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Abstract Procedures designed to select alternatives on the basis of the results
of pairwise contests between them have received much attention in literature. The
particular case of tournaments has been studied in depth. More recently weak tour-
naments and valued generalizations thereof have been investigated. The purpose
of this paper is to investigate to what extent these choice procedures may be mean-
ingfully used to define ranking procedures via their repeated use, i.e. when the
equivalence classes of the ranking are determined by successive applications of
the choice procedure. This is what we call “ranking by choosing”.

As could be expected, such ranking procedures raise monotonicity problems.
We analyze these problems and show that it is nevertheless possible to isolate a
large class of well-behaved choice procedures for which failures of monotonicity
are not overly serious. The hope of finding really attractive ranking by choosing
procedures is however shown to be limited. Our results are illustrated on the case
of tournaments.

Key words Ranking procedures – Choice procedures – Monotonicity – Strong
Superset Property – Ranking by choosing – Tournaments

1 Introduction

In many different contexts, it is necessary to make a choice between alternatives
on the sole basis of the results of several kinds of pairwise contests between these
alternatives. Among the many possible examples, let us mention:

– Sports leagues (games usually involve two teams),
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– Social choice theory, via the use ofC1 or C2 Social Choice functions (as
defined by Fishburn, 1977), in view of the well-known results in McGarvey
(1953) and Debord (1987b),

– Multiple criteria decision making using “ordinal information” (see Arrow and
Raynaud, 1986; Roy, 1991), in view of the results in Bouyssou (1996),

– Psychology with, e.g., the study of binary choice probabilities (see Luce, 1959;
Suppes, Krantz, Luce and Tversky, 1989).

This problem has received close attention in recent years most particularly when
the result of the pairwise contests may be summarized by atournament(an excel-
lent account of this literature may be found in Laslier, 1997) and much is known on
the properties and interrelations of such choice procedures. This line of research
has been recently extended to weak tournaments (ties are allowed, see Peris and
Subiza, 1999; Schwartz, 1986) and valued generalizations of (weak) tournaments
(intensity of preference or number of victories may be taken into account, see Bar-
rett, Pattanaik and Salles, 1990; Basu, Deb and Pattanaik, 1992; Dutta, Panda and
Pattanaik, 1986; Dasgupta and Deb, 1991; Dutta and Laslier, 1999; de Donder,
Le Breton and Truchon, 2000; Fodor and Roubens, 1994; Kitainik, 1993; Lit-
vakov and Vol’skiy, 1986; Nurmi and Kacprzyk, 1991; Pattanaik and Sengupta,
2000; Roubens, 1989).

The related problem ofrankingalternatives on the basis of the results of pair-
wise contests between these alternatives has comparatively received much less at-
tention in recent years (see, however, Henriet, 1985; Rubinstein, 1980), although
it generated classical studies (see Kemeny, 1959; Kemeny and Snell, 1962; Slater,
1961) and is clearly in the spirit of Social Welfare Functionsà la Arrow (Arrow,
1963). This is a pity since most classical applications of choice procedures are
also potential applications for ranking procedures. This is, e.g., clearly the case for
sports since most leagues want to rank order teams at the end of season and not
only to select the winner(s). This also the case in the many situations in which,
although a choice between alternatives is to be made, alternatives may disappear
(e.g. candidates for a position may withdraw), so that there is a necessity of build-
ing a waiting list.

The problem of devising sound ranking procedures for such situations can be
studied without explicit reference to choice procedures (see Bouyssou, 1992b;
Bouyssou and Perny, 1992; Bouyssou and Pirlot, 1997; Bouyssou and Vincke,
1997; Henriet, 1985; Rubinstein, 1980; Vincke, 1992). This is in line with the ad-
vice in Moulin (1986) to clearly distinguish the question of ranking alternatives
from the one of selecting winners.

We shall be concerned in this paper with quite a different approach to ranking
on the basis of pairwise contests that is intimately connected with choice proce-
dures. Several authors have indeed suggested (see Arrow and Raynaud, 1986; Roy,
1991) that a ranking procedure could well be devised bysuccessive applications
of a choice procedure. The most natural way to do so goes as follows:

– Apply the choice procedure to the whole set of alternatives. Define the first
equivalence class of the ranking as the chosen elements in the whole set.

– Remove the chosen elements from the set of alternatives.
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– Apply the choice procedure to the reduced set. Define the second equivalence
class of the ranking as the chosen elements in the reduced set.

