all zy, y;, 2;, w; € X,

(i, yi) Zi (i, wi) &
[fOI‘ all a_;, b_z‘ < X_i, (Zz', CL_Z'> i‘/ (wi, b_z) = (IZ‘, Cl_i) ?\: (yz, b_z>]

(@i,95) 23" (z0,wi) & (20, 90) Zi (20,wi) and (wi, 2i) Z5 (g, %))

The definition of 7=f suggests that (x;,y;) 7ZF (2, w;) can be interpreted as
saying that the preference difference between x; and y; is at least as large as the
preference difference between z; and w;. Indeed, as soon as (z;, a_;) 22 (w;, b—;),
(i, y5) Z=F (25, w;) implies (x;,a_;) 7= (yi,b—;). The definition of 7 does not
imply that the two “opposite” differences (x;,y;) and (y;, z;) are linked. This is
at variance with the intuition concerning preference differences and motivates

the introduction of the relation 7Z;*. We have (z;,y;) = (2, w;) when we

~Jl



*

have both (x;,y;) =5 (2, w;) and (w;, ;) =5 (yi, x;). By construction, 7i* is

~1 ) ~IL
T@U@T’Sibl@, Le. (.Z’“ yz) i:;,k* (Zla wz) <~ (w27 Zl) i:;,k* (yla IZ)

The asymmetric and symmetric parts of 7} are respectively denoted by >}

~JT
and ~7, a similar convention holding for 77*. By construction, »~F and 7;* are
reflexive and transitive. Therefore, ~

(2 ? ~1
¥ and ~!* are equivalence relations (the

hypothesis that attribute ¢ € N is influent meaning that ~7 has at least two

distinct equivalence classes). It is important to notice that 2Zf and 22 may

not be complete. As will be apparent soon, interesting consequences obtain

when this is the case.

We note below a few useful connections between ZF, 2~ and 7.

~1 )~

Lemma 8.

(1) 7 is independent if and only if (x;,z;) ~5F (yi,yi), for all i € N and all
T, Y € Xi.
(2) For all z,y € X and all z;,w; € X;,

*

(v 2y and (2, w;) Z7 (i, yi)] = (zi,2-0) Z (wiy y—i), (3)
[(ziyw;) ~F (zi,y;), foralli e N =[x Zy < 22wl (4)

PROOF. See Bouyssou and Pirlot (2002b, lemma 3).

We now introduce two conditions, taken from Bouyssou and Pirlot (2002b),
that will form the basis of our framework for conjoint measurement. Their
main role is to ensure that 277 and 277" are complete.

Definition 9 (Conditions RC'1 and RC2). Let = be a binary relation on
a set X =TI["; X;. This relation is said to satisfy:

RC1; if
(ziya—s) Z (yi, b-s) (zi,c-i) Z (yi, d )
and = or
(2zi,c24) Z (wi, dy) (zi,a-3) Z (wi, by),
RC2; it
(wi,a-3) 2 (yi,b-4) (zi,a_q) 2 (wi, b_y)
and = or
(Y, c—i) Z (i, d ) (wi, ci) 2 (zi,d ),

for all x;, y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X_;. We say that = satisfies
RC1 (resp. RC?2) if it satisfies RC'1; (resp. RC2;) for all i € N.

Condition RC1; (Asymmetric inteR-attribute Cancellation) strongly suggests
that, wrt the relation 7Zf, either the difference (z;,y;) is at least as large as the



difference (z;, w;) of vice versa. Indeed, suppose that (x;,a_;) = (v;,b_;) and
(zi,¢-4) = (wy, d_;). If the preference difference between z; and wj is at least as
large as the difference between x; and y;, we should obtain (z;,a_;) 77 (w;, b_;).
Similarly, if the preference difference between z; and y; is at least as large as the
preference difference between z; and w;, we should obtain (z;,c_;) == (y;, d_;).

This is precisely what RC1; says.

Condition RC?2; suggests that the preference difference (z;,y;) is linked to
the “opposite” preference difference (y;, z;). Indeed, it amounts to saying that
either the preference difference between x; and y; is at least as large as the
preference difference between z; and w; or that the preference difference be-
tween w; and z; is at least as large as the preference difference between y; and
x;. Taking z; = vy;, 2; = w;, a_; = c_; and b_; = d_; shows that RC2; implies
that - is independent for N \ {i} and, hence, independent.

The following lemma summarizes the main consequences of RC'1 and RC2 on
2 and 2.

Lemma 10.

(1) RC1; < [7oF is complete],
(2) RO2; &

[for all z;,y;, zi, w; € Xy, Not[ (x4, y:) 725 (zi,wi) | = (v, x) 725 (wy, 2)],
(3) [RC1; and RC2;] < [7ZF* is complete].

(4) In the class of reflexive relations, RC1 and RC?2 are independent condi-
tions.

PROOF. See Bouyssou and Pirlot (2002b, lemmas 1 and 2).

We envisage here binary relations - on X that can be represented as:

x i Y <= F(p1(331,y1),p2(332,y2), s >Pn($n>yn)) >0, (M)

where p; are real-valued functions on X? that are skew symmetric (i.e. such
that p;(z;, vi) = —pi(yi, z;), for all x;,y; € X;) and F is a real-valued function
on [T, pi(X?) being nondecreasing in all its arguments and such that, abusing
notation, F'(0) > 0. The following lemma takes note of a few properties of
binary relations satisfying model (M).

Lemma 11. Let 77 be a binary relation on X =[], X; that has a represen-
tation in model (M). Then:

(1) 7 is reflexive, independent and marginally complete,
(2) [ZE, =i Ui, for allv e J C N] = [l‘J ~J yJ],



(3) 7 satisfies RC1 and RC2.
PROOF. See Bouyssou and Pirlot (2002b, proposition 1 and lemma 2).

The conditions envisaged above allow us to completely characterize model (M)
when, for all i € N, X?/~#* is finite or countably infinite.

Theorem 12. Let 7 be a binary relation on X = [[I_, X;. If, for alli € N,
X2/~ is finite or countably infinite, then 7~ has a representation (M) if and
only if it is reflexive and satisfies RC'1 and RC2.

PROOF. See Bouyssou and Pirlot (2002b, theorem 1).

Remark 13. It should be noticed that the framework offered by model (M)
is quite flexible. It is not difficult to see that preference relations that have a
representation in the additive value model (see Fishburn, 1970; Krantz et al.,

1971; Wakker, 1989):

n

Dy ey uilz) > uily), (U)
i=1 i=1
(where u; is a real-valued function on X;), or the additive difference model
(see Fishburn, 1992; Tversky, 1969):

T Y e iq’i(uz‘(%’) — ui(yi)) = 0, (ADM)

=1

(where ®; is increasing and odd), are all included in model (M). We show
below that model (M) also contains all CR.

Remark 14. Following Bouyssou and Pirlot (2002b), it is not difficult to ex-
tend theorem 12 to sets of arbitrary cardinality adding a, necessary, condition
implying that the weak orders 777 have a numerical representation. This will
not be useful here. We also refer the reader to Bouyssou and Pirlot (2002b) for
an analysis of the, obviously very weak, uniqueness properties of the numeri-
cal representation in theorem 12. Let us simply observe here that the proof of
theorem 12 shows that if 77 has a representation in model (M), it always has
a regular representation, i.e. a representation such that:

(l‘i, yi) i‘,f* (mez‘) < pi(l’z‘; yz) > pi(Zi, wz‘)- (5>

Although (5) may be violated in some representations, it is easy to see that
we always have:

*k

(i, yi) =7 (zi,wi) = pi(@i, yi) > pizi, wi). (6)

10



When an attribute is influent, we know that there are at least two distinct
equivalence classes of ~*. When RC1; and RC2; hold, this implies that 77!*
must have at least three distinct equivalence classes. Therefore, when all at-
tributes are influent, the functions p; in any representation of 2~ in model (M)

must take at least three distinct values.

Consider a binary relation 77 that has a representation in model (M) in which
all functions p; take at most three distinct values. Intuition suggests that such
a relation - is quite close from a concordance relation. We formalize this
intuition below.

The following two conditions aim at capturing the ordinal character of the ag-
gregation underlying CR and, hence, at characterizing CR within the frame-
work of model (M).

Definition 15 (Conditions UC and LC'). Let 77 be a binary relation on a
set X =[], X;. This relation is said to satisfy:

Uc; if
(zi,a-4) 22 (yi,b-4) (i, a—i) 2 (w4,b_5)
and = or
(Zz',C—i) ,ﬁ (wiad—i) (-’%C—i) i (yi,d—i),
LC; if
(zi,a-3) 22 (yi,b-3) (Yi,a—i) 2 (w4,b_5)
and = or
(yz‘,C—i) i (%‘,d—i) (Zi,C—z‘) ,ﬁ (wiad—i)y

for all z;, y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X_;. We say that - satisfies
UC (resp. LO) if it satisfies UC; (resp. LC;) for all i € N.

The interpretation of these two conditions is easier considering their conse-
quences on the relations 7~F and 7.

Lemma 16.

(1) UC; < [Not[ (yi, ;) ZF (xi,v:) | = (@iyyi) 25 (zi,wy), for all @i, yi, 2, w; €

XZ] ~1
(2) LC; & [NOt[(yu%) = (%,yi)] = (Ziawi) = (yhxi)v for all x;,y;, 2, w; €
Xi].

(4) [RC2;,UC; and LC;] = [~F* has at most three equivalence classes].
(5) In the class of reflexive relations, RC2, UC and LC are independent
conditions.
(6) [RC2;,,UC;, LC;] = all x;,y; € X; such that (x;,y;) =i (yi,y:) satisfy
one and the same of the following:
L (i, y:) =7 (Wi vi) =7 (Yir 32),
1L (@i, y:) =5 (yi, i) and (yi, yi) ~7 (v, @),

11



HI (xi,9:) ~7 (Wi vi) and (Ys, i) =7 (Yi, i)

PROOF. See appendix.

Hence, condition UC" amounts to saying that if a preference difference (y;, x;)
is not larger than its opposite (x;,y;), it is the smallest possible preference
difference in that every other preference is at least as large as (y;, ;). Condition
LC' has an obvious dual interpretation.

Together with RC?2;, conditions UC; and LC; imply that 77! has at most
three equivalence classes, that RC'1; holds and that each attribute has type I,
IT or IIT as defined in part 6. In presence of RC2, these two conditions seem
to adequately capture the ordinal character of the aggregation at work in a
CR. Indeed, when RC?2, LC' and UC hold, a preference difference is either
“positive”, “null” or “negative”; there is no possibility to further differentiate
the size of preference differences. When an attribute has type I, it has the
above three distinct types of preference differences. For type II attributes, it
is only possible to distinguish between positive and nonpositive differences. For
type III it is only possible to distinguish negative and nonnegative differences.

The following lemma shows that all CR satisfy UC' and LC' while having a
representation in model (M).

Lemma 17. Let 77, be a binary relation on a set X = [ X;. If 7~ is a CR
then,

(1) 7 satisfies RC'1 and RC?2,
(2) = satisfies UC and LC.

PROOF. See appendix.

We are now in position to present our general characterization of CR.

Theorem 18. Let 7 be a binary relation on X = I[1* X;. Then = is a CR
iff it is reflexive and satisfies RC2, UC and LC.

PROOF. See appendix.

Remark 19. An easy corollary of the above result is that a binary relation is
a CR if and only if it has a representation in model (M) in which all functions
p; take at most three distinct values.