– Repeat the above two steps to define the following equivalence classes of the
ranking until there are no more alternatives to rank.

This is what we call “ranking by choosing”. An example may help clarify the
process.

Example 1 (Ranking by choosing with Copeland)
Let X = {a, b, c, d, e, f, g}. Consider the tournamentT onX defined by:

aTb, aTf,

bTc, bTd, bTe, bTf,

cTa, cTe, cTf, cTg,

dTa, dTc, dTe, dTf, dTg

eTa, eTf, eTg,

fTg,

gTa, gTb.

Suppose that you want to use the Copeland choice procedureCop(A, T ) selecting
the elements inA having a maximal Copeland score (i.e. maximal outdegree) inT
restricted toA as a basis for ranking alternatives.

Applying the above ranking by choosing algorithm successively leads to:

Cop(X, T ) = {d},
Cop(X \ {d}, T ) = {c},

Cop(X \ {d, c}, T ) = {e},
Cop(X \ {d, c, e}, T ) = {a, g},

Cop(X \ {a, d, c, e, g}, T ) = {b},
Cop(X \ {a, b, c, d, e, g}, T ) = {f}.

Hence we obtain the ranking (using obvious notation):d Â c Â e Â [a ∼ g] Â
b Â f . This result is clearly different from the one that we would have obtained
ranking alternatives using their Copeland scores inX, i.e.:

d Â [b ∼ c] Â e Â [a ∼ g] Â f,

although both rankings clearly coincide on their first equivalence class.

Using ranking by choosing, we may associate a well-defined ranking procedure
to every choice procedure. A natural question arises. If the choice procedure has
“nice properties”, will it also be the case for the induced ranking procedure? This
is the subject of this paper.

Most ranking procedures that are used in practice are not of this ranking by
choosing type. Most often (take the example of most sports leagues) they are rather
based on some kind ofscoring functionthat aggregates into a real number the



4 Denis Bouyssou

results of the various pairwise contests, e.g. one may rank alternatives according
to their Copeland scores.

Although ranking procedures induced by choice procedures may seem com-
plex when compared to those based on scoring functions, several authors have
forcefully argued in favor of their reasonableness (see Arrow and Raynaud, 1986;
Roy, 1991) and many of them were proposed (see Arrow and Raynaud, 1986;
Debord, 1987a; Matarazzo, 1990; Roy, 1978). They are, in general, easy to com-
pute and rather easy to explain. They are—structurally—insensitive to a possible
withdrawal of (all) best ranked alternatives (see Vincke, 1992). Furthermore, if
the answer to the preceding question were to be positive, there would be a clear
interest in using well-behaved choice procedures as a basis for ranking procedures.

The situation is however more complex. The potential drawbacks of these rank-
ing by choosing procedures should be obvious: their very conception implies the
existence of discontinuities together with a progressive impoverishment of infor-
mation from one iteration to another. This is likely to create difficulties with most
wanted normative properties like monotonicity as was forcefully shown by Perny
(1992). The purpose of this paper is to explore the extent of these difficulties con-
centrating on monotonicity. An example will clarify how bad the situation can be.

Example 1 (continued)
Consider the tournamentV identical toT except thataV d. We now haveCop(X, V )
= {b, c, d}. We hada Â b with T . We now obtainb Â a with V , while the position
of a has clearly improved when going fromT to V . This is a serious monotonicity
problem.

The problem studied in this paper is reminiscent of the well-know monotonic-
ity problems encountered in electoral procedures with “run-offs”, e.g. the French
system of plurality with run-off, the Hare, Coombs and Nansson procedures (see
Fishburn, 1977; Moulin, 1988) that also involve discontinuities. It is well-known
that they often have a disappointing behavior with respect to monotonicity (see
Fishburn, 1977, 1982; Moulin, 1988; Saari, 1994; Smith, 1973). Although these
difficulties are linked with our problem, electoral procedures with run-offs are
choice procedures and not ranking procedures. Hence the problem studied here
has distinctive characteristics.

Although many ranking by choosing procedures have been suggested, their
study has received limited attention so far. Perny (1992) showed that most proce-
dures of this type proposed in the literature violate monotonicity. He suggested to
study the problem more in depth. Shortly after, we proposed in Bouyssou (1995)
some results in that direction (since more powerful results appear difficult to ob-
tain, this text is a revised and simplified version of Bouyssou (1995)). More re-
cently, the problem was tackled in Durand (2001) and Juret (2001) in a Social
Choice context.