12



4.2 Concordance relations with attribute transitivity

Our definition of CR relations in section 3 does not require the relations .5;
to possess any remarkable property besides completeness. This is at variance
with what is done in most ordinal aggregation methods (see the examples in
section 3.2). We show here how to characterize CR with all relations S; being
semiorders. Our results are easily extended, using conditions introduced in
Bouyssou and Pirlot (2003), to cover the case in which all relations S; are
weak orders.

We first show, following Bouyssou and Pirlot (2003), how to introduce a linear
arrangement of the elements of each X; within the framework of model (M).

Definition 20 (Conditions AC1, AC2 and AC3). We say that 7 satisfies:

AC1T; if
Ty (zi,75) Z Y
and = or
Z 7w (4, 2-4) 7o w,
AC2; if
Ty x 7 (wi,y—i)
and = or
zZw 2 2 (yi, wi),
ACS3; if
2 7% (@i, a-) 2 7 (wiya)
and = or
(z3,b-5) Ty (wi, b_3) Z v,

for all z,y,z,w € X, all a_;,;b_; € X_; and all z;,w; € X;. We say that
satisfies AC1 (resp. AC2, AC3) if it satisfies AC'1; (resp. AC2;, AC3;) for all
1€ N.

These three conditions are transparent variations on the theme of the Fer-
rers (AC1 and AC2) and semi-transitivity (AC3) conditions that are made
possible by the product structure of X. The rationale for the name “AC” is
that these conditions are “intrA-attribute Cancellation” conditions. Condition
AC1; suggests that the elements of X; (instead of the elements of X had the
original Ferrers condition been invoked) can be linearly ordered considering
“upward dominance”: if z; “upward dominates” z; then (z;,c_;) 77 w entails
(xi,c—;) Z w. Condition AC2; has a similar interpretation considering now
“downward dominance”. Condition AC'3; ensures that the linear arrangements
of the elements of X; obtained considering upward and downward dominance
are not incompatible. The study of the impact of these new conditions on
model (M) will require an additional definition.
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Definition 21 (Linearity, Doignon et al. (1988)). Let R be a binary
relation on a set A%, We say that:

e R is right-linear iff [Not[ (b,c) R (a,c¢)] = (a,d) R (b,d)],

e R is left-linear iff [Not[(c,a) R (¢,b)] = (d,b) R (d,a)],

e R is strongly linear iff [Not[(b,c) R (a,c)] or Not[(c,a) R (c,b)]] =
[(a,d) R (b,d) and (d,b) R (d,a)],

for all a,b,c,d € A.
We have the following:
Lemma 22.

(1) AC1; & 7oF is right-linear.
(2) AC2; & =F is left—lmear
(3) AC3; < [Not[ (s, 2) =% (yi,2:)] for some z; € X; =
(wi, ;) 77 (Wi, y3), for all w; € X;].
(4) [AC1;, AC2; and AC3;] < 2 is strongly linear < 22F* is strongly linear.

(5) In the class of reflexive relations satisfying RC'1 and RC2, AC1, AC?2
and AC3 are independent conditions.

PROOF. See Bouyssou and Pirlot (2003, lemma 4).

We envisage binary relations 2~ on X that can be represented as:

2y Flo(ui(z),ui(yr)), - on(un(®n), un(yn))) = 0, (M*)

where u; are real-valued functions on X;, ¢; are real-valued functions on
u;(X;)? that are skew symmetric, nondecreasing in their first argument (and,
therefore, nonincreasing in their second argument) and F' is a real-valued
function on [ ¢;(u;(X;)?) being nondecreasing in all its arguments and
such that F'(0) > 0. We summarize some useful consequences of model (M*)
in the following:

Lemma 23. Let 7 be a binary relation on X = [[i-, X;. If 7 has a represen-
tation in (M*), then:

(1) it satisfies AC1, AC2 and AC3,
(2) for all i € N, the binary relation T; on X; defined by x; T; y; <

(i, i) =5 (4, ;) is a semiorder.

PROOF. See Bouyssou and Pirlot (2003, lemma 4).
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The conditions introduced so far allow to characterize model (M*) when each
X; is denumerable.

Theorem 24. Let 77 be a binary relation on a finite or countably infinite set
X =TI, Xi. Then = has a representation (M*) if and only if it is reflexive
and satisfies RC'1, RC2, AC1, AC2 and AC3.

PROOF. See Bouyssou and Pirlot (2003, theorem 2).

Remark 25. Note that, contrary to theorem 12, theorem 24 is only stated
here for finite or countably infinite sets X. This is no mistake: we refer to
Bouyssou and Pirlot (2003) for details and for the analysis of the extension of
this result to the general case.

Many variants of model (M*) are studied in Bouyssou and Pirlot (2003) in-
cluding the ones in which ¢ is increasing in its first argument (and, thus,
decreasing in its second argument) and F' is odd. Clearly, although model
(M*) is a particular case of model (M), it is still flexible enough to contain as
particular cases models (U) and (ADM). We show below that it also contain
all CR in which the relations S; are semiorders.

The following lemma shows that all CR obtained on the basis of semiorders
satisfy the conditions of model (M*).

Lemma 26. Let 77, be a binary relation on X = [, X;. If 77 is a CR with a
representation (>, S;) in which S; is a semiorder then - satisfies AC'1;, AC2;
and ACS3;.

PROOF. See appendix.

Although lemma 22 shows that, in the class of reflexive binary relations sat-
isfying RC'1 and RC2, AC1, AC2 and AC3 are independent conditions, the
situation is more delicate when we bring conditions UC and LC' into the
picture since they impose strong requirements on 77 and 7Z*. We have:

Lemma 27.
(1) Let 7 be a reflexive binary relation on a set X = I[;_, X; satisfying RC2,
UC and LC. Then = satisfies AC1; iff it satisfies AC2;.

(2) In the class of reflexive binary relations satisfying RC2, UC and LC,
conditions AC1 and AC3 are independent.

PROOF. See appendix.
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This leads to our characterization of CR in which all relations .S; are semiorders.

Theorem 28. Let 7 be a binary relation on X =[] X;. Then = is a CR
having a representation (&>, S;) in which all S; are semiorders iff it is reflexive
and satisfies RC2, UC, LC, AC1 and ACS3.

PROOF. See appendix.

Remark 29. An easy corollary of the above result is that a binary relation
on a finite or countably infinite set X is a CR with a representation (>, .S;) in
which all relations S; are semiorders if and only if it has a representation in
model (M*) in which all functions ¢; take at most three distinct values.

5 Discussion and Comments

A number of recent papers (see Dubois, Fargier, and Perny, 2002; Dubois,
Fargier, Perny, and Prade, 2001, 2003; Fargier and Perny, 2001; Greco, Matarazzo,
and Stowinski, 2001) have close connections with the results proposed here.
We briefly analyze them below and give possible directions for future research.

5.1 Relation to Greco et al. (2001)

Greco et al. (2001) have proposed a characterization of concordance relations
in which all attributes are of type III in the sense of lemma 16. Their anal-
ysis is based on a very clever condition limiting the number of equivalence
classes of 7ZF. We say that 27 is super-coarse on attribute i € N if, for all

Tiy Yiy Ziy Wiy Tiy Sy S Xl and all a*hb*iycfia d*i S X*i;

(w3, a-;) 7 (Y, b—i) (zi,c-4) 2 (Yi, d—s)
and = or
(zi,¢4) 22 (wiy dy) (riya—i) Z (si,b-4).

This condition is clear strengthening of RC'1;. It is not difficult to see that a
- is super-coarse on attribute i € N if and only if 77} is complete and ~} has
at most two equivalence classes.

Note however that super-coarseness, on its own, does not imply indepen-
dence. Therefore nothing prevents (x;,z;) and (y;,y;) from belonging to dis-
tinct equivalence classes of ~7. Greco et al. (2001) attain their aim, imposing,
on top of super-coarseness, a strong condition imposing at the same time in-
dependence and the fact that the null differences (z;, x;) belong to the first
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equivalence class of 7—f on each attribute. On top of super-coarseness, this
additional condition is necessary and sufficient to characterize concordance
relations in which all attributes are of type III. Since this additional condition
implies RC2, the results in Greco et al. (2001) are in the same spirit as ours
as they allows to characterize concordance relations within the framework of

the broader model (M).

Greco et al. (2001) have shown how to extend their characterization to cope
with discordance effects as in outranking methods. This is a major advantage
of their approach. This appears to be much more difficult within our framework
(note however that when discordance is introduced, it is clear that all relations
~** have at most 5 equivalence classes, see Bouyssou and Pirlot (2002a)). We
have no satisfactory answer at this time.

5.2 Relation to Fargier and Perny (2001)

Fargier and Perny (2001) (closely related results appear in Dubois et al. (2001,
2003) and Dubois et al. (2002) have proposed an alternative characterization
of CR. The central condition in this approach is a condition that extends
the “noncompensation” condition proposed in Fishburn (1975, 1976, 1978) to
reflexive relations. It says that, for all x,y, z,w € X,

(Z”")}:wgmzw], )

where = (z,y) ={it € Nz 7 y}.

The close relation between CR and noncompensatory preferences in the sense
of Fishburn (1976) was already noted in Bouyssou (1986, 1992) and Bouyssou
and Vansnick (1986).

Although condition (7) may seem an obvious way to pinpoint the ordinal
character of the ordinal aggregation at work in a CR and may look more
transparent than our conditions LC and UC, its use raises problems. Indeed,
as shown by the following two examples, it will be violated in CR in which
some attributes are not essential.

Example 30. Let X = R%. Let py = py = p3 = py = 1/4. For all i € N, let
S; = >. Consider the relation 77 on X defined by

rmyse Y pi>3/4
i € S(z,y)

It is easy to see that such a relation is a CR (see example 5 above).
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Observe that, for all ¢ € N, any two elements of X; are linked by ~;. There-
fore, for all x,y € X, we have = (z,y) = N. While all attributes are influ-

ent, none is essential. Now, we clearly have (10,10, 10,10) = (0,0,0,0) and
Not[(10,10,0,0) = (0,0,0,0)]. Hence, condition (7) is violated.

Example 31. Let X = R*. Let p; = py = p3 = ps = 1/4. For all i € N, let
S; = >. Consider the relation 7~ on X defined by

It is easy to see that such a relation is a CR (see example 6 above).

Observe that, for all i € N, any two elements of X; are linked by ~;. Therefore,
for all x,y € X, we have 77 (x,y) = N. While all attributes are influent, none
is essential. We clearly have (10, 10,10, 10) = (0,0,0,0) and Not[(0,0,0,0) =
(10,10, 10,0) |. Hence, condition (7) is violated.

Condition (7) uses the marginal relations 7Z; to model “ordinality”. The above
examples show that this is problematic as soon as one deals with CR in which
some attributes may not be essential. Our analysis amounts to using, instead
of 7Z;, an appropriately defined “trace” on each attribute (see Bouyssou and
Pirlot, 2003, for a detailed analysis of traces in models (M) and (M*)). In our
results, the central relation on each attribute is not ~—; but the relation T;
such that z; T; y; < (x;, i) =7 (i, ¥;). It may well happen that —; is trivial
while T} is not. The use of trace allows us to deal with all CR whether or
not attributes are essential. The price to pay for this is that, apparently, our

conditions may appear less transparent than conditions like (7).