We show here that, rather surprisingly, there are non-trivial and rather well-
behaved choice procedures leading to ranking by choosing procedures satisfying
a weak form of monotonicity. The hope of finding really attractive ranking by
choosing procedures is however shown to be limited.
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The paper is organized as follows. The next section introduces our main defi-
nitions and elucidate our notation. Our results are collected in section 3. We apply
our results to the classical case of tournaments in section 4. A final section dis-
cusses our findings.

2 The setting

Throughout the paper,X will denote afinite set with |X| = m ≥ 1 elements.
Elements ofX will be interpreted as alternatives that are to be compared on the
basis the results of several kinds of pairwise contests. We denote byP(X) the set
of all nonempty subsets ofX.

2.1 Pairwise contests between alternatives

Pairwise contests between alternatives arise in many different contexts. Therefore,
it is not surprising that many different models have been proposed to summarize
them. The most simple ones consist of binary relations: tournaments (see Laslier,
1997; Moulin, 1986), weak tournaments (see Peris and Subiza, 1999), reflexive
binary relations (see Vincke, 1992). More sophisticated models use real-valued
functions onX2: weighted tournaments (see de Donder et al., 2000), comparison
functions (see Dutta and Laslier, 1999) or general valued relations (see Kitainik,
1993; Fodor and Roubens, 1994; Roubens, 1989). Many of these models can be
justified by results saying that some type of aggregation methods lead to all (or
nearly all) instances of these models (see Bouyssou, 1996; Deb, 1976; Debord,
1987b; McGarvey, 1953).

Although our results can be extended to more general cases (see Bouyssou,
1995), we use throughout the paper the comparison function model presented in
Dutta and Laslier (1999). It is sufficiently flexible to include:

– all complete binary relations and, hence, to deal with allC1 social choice func-
tions in the sense of Fishburn (1977), i.e. all social choice functions based on
the simple majority relation of some profile of linear orders and

– all 0-weighted tournaments, as defined in de Donder et al. (2000) and, hence,
to deal with most (in fact with what de Donder et al. (2000) calledC1.5 social
choice functions)C2 social choice functions in the sense of Fishburn (1977),
i.e. social choice functions that are based on a matrix giving for each ordered
pair (x, y) of alternatives the numbern(x, y) being the difference between the
number of linear orders in the profile for whichx is ahead ofy minus the
number of linear orders for whichy is ahead ofx.

These two examples are detailed below. We refer to Dutta and Laslier (1999) for
more possible interpretations.

A comparison functionπ on X is a skew-symmetric real-valued function on
X2 (i.e. such thatπ(x, y) = −π(y, x), for all x, y ∈ X). The set of all comparison
functions onX is denotedG(X). We denote byπ |A the restriction ofπ onA ⊆ X,
i.e. the functionπ |A onA such thatπ |A (x, y) = π(x, y), for all x, y ∈ A.
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Example 2 (Weak Tournaments)
A weak tournamentV on X is a complete (xV y or yV x, for all x ∈ X) binary
relation1 on X. A tournamentis an antisymmetric (xV y andyV x ⇒ x = y, for
all x, y ∈ X) weak tournament. We denoteT(X) (resp.WT(X)) the set of all
tournaments (resp. weak tournaments) onX. A transitive tournament (resp. weak
tournament) is a linear order (resp. weak order). We noteWO(X) the set of all
weak orders onX.

The interest in weak tournaments is explained by McGarvey’s theorem (see
McGarvey, 1953) ensuring that anyV ∈ WT(X) is the simple majority relation
of some profile of linear orders.

Note that any comparison functionπ ∈ G(X) induces a weak tournament
V ∈ WT(X) letting xV y ⇔ π(x, y) ≥ 0. Conversely, any weak tournament
V ∈ WT(X) induces a comparison functionπV ∈ G(X) defined letting, for all
x, y ∈ X,

πV (x, y) =





1 if xV y and Not[ yV x ] ,
0 if xV y andyV x,

−1 if yV x and Not[xV y ] .
(1)

We sometimes abuse notations in the sequel writingV instead ofπV when dealing
with weak tournaments.

Example 3 (0-weighted tournaments)
A 0-weighted tournament (de Donder et al., 2000) onX is a complete digraph
which set of vertices isX and in which each arc(x, y) has a skew symmetric
integer valuationn(x, y). Using Debord’s theorem (see Debord, 1987b), any0-
weighted tournament with alln(x, y) having the same parity is the net preference
matrix of some profile of linear orders onX, i.e. there is a profile of linear orders
such thatn(x, y) is the number of linear orders in the profile for whichx > y
minus the number of linear orders in the profile for whichy > x. Clearly the set
of comparison functions includes all 0-weighted tournaments.

Definition 1 (Improving the position of an alternative)
Let π andπ′ be two comparison functions onX. We say thatπ′ improvesx ∈ X
w.r.t. π if for all y, z ∈ X \ {x},

π′(y, z) = π(y, z) andπ′(x, y) ≥ π(x, y).

We often denoteπx↑ a comparison function improvingx ∈ X w.r.t. π.

Let π ∈ G(X), A ⊆ X, x, y ∈ A. We say thatx coversy in A if π(x, y) > 0
and, for allz ∈ A \ {x, y}, π(x, z) ≥ π(y, z). It is clear that the covering relation
thus defined is asymmetric and transitive. Hence its has maximal elements. We
denoteUC(A, π) ⊆ A the set of maximal elements of the covering relation inA.

1 We follow here the widely used terminology of Moulin (1986) and Peris and Subiza
(1999) although the termmatchsuggested by Monjardet (1978) and Ribeill (1973) seems
more satisfactory. Note that we work here, for commodity, withreflexive(weak) tourna-
ments although most authors prefer the asymmetric version (see Laslier, 1997). This has no
consequences in what follows.



Monotonicity of ‘ranking by choosing’ 7

This definition, due to Dutta and Laslier (1999), extends to comparison functions
a well-known concept due to Fishburn (1977) and Miller (1977, 1980).

We say thatx sign-coversy in A for π if it coversy for the comparison function
πsign defined by:

πsign(x, y) =





1 if π(x, y) > 0,

0 if π(x, y) = 0,

−1 if π(x, y) < 0,

for all x, y ∈ X. It is clear that the sign covering relation is asymmetric and
transitive and, therefore, has maximal elements. We denoteSUC(A, π) ⊆ A the
set of maximal elements of the sign covering relation inA. It is easy to see that
SUC(A, π) ⊆ UC(A, π), while the two sets coincide for weak tournaments.

A Condorcet winnerin A ∈ P(X) for a comparison functionπ ∈ G(X) is an
alternativex that defeats all other alternatives inA in pairwise contests, i.e. such
thatπ(x, y) > π(y, x), for all y ∈ A \ {x}. It is clear that the set of Condorcet
WinnersCond(A, π) is either empty or is a singleton.

Remark 1
When there is a Condorcet winner, it is clear thatCond(X,π) = SUC(A, π) and,
hence,Cond(X,π) ⊆ UC(A, π). The uncovered setUC(A, π) may however
contain other alternatives.

2.2 Ranking procedures

A ranking procedure (for comparison functions onX) % associates with each com-
parison functionπ on X a weak order%(π) ∈ WO(X), i.e. is a function from
G(X) into WO(X). The asymmetric (resp. symmetric) part of%(π) is denoted
Â(π) (resp.∼(π)).

Example 4 (Ranking procedures induced by a scoring function)
Many ranking procedures are based onscoring functionsonX. A simple2 scoring
function associates with eachπ ∈ G(X), eachA ⊆ X and eachx ∈ A a real
numberScoreF (x,A, π) = F|A|(π(x, y)y∈A\{x}), whereF|A| is a real-valued
function onR|A|−1 beingsymmetricin its arguments andnondecreasingin all its
arguments. The ranking procedure%F associated toScoreF ranks alternatives in
X according to their scoreScoreF (x,X, π), i.e.,

x %F (π) y ⇔ ScoreF (x,X, π) ≥ ScoreF (y, X, π), (2)

for all x, y ∈ X and allπ ∈ G(X).
Two scoring functions that are often used are:

– theCopelandscore in whichF =
∑

and

2 More general scoring functions can be defined having for argument the whole com-
parison functionπ, as in methods based on Markov chains or on eigenvalues (see Laslier,
1997). We do not envisage them here and, hence, we omit “simple” in what follows.
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– theKramerscore in whichF = min.

Note that using the Copeland score on a 0-weighted tournament corresponding to
a net preference matrix of a profile of linear orders amounts to ranking alternatives
according to their Borda score (see e.g. Young, 1974).