The various characterizations of CR proposed in Fargier and Perny (2001)
and Dubois et al. (2002, 2001, 2003) all use condition (7) (called “ordinal
invariance”) or a strengthening of this condition incorporating a notion of
monotonicity (inspired from “neutrality and monotonicity” conditions used in
Social Choice Theory Sen (see 1986)). The above examples show that these
results do not characterize the class of all CR. It is not difficult to see that, in
fact, they characterize the class of CR in which all attributes are essential. Fur-
thermore, condition (7) appears to be very specific to concordance relations in
which all attributes are essential. In view of comparing concordance relations
with other types of relations, as is possible via models (M) and (M*), this
seems a serious defect. For a more detailed comparison between our approach
and the one following the idea of noncompensation, we refer to Bouyssou and
Pirlot (2002a).

It should finally be observed that the characterization of CR is not the central

point in Fargier and Perny (2001) and Dubois et al. (2002, 2001, 2003). These
papers mostly aim at underlining the limitation of “ordinal approaches” to
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MCDM as modelled by (7). Indeed, supposing at the same time that a binary
relation - satisfies (7) and has “nice” properties (e.g. being such that > is
transitive) leads to a very uneven distribution of importance between the
various attributes. This should be no surprise in that (7) is nothing but the
classical “neutrality” condition used in social choice theory (see Sen, 1986)
which is well-known to be instrumental in precipitating impossibility results.
We show in Bouyssou and Pirlot (2002a,c) that similar results can be obtained
for all CR using the broader framework of this paper.

5.8  Final comments

This paper has proposed a characterization of CR within the framework of a
general model for nontransitive conjoint measurement. This characterization
makes it possible to recast CR relations within a general class of relations and
to isolate their specific features. Following the analysis in Bouyssou and Pirlot
(2002a,c), it is not difficult to extend the proposed results to:

e analyze the case in which > is supposed to have some transitivity properties,

e analyze the, sweeping, consequences of supposing that 7~ has nice transitiv-
ity properties (see also Bouyssou, 1992; Fargier and Perny, 2001; Fishburn,
1975).

Further work is clearly needed in order to characterize CR in which all at-
tributes have the same type (in the sense of part 6 of lemma 16) and to
include in our analysis the possibility of discordance.

We would like to conclude with a note on the purpose of axiomatic analysis as
we understand it. Our aim in providing an axiomatic analysis of CR was not
to find properties that would characterize them; this would be an easy and
somewhat futile exercise. Rather, our main aim was to take take advantage
of this characterization to compare CR with other types of relations so as
to underline their specific features. This explains our central use of a general
framework for conjoint measurement in this analysis. More generally, we would
like to emphasize the role of axiomatic analysis as a tool to uncover structures
rather than a tool to achieve characterizations.
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Appendices

Proof of lemma 2

Part 1. If P; is empty, then, since S; is complete, for all x;, y;, z;, w; € X; and
all a_;, b_l' S X—i7

S((xiyai), (Yi,b-i)) = S((2i, a—), (wi, b—;)) and
S((Z/z’ b,i), ('Ti7 a*i)) = S<<wi7 b*i)v (Zi7 a*i))'

This implies, using (2), that attribute ¢ € N is degenerate, contrarily to our
hypothesis.

Part 2. Since all relations P; are nonempty, for all A, B C N such that AU
B = N, there are z,y € X such that S(z,y) = A and S(y,z) = B. We
have, by construction, exactly one of x = y, y = z, © ~ y and [Not|x =
y| and Not[y 77 x]]. Hence, using (2), we have exactly one of A> B, B> A,
A= B and A B. Since the relations S; are complete, we have S(z,z) = N.
Using the reflexivity of -, we know that o ~ z, so that (2) implies N £ N.

Parts 3 and 4. Let A C N. Because N £ N, the monotonicity of > implies N >
A. We thus have N > &. Suppose now that @ > N. Then the monotonicity of
> would imply that A &> B, for all A, B C N such that AUB = N. This would
contradict the fact that each attribute is influent. Hence, we have N > @.

Part 5. Using the completeness of all S;, we have, for all x;,y; € X; and all
a_g, b*i € X*i;

Using (2), this implies that, for all i € N, all 2;,y; € X; and all a_;,b_; € X_;
(xiya—;) 7 (i, b-;) < (yi,a—i) 7 (yi,b—;). Therefore, 77 is independent for
N\ {i} and, hence, independent.

Part 6 follows from the fact that S; is complete, N £ N and N > N\ {i}, for
all 7 € N.

Part 7. Let i € N. We know that N > N\ {i}. If N = N\ {4}, then (2) implies
x; 7o y; for all zy,y; € X;. Otherwise we have N > N \ {i} and N & N. It
follows that Z; Sl Y = T; ?\_ﬂ Y; and z; P, Yi = Ty 75 Yi- Since Sz and i:z are
complete, it follows that S; = ;.

Part 8. Suppose that 77 is a CR with a representation (>, S;). Because i € N
is influent, there are x;, y;, z;, w; € X; and a_;,b_; € X_; such that (z;,a_;) ==
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(yi,b—;) and Not[(z;,a—;) 77 (w;, b—;)]. Since 77 is a CR, we must have either:
[z; P;y; and w; P; z;] or [z; P, y; and w; I; 2] or [z; I; y; and w; P; z].

This respectively implies the existence of two subsets of attributes A and B
such that AUBU{i} = N,i¢ A, i ¢ B and either:

AU{i} > B and Not|A> BU{i}]| or (A.1la)
AU{i} > B and Not[AU{i} > BU{i}] or (A.1Db)
AU{i} > BU{i} and Not[A> BU{i}]. (A.lc)

Since P; is non empty, consider any a;, b; € X; such that a; P; b;. Respectively
using (A.la), (A.1b) and (A.lc), we have either:

(a;,a_;) 7 (b, b_;) and Not[(b;,a_;) = (a;,b_;)] or (A.2a)
(a;,a_;) 7 (bi,b_;) and Not[ (b, a_;) 7= (bi,b_;)] or (A.2Db)
(a;,a_;) 7= (a;,b_;) and Not[(b;,a_;) = (a;,b_;)]. (A.2¢)

for some a_;,b_; € X_;.