By definition, the functionF|X| used to computeScoreF (x,X, π) is indepen-
dent ofx and symmetric in its arguments. Therefore, such ranking procedures do
not depend on a particular labeling of the alternatives. Furthermore, sinceF|X|
have been supposed to be nondecreasing in all its arguments, the ranking will re-
spond in the expected direction to an improvement ofx in π. This is formalized
below.

Let Σ(X) be the set of all one-to-one functions onX (i.e. permutations). Given a
comparison functionπ and a permutationσ ∈ Σ(X), we defineπσ as the com-
parison function defined letting, for allx, y ∈ X πσ(σ(x), σ(y)) = π(x, y).

Definition 2 (Neutral ranking procedures)
A ranking procedure% on X is said to beneutralif, for all for all π ∈ G(X) and
all σ ∈ Σ(X), x %(π) y ⇔ σ(x) %(πσ) σ(y).

Observe that with a neutral ranking procedure, if the comparison function is totally
indecisive, i.e. ifπ(x, y) = π(y, x) = 0, for all x, y ∈ X, then this indecisivity is
reflected in the weak order%(π), i.e.x %(π) y, for all x, y ∈ X.

Definition 3 (Monotonic ranking procedure)
A ranking procedure% onX is said to be:

– strictly monotonicif
x %(π) y ⇒ x Â(π′) y,

– monotonic, if
x %(π) y ⇒ x %(π′) y and
x Â(π) y ⇒ x Â(π′) y,

– weakly monotonicif
x %(π) y ⇒ x %(π′) y,

– very weakly monotonicif
x Â(π) y ⇒ x %(π′) y,

for all x, y ∈ X and allπ, π′ ∈ G(X) such thatπ 6= π′ andπ′ improvesx w.r.t. π
(see definition 1).

Strict monotonicity requires that any improvement of the position of an alterna-
tive is sufficient to break ties in%. This is a very strong condition, although it
proves useful to characterize ranking procedures based on scoring functionsF|X|
that are increasing in all arguments (see Bouyssou, 1992b; Henriet, 1985; Rubin-
stein, 1980). Monotonicity implies weak monotonicity which in turn implies very
weak monotonicity. As already observed, it is easy to build a monotonic ranking
procedure using a scoring function. This will clearly be more difficult with rank-
ing by choosing procedures in view of example 1. In a weakly monotonic ranking
procedure, “efforts do not hurt”, since the position of the improved alternative
cannot deteriorate: it may only happen that beaten alternatives now tie with the
improved one. Very weak monotonicity only forbids strict reversals in% after an
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improvement. Although this is a very weak condition, example 1 shows that it can
be violated with seemingly reasonable ranking by choosing procedures.

Remark 2
Durand (2001), in a classic social choice context, proves a negative result on the
existence of strictly monotonic ranking by choosing procedure. His use ofstrict
monotonicity tends to limit the scope of this result however.

Consider a weak orderW ∈ WO(X) and its associated comparison function
πW as defined by (1). SinceW is a weak order, it seems obvious to require that
any reasonable ranking procedure should not alter this ranking.

Definition 4 (Faithful ranking procedure)
A ranking procedure% on X is said to befaithful if, for all weak ordersW ∈
WO(X) and all x, y ∈ X, x %(πW ) y ⇔ x W y. A ranking procedure is said
to befaithful for linear ordersif the above condition holds for antisymmetric weak
orders, i.e. linear orders.

Many other conditions can obviously be defined for ranking procedures (for an
overview, see Bouyssou and Vincke, 1997; Henriet, 1985; Rubinstein, 1980; Vincke,
1992). They will not be useful here. The analysis of ranking by choosing proce-
dures clearly calls now for a closer look at choice procedures.

2.3 Choice procedures

A choice procedure (for comparison functions onX) S associates with each com-
parison functionπ ∈ G(X) and each nonempty subsetA ∈ P(X) a nonempty set
of chosen3 alternatives included inA. More formally, achoice procedureS onX
is a function fromP(X) × G(X) into P(X) such that, for allA ∈ P(X) and all
π ∈ G(X), S(A, π) ⊆ A. Given two choice proceduresS ′ andS, we say thatS ′
refinesS if, for all A ∈ P(X) and allπ ∈ G(X), S ′(A, π) ⊆ S(A, π).

Example 5 (Choice procedures induced by scoring functions)
Like with ranking procedures, many choice procedures are based on simple scoring
functions (again, we do not envisage here scoring functions that depend on the
entire comparison functionπ). Using the notation introduced in example 4, we
simply have, for allA ∈ P(X) and allx ∈ A,

x ∈ SF (A, π) ⇔ ScoreF (x,A, π) ≥ ScoreF (y,A, π), for all y ∈ A, (3)

Such choice procedures are clearly independent of the labeling of alternative and
have obvious monotonicity properties. Furthermore, the chosen elements inA only
depends on the restrictionπ |A of π to A. We formalize these properties below.

Definition 5 (Properties of a choice procedure)
A choice procedureS onX is said to be:

– neutralif
x ∈ S(A, π) ⇔ σ(x) ∈ S(A, πσ),

3 We use the termchoseneven if there may be more than one alternative inS(A, π)
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– local if
[ π |A = π′ |A ] ⇒ S(A, π) = S(A, π′),

– Condorcet if
Cond(A, π) 6= ∅⇒ S(A, π) = Cond(A, π),

– monotonicif
x ∈ S(A, π) ⇒ x ∈ S(A, πx↑),

– properly monotonicif it is monotonic and
[x 6= y andy /∈ S(A, π)] ⇒ y /∈ S(A, πx↑),

for all π, π′ ∈ G(X), all A ∈ P(X), all σ ∈ Σ(X), all x, y ∈ X and all
πx↑ ∈ G(X), with πx↑ 6= π, improvingx w.r.t. π.

We refer to de Donder et al. (2000), Dutta and Laslier (1999), Henriet (1985),
Laslier (1997), Moulin (1986) and Peris and Subiza (1999) for a thorough overview
of the variety and the properties of neutral, local,Condorcet and monotonic choice
procedures. An example of such procedures isSUC(A, π) (see Dutta and Laslier,
1999) as defined above.

Remark 3
Note that, with the question of ranking by choosing procedures in mind, onlylocal
choice procedures raise problems. Using a non local choice procedure, e.g. the one
selecting in allA ∈ P(X) alternatives of maximal Copeland score inX, instead
of A, it is easy to obtain a monotonic ranking by choosing procedure.

Choice procedures may be viewed as associating achoice function(see Moulin,
1985) onX to every comparison functionπ defined onX. Hence, whenπ is kept
fixed, classical properties of choice functions may be transferred to choice proce-
dures. We recall some of them below, referring the reader to Aizerman (1985), Aiz-
erman and Aleskerov (1995), Malishevski (1993), Moulin (1985) and Sen (1977)
for a detailed study of these conditions and their relations to the classical one
guaranteeing that a choice functions can be rationalized, i.e. that there is a com-
plete binary relation onX such that chosen elements in any subset are the greatest
elements of this binary relation restricted to that subset.

Definition 6 (Choice functions properties of choice procedures)
A choice procedureS onX is said to satisfy:

– Strong Superset Property(SSP ) if
[S(A, π) ⊆ B ⊆ A ] ⇒ S(B, π) = S(A, π),

– Aizerman if
[S(A, π) ⊆ B ⊆ A ] ⇒ S(B, π) ⊆ S(A, π),

– Idempotencyif
S(S(A, π), π) = S(A, π),

– β+ if
[ A ⊆ B andA ∩ S(B, π) 6= ∅ ] ⇒ S(A, π) ⊆ S(B, π),

for all π ∈ G(X) and allA,B ∈ P(X).

Remark 4
We follow here the terminology of Moulin (1985) that has gained wide acceptance.
Let us however observe that the nameAizerman, is especially unfortunate since,
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in fact, M. A. Aizerman and his collaborators apparentlyneverused this condition
in their classical works on choice functions; on the contrary, they made central use
of SSP under the nameOutcast(see Aizerman and Malihevski, 1981; Aizerman,
1985; Aizerman and Aleskerov, 1995). We follow Sen (1977) forβ+.

Let us observe thatSSP clearly implies bothAizerman and Idempotency.
The reverse implication is also true (see Aizerman and Aleskerov, 1995; Dutta
and Laslier, 1999; Moulin, 1985). On the other hand,SSP and β+ are inde-
pendent conditions (see Aizerman, 1985; Aizerman and Aleskerov, 1995; Mali-
shevski, 1993; Sen, 1977). Clearly, none of these conditions is sufficient to imply
that the choice function can be rationalized (for such conditions, see Aizerman and
Aleskerov, 1995; Moulin, 1985; Sen, 1977).