Suppose now that = has a representation (>, S;"). Suppose that a; I] b;. Any
of (A.2a), (A.2b) and (A.2c), implies the existence of two subsets of attributes
C and D such that CUDU{i} = N,i ¢ C,i ¢ D and C U {i} > D U{i}
and Not[C U {i} &' D U {i}], which is contradictory. Suppose therefore that
b; P! a;. Respectively using (A.2a), (A.2b), (A.2c) together with the fact that
>~ is a CR, implies the existence of two subsets of attributes C' and D such
that CUDU{i} = N, i ¢ C, i ¢ D and either:

C > DU{i} and Not[CU{i} > D] or (A.3a)
C > DU{i} and Not[CU{i} > DU{i}] or (A.3b)
CuU{i} > DU{i} and Not[C U {i} >" D]. (A.3c)

In any of these three cases, the monotonicity of >’ is violated. Hence we have
shown that, for all a;,b; € X;, a; P; b; = a; B b;. A similar reasoning shows
that the converse implication is true. Hence, we must have S;=S!. Using (2),
it follows that >=>'.

Proof of lemma 16
Part 1. By definition, we have Not|UC;] < [Not[(yi,x:) 2ZF (xi,y;)] and

Not[ (x;,y;) 2= (zl,wl) ]]. The proof of part 2 is similar.

Part 3. Suppose that RC'1; is violated so that Not[(z;,v;) 75 (2, w;)] and

Not[ (zi,w;) =5 (mi,y:)], for some x;, y;, w;, 2z, € X;. Using RC2;, we have

~Jl
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(yi, z5) 78 (wyi, z) and (wy, z;) 25 (yi, ;), so that (y;, ;) ~F (w;, z;). Suppose
that Not[ (y;,x;) 7oF (xi,v:)]; then UC; implies (x;,y;) 75 (2, w;), a contradic-
tion. Similarly, if Not[ (x;,y;) 725 (yi, ;) |, then LC; implies (z;, w;) 75 (@i, vi),
a contradiction. Hence, we have (z;,v;) ~F (y;, z;). In a similar way, using UC;;
and LCj;, it is easy to show that we must have (z;, w;) ~¥ (w;, 2;). Now, using
the transitivity of ~¥, we have (z;,v;) ~7 (z;, w;), a contradiction.

Part 4. Using part 3, we know that =¥ is complete. Since =* is reversible,

~J1 ~J1

the conclusion will be false if and only if there are x;, y;, z;, w; € X; such that

(i, yi) = (zi,w;) =5 (x;,x;). There are four cases to examine.

(1) Suppose that (ml,yl) =1 (2, w;) and (2, w;) =¥ (x4, 2;). Using RC2;, we
know that (x;, ZBZ) ¥ (wy, 2;). Using the fact that 7} is a weak order, we
have (z;, w;) =¥ (w;, zl) This violates UC; since (z;,y;) =5 (2, w;).

(2) Suppose that (:cl,yl) = (z,w;) and (x4, 2;) =F (wy,2). Using RC2;,
we know that (z;,w;) =ZF (x;,x;). This implies (z;, w;) =F (wy, z;). This
violates UC; since (z;,y;) =7 (2, w;).

(3) Suppose that (wy, 2z;) =5 (yi, z;) and (z;, w;) =¥ (x4, ;). Using RC2;, we
know that (z;, x;) 7 (wy, z;) so that (z;,w;) =F (w;, ;). This violates LC;
since (w;, z;) =1 (Y, ;).

(4) Suppose that (w;, z;) =7 (yi,x;) and (z;, x;) =F (w;, 2;). Using RC2; we
have (z;, w;) 7F (@i, x;) so that (z;, w;) =7 (w;, ;). This violates LC; since
(wi7 ZZ) >';‘k (yiv :L’,)

Part 5. We provide below the required three examples.

Example 32 (UC, LC, Not[ RC2]). Let X = {a,b} x {z,y}. Consider 7 on
X linking any two elements of X except that (a,x) = (b,y) and (a,y) > (b, z).
We have, abusing notation,

[(a,b), (a,a), (b,b)] =7 (b,a) and
[(z,2), (y, )] =5 [(z,9), (y, 2)].

It is easy to check that RC2;, UC and LC' hold. RC2, is violated since
(z,2) =5 (z,y) and (z,2) -3 (y, 7).

Example 33 (RC2, LC, Not|UC'). Let X ={a,b} x {z,y,2} and 5 on X

be identical to the linear order (abusing notation in an obvious way):
(a,2) = (a,y) = (a,2) = (b,z) = (b,y) = (b, 2),
except that (a, z) ~ (b, z). We have, abusing notation,

(a,b) =% [(a,a), (b,b)] =% (b,a) and
(2,2) =5 [(z,2), (y,9), (2, 2), (z,9), (y, 2)] =5 [(y,2), (2, 2), (2,9)].

Using lemma 10, it is easy to check that 7~ satisfies RC2. It is clear that
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UC,, LCy and LCy hold. UCs is violated since we have (z,y) >=5 (y,2) and
Not[(z,y) Z5 (z, 2) ].

Example 34 (RC2, UC, Not[LC). Let X = {a,b} x {z,y,2} and 7 on X
be identical to the linear order (abusing notation in an obvious way):

(a,z) = (b,x) = (a,y) > (b,y) > (a,z) = (b, 2),

except that (b,x) ~ (a,y). We have, abusing notation:

(a

,0) =1 [(a,a), (b,b)] =1 (b,a) and
[(z,9), (z,2), (y, 2)] =5 [(z,7), (y,9), (2, 2)] =5 (y,7) =5 [(2,7), (2,9)]-

Using lemma 10, it is easy to check that = satisfies RC2. It is clear that
UC,, LCy and UCsy hold. LCs is violated since we have (z,y) >=5 (y,z) and
Not[(,2) 155 (4,2)].