Remark 5 (Refining choices)
Let S be a choice procedure onX and defineS1 = S. For all integersk ≥ 2, we
defineSk andS∞ letting, for allA ∈ P(X) and allπ ∈ G(X),

Sk(A, π) = S(Sk−1(A, π), π) and

S∞(A, π) =
⋂

k≥1

Sk(A, π).

It is clear thatSk andS∞ are choice procedures. They are obtained by successive
refinements ofS. It is well-known that whenS is monotonic but not idempotent,
it may happen thatS∞ is not monotonic. This the case withSUC (see Laslier,
1997).

An apparently open question is to find necessary and sufficient conditions on
S so that this is the case. This problem is clearly related to the already-mentioned
monotonicity problems encountered in electoral procedures with runoffs. We do
not study it here.

2.4 Ranking procedures induced by choice procedures

Ranking by choosing procedures build a weak order by successive applications of
a choice procedure, its first equivalence class consisting of the elements chosen in
X, the second equivalence class of the elements chosen after the elements chosen
at the first step are removed fromX and so on. We need some more notation in
order to formalize this idea. LetW be a weak order on a setY . We denote by
Clk(Y , W ) (wherek is an integer≥ 1) the elements in thek-th equivalence class
of W , i.e.Cl1(Y ,W ) = {x ∈ Y : xWy,∀y ∈ Y } and, for allk ≥ 2,

Clk(Y ,W ) = {x ∈ Zk−1 = Y \ [
k−1⋃

`=1

Cl `(Y , W )] : xWy, ∀y ∈ Zk−1}.

Note thatCl1(Y ,W ) is always nonempty and that a weak order is clearly uniquely
defined by its ordered set of equivalence classes.
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Similarly, we denoteRk(X,S, π), the unchosen elements inX with π after
k ∈ N applications ofS, i.e.

R0(X,S, π) = X,

Rk(X,S, π) = Rk−1(X,S, π) \ S(Rk−1(X,S, π), π),

with the understanding thatS(∅, π) = ∅. Note thatR0(X,S, π) is nonempty by
construction.

Definition 7 (Ranking procedure induced by a choice procedure)
LetS be a choice procedure onX. The ranking procedure%S induced byS is the
ranking procedure such that, for allπ ∈ G(X) and all integersk ≥ 1,

Clk(X, %S) = S(Rk−1(X,S, π), π).

Some properties ofS are easily transferred to%S .

Lemma 1 (Transferring properties from choice procedures to ranking procedures)
– If S is neutral then%S is neutral,
– If S is Condorcet then%S is faithful for linear orders,
– If S is based on a scoring function with all functionsF|A| being increasing in

all arguments then%S is faithful.
– If S is a local, neutral,Aizerman and refinesUC then%S is faithful.

Proof
The first three assertions are immediate from the definitions. Let us prove the last
one. Suppose thatW is a weak order. It is clear thatUC(X,W ) = Cl1(X,W ).
SinceS refinesUC we must haveS(X, W ) ⊆ Cl1(X, W ). We haveS(X, W ) ⊆
Cl1(X, W ) ⊆ X. Hence, sinceS is Aizerman, S(Cl1(X, W ), W ) ⊆ S(X, W ).
SinceS is local and neutral, we know thatS(Cl1(X, W ),W ) = Cl1(X,W ).
Hence,S(X, W ) = Cl1(X, W ). The conclusion follows from a repetition of this
argument. 2

Unfortunately, as shown in example 1 above, monotonicity is not transferred as
easily from choice procedures to ranking procedures. Since monotonicity seems to
be a vital condition for the reasonableness of a ranking procedure, we investigate
below which choice proceduresS have an associated ranking procedure%S that
is monotonic or weakly monotonic.

Remark 6
It should be observed that given a scoring functionScoreF the ranking procedures
%F and%SF may have quite different properties. Considering for instance the
Kramer scoreScoremin and its extension to choice procedures, it is easy to see that
%min is not faithful (since all alternatives not belonging to the first equivalence of
a weak order are tied with%min). On the contrary, it is clear that that%Smin is
indeed faithful.
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3 Results

3.1 Weak monotonicity

Our aim is to find conditions on choice procedures that would guarantee that the
ranking procedures they induce are weakly monotonic. As already shown by ex-
ample 1, there are choice proceduresS that are neutral, local, (properly) monotonic
andCondorcet while %S is not even very weakly monotonic. Guaranteeing that
%S is weakly monotonic is therefore not as trivial a task as it might appear at first
sight.