Part 6. Let z;, y;, z;, w; € X; be such that (z;,v;) = (v, y;) and (z;, w;) =7

(w;, w;). By construction, we have either (x;,v;) = (vi,v:i) or (vi,y:) >
(?Ji,JC

(1)

*
(2
i)-

Suppose first that (z;,v;) =7 (vi,v:) and (vi,v:) =7 (yi, @;). Consider
zi,w; € X; such that (z;, w;) »=* (w;, w;). If either (z;,w;) ~F (w;, w;) or
(wi, z;) ~F (Wi, w;), it is easy to see, using the independence of 7~ and the

definition of ~** that we must have:

~ot )

(@i, yi) =77 (zisw) =77 (Yo ys) =77 (Wi, z2) =7 (yi, ),

violating the fact that ~/* has at most three distinct equivalence classes.
Hence we have, for all z;, w; € X; such that (z;, w;) =* (w;, w;), (25, w;) =7
(w;, w;) and (wy, w;) =1 (wy, 2;).
Suppose that (x;,y;) =F (yi,v:;) and (y;,v:) ~F (v, ;) and consider any
Zi,W; € X, such that (zz,wz) }:* (wz,wz) If (zl,wz) >-:< (wl,wl) and
(w;, w;) = (w;, z;), we have, using the independence of 7 and the defini-
tion of 7Z*:

(ziswi) =5 (s, y:) =5 (Wi i) =5 (Wi, i) = (wi, %),

violating the fact that ~* has at most three distinct equivalence classes.
If (z;, w;) ~F (wi,w;) and (w;, w;) =5 (wy, z;), then RC2; is violated since
we have (z;,v;) >=F (z,w;) and (i, ;) >=F (wy, 2;). Hence, it must be
true that (z;, w;) = (w;, w;) implies (z;, w;) =F

(wy, 2;).

Suppose that (z;,v;) ~F (vi, ;) and (i, v:) >=F (vi, z;) and consider any
zi,w; € X; such that (z,w;) =5 (w;,w;). If (z;,w;) = (w;,w;) and

(wy, w;) =5 (w;, z;), we have, using the independence of 2~ and the defini-

*

(wiawi) and (wlawl) N:
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tion of 7Z*:

violating the fact that ~/* has at most three distinct equivalence classes.
If (2, w;) =5 (w;,w;) and (w;, w;) ~F (wy, z;), then RC2; is violated since
we have (z;,w;) =¥ (x;,y;) and (wy, z) >=F (yi, ;). Hence, it must be
true that (z;, w;) = (w;, w;) implies (z;, w;) ~F (w;, w;) and (w;, w;) =F

%
(wi, Zz)

*
)

Proof of lemma 17

Let (>, S;) be a representation of - (this representation is unique by lemma 2).

Part 1. Let us show that RC'1; holds, i.e. that (z;,a—;) 2 (yi, b—;) and (z;, c—;) 2
(wi, d_;) imply (z;, a_;) 75 (wi, b_;) or (x4, ¢—;) 7 (yi, d—;). There are 9 cases to
envisage:

zi w2 Liwg w; Bz
z; By (7) (77) (717)
x; I; y; (iv) (v) (vi)
yi Pyx;  (vid) (vii7) (iz)

Cases (i), (v) and (iz) clearly follow from (2). All other cases easily follow
from (2) and the monotonicity of &>. The proof for RC2 is similar.

Part 2. Let us show that UC; holds, i.e. that (z;,a_;) 2= (y;, b—;) and (2;,¢_;) =2
(wy, d_;) imply (y;,a_;) 7= (x5,b_;) or (z4,¢—;) = (yi,d—;). If z; P; y; then, us-
ing (2) and the monotonicity of >, we have (z;,¢_;) = (w;, d_;) = (x;,¢-4) =
(yi,d—;). If y; P, x; then, using (2) and the monotonicity of >, we have
(xi,ay) 7o (Vi b—i) = (yi,a—;) 7 (x,0-). If @; I; y;, then y; I; x; so that,
using (2), (wi,a-3) Z (yi,b-i) = (yi,a—i) Z (z5,0-;). The proof for LC; is
similar.

Proof of theorem 18

Necessity follows from lemma 17. We show that if 7~ satisfies RC'1 and RC?2
and is such that, for all 7 € N, ~* has at most three distinct equivalence
classes then ~ is a CR. In view of part 4 of lemma 16, this will establish
sufficiency.

For all i € N, define S; letting, for all x;,y; € Xi, x; S; vi < (w4, v:) 725 (vi, i)
By hypothesis, we know that 77i* is complete and - is independent. It easily

24



follows that S; is complete.

Since attribute ¢ € N has been supposed influent, it is easy to see that P,
is non empty. Indeed, 77 being complete, the influence of ¢ € N implies
that there are z;,w;,x;,y; € X; such that (z;,v;) =7 (2, w;). Since 7 is

complete, this implies (x;,y;) =% (z;, w;). I (2, 9;) =5 (i, y:) then z; P; y;.

If not, then (y;,v:;) =5 (x;,y;) so that (y;,y:;) = (z;,w;) and, using the
reversibility of 7~ and the independence of -, w; P; z;. Therefore P; is not
empty. This implies that 7~ has exactly three distinct equivalence classes,
since x; B yi < (@i, y:) =5 (i, vi) < (Wi, vi) =7 (yi, ;). Therefore, x; P; y;
if and only if (z;,y;) belongs to the first equivalence class of =—i* and (y;, x;)

~Jl

to its last equivalence class. Consider any two subsets A, B C N such that
AUB = N and let:

Al B <&
[z 77y, for some z,y € X such that S(z,y) = A and S(y,z) = B].

If = 7 y then, by construction, we have S(z,y) > S(y,x). Suppose now
that S(z,y) > S(y,z). This implies that there are z,w € X such that z 2
w, S(z,w) = S(x,y) and S(w,z) = S(y,z). The last two conditions imply
(@i, yi) ~5 (2, w;), for all i € N. Using (4), we have x 22 y. Hence (2) holds.
The monotonicity of > easily follows from (3). This completes the proof.

Proof of lemma 26

[AC1,;]. Suppose that (x;, ;) 7 (yi,y—) and (z;, 2—;) = (w;, w—;). We want

to show that either (z;,z_;) 2= (vi, y—i) or (x;, z—;) 7 (wi, w_;).
If y; P; x; or w; P; z;, the conclusion follows from the monotonicity of .

If x; P, y; and z; P; w;, we have, using the fact that P; is Ferrers, z; P; y; or
x; P; w;. In either case the desired conclusion follows using the fact that =~ is
a CR.

This leaves three exclusive cases: [x; I; y; and z; P; w;] or [z; P; y; and z; I; wy],
or [xz; I; y; and z; I; w;]. Using Ferrers, either case implies z; S; w; or z; S; ;.
If either x; P; w; or z; P; y;, the desired conclusion follows from monotonicity.
Suppose therefore that x; I; w; and z; I; y;. Since we have either z; I; y; or
z; I; w;, the conclusion follows using the fact that >~ is a CR.

Hence AC'1; holds. The proof for AC2; is similar, using Ferrers.

[AC3;]. Suppose that (z;,z_;) = (z4,a_;) and (4,b_;) 72 (yi, y—;). We want to
show that either (z;, z_;) 77 (w;, a_;) or (w;,b_;) 7 (yi, y—i)-
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If either y; P; x; or x; P; z;, the conclusion follows from monotonicity.

If x; P, y; and z; P; x;, then semi-transitivity implies w; P; y; or z; P; w;. In
either case, the conclusion follows from monotonicity.

This leaves three exclusive cases: [z; I; y; and z; P; x;] or [x; P; y; and z; I; 2]
or [x; I; y; and z; I; x;]. In either case, semi-transitivity implies w; S; y; or
z; S; w;. If either w; P; y; or z; P; w;, the desired conclusion follows from
monotonicity. Suppose therefore that w; I; y; and z; I; w;. Since in each of
the remaining cases we have either x; I; y; or z; I; x;, the conclusion follows
because 7~ is a CR.

Proof of lemma 27

Part 1. We prove that AC'1l; = AC?2;, the proof of the reverse implication
being similar. Suppose AC?2; is violated so that there are z;,y;, z;, w; € X;
such that (z;,y;) = (z;,w;) and (z;, w;) =1 (z;,y;). Using lemma 16, we know

that attribute ¢ has a type. We analyze each type separately. If i € N has type
IT or III, then ~} has only two distinct equivalence classes. We therefore have:

*

[(2i,95) ~7 (zi,wi)] =7 [(@3,wi) ~7 (2i,:)]. This implies (zi,9:) =7 (2, 4i)-
Using AC1;, we have (x;, w;) 225 (z;, w;), a contradiction.

If © € N has type I then ~; has only three distinct equivalence classes. We
distinguish several cases.

(1) Suppose that both (z;,y;) and (z;,w;) belong to the middle equivalence
class of =¥ This implies [(z;,y;) ~F (zi,w;)] =5 [(wi,wy) ~F (zi,v:)],
so that (z;,v;) >F (zi,v;). Using AC1;, we have (x;,w;) = (z,w;), a
contradiction.

(2) Suppose that both (x;,y;) and (z;,w;) belong to the first equivalence
class of 7Z¥. We therefor have (z;, ;) ~F (zi,w;), (xi,y:) =5 (2;,w;) and
(zi,w;) =¥ (25, y;). This implies (z;,v;) =7 (2i, ;). Using AC1;, we have
(i, w;) 7ZF (2, w;), a contradiction.

(3) Suppose that (z;,y;) belongs to the first equivalence class of —! and

~Jl

(z;,w;) belong to the central class of 2ZF. This implies, using the reversibil-
ity of 225", [(wiyi) ~7 (Wi 2)] =7 [(ziywi) ~7 (wi, )] =7 [(zi,93) ~;

(yi,x;)]. Hence, we have (y;,2;) > (w;,z) and using AC1;, we have

(2
(yi, ;) =5 (wy, z;), a contradiction.

Part 2. We provide below examples showing that, in the class of reflexive rela-
tions satisfying RC2, UC and LC', AC1 and AC3 are independent conditions.

Example 35 (RC2, UC, LC, AC1 Not[ AC3]). Let X = {a,b,c,d} x{x,y}.
We build the CR in which:
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.CLPlb,CLIIC,ClPld,bIIC,bpld,Cfld,
oz Py,

o {12} o, {12} 2 {2}, {1,2} = {1}, {2} = {1}.

Therefore, 7~ links any two elements of X except that we have: (a,x) = (b,y),
(b,x) > (d,y) and (a,z) > (d,y). It is easy to see that AC'1 and AC3, hold.
AC3, is violated since (¢, y) = (a,x), (d,y) = (¢, z) but neither (b,y) == (a,x)
nor (d,y) = (b, x).

Example 36 (RC2, UC, LC, AC3 Not[ AC1]). Let X ={a,b,c,d} x{z,y}.
We build the CR in which:

° a[lb,aPlc,a[ld,bflc,bpld,clld,
[ Z‘ng,

o {12} o, {12} 2 {2}, {1,2} = {1}, {2} = {1}.

Therefore, 77 links any two elements of X except that we have: (a,z) > (c,y)
and (b,z) > (d,y). It is easy to see that AC3 and AC1, holds. AC1, is
violated since (d,y) 7= (a,z) and (c,y) 7 (b, ) but neither (c,y) == (a,z) nor
(d,y) Z (b, ).

Proof of theorem 28

The proof of theorem 28 follows from combining lemmas 23, 26 and 27 with
the results in section 4.1.
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