Our central result in this section says that any local and monotonic choice pro-
cedure satisfyingSSP generates a ranking procedure that is weakly monotonic.

Proposition 1 (SSP and weak monotonicity)
If S is local, monotonic and satisfiesSSP then%S is weakly monotonic.

Proof
Suppose thatS is local, monotonic and satisfiesSSP and that%S is not weakly
monotonic. By definition this implies that for someπ ∈ G(X), somex, y ∈ X and
someπx↑ improvingx ∈ X w.r.t. π, we havex %S(π) y andy ÂS(πx↑) x.

SinceS is monotonic, it is impossible thatx ∈ Cl1(X, %S(π)) = S(X,π)
since this would implyx ∈ Cl1(X, %S(πx↑)) = S(X, πx↑), which violatesy ÂS
(πx↑)x. By construction, we know thatx /∈ Cl1(X, %S(πx↑)) = S(X, πx↑).

Let Z = X \ {x}. We haveπ |Z = πx↑ |Z . SinceS is local, this implies
S(Z, π) = S(Z, πx↑).

Sincex /∈ S(X,π), we haveS(X, π) ⊆ Z ⊆ X andSSP impliesS(X, π) =
S(Z, π). Similarly, we know thatx /∈ S(X,πx↑) so thatS(X,πx↑) ⊆ Z ⊆ X and
SSP impliesS(X, πx↑) = S(Z, πx↑). BecauseS(Z, π) = S(Z, πx↑), we have
S(X,πx↑) = S(X,π) and, hence,Cl1(X, %S(π)) = Cl1(X, %S(πx↑)). Note, in
particular thaty /∈ Cl1(X, %(πx↑)).

It is now impossible thatx ∈ Cl2(X, %(π)). Indeed this would imply thatx ∈
S(R1(X,S, π), π), so that, using the monotonicity ofS, x ∈ S(R1(X,S, π), πx↑).
SinceR1(X,S, π) = R1(X,S, πx↑), this would imply x ∈ Cl2(X, %(πx↑)),
which would contradicty ÂS (πx↑)x.

BecauseS is local, the above reasoning can now be applied toR1(X,S, π) =
R1(X,S, πx↑). As above, this leads toCl2(X, %S(π)) = Cl2(X, %S(πx↑)) and
y /∈ Cl2(X, %(πx↑)).

Iterating the above reasoning easily leads to a contradiction. 2

Let us note that in the literature on tournaments it is possible to find rather well-
behaved choice procedures that are neutral, local, monotonic while satisfyingSSP
(e.g.MCS, BP , as defined below, see Laslier, 1997). For general comparison
functions, Dutta and Laslier (1999) also present several such procedures. Proposi-
tion 1, therefore shows that there are many well-behaved weakly monotonic rank-
ing procedures induced by choice procedures. Let us give an example of such a
procedure.
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Example 6 (Sign Essential set)
The bipartisan setBP defined for tournaments (see Laffond, Laslier and LeBre-
ton, 1993a) has recently been generalized to comparison functions (see Dutta and
Laslier, 1999; de Donder et al., 2000). Observe that any comparison functionπ
induces a symmetric two-person zero-sum game (in which each of the two play-
ers have the set of strategiesX and the payoff functions are given byπ(x, y) and
π(y, x)). The same is clearly true forπsign .

It is well-known that all such games have Nash equilibria in mixed strategies
(see von Neumann and Morgenstern, 1947). The Sign Essential Set (SES) consists
in all pure strategies that are played with strictly positive probability in one of the
Nash equilibria in the symmetric two-person zero-sum game induced byπsign .

Dutta and Laslier (1999) show thatSES defines a choice procedure that is
monotonic,Condorcet and satisfiesSSP , on top of being clearly local and neu-
tral. It is not difficult to show that it refinesUC (as well as several other reasonable
choice procedures). Hence, using lemma 1 and proposition 1, we know that%SES

is a neutral, faithful and weakly monotonic ranking procedure. It therefore quali-
fies as a very reasonable ranking by choosing procedure.

Remark 7 (Aizerman cannot be substituted toSSP )
The above proposition does not hold ifAizerman is substituted toSSP . It is
well-known thatSUC is monotonic and satisfiesAizerman but violatesSSP (see
Laslier, 1997). The following example shows that%SUC is not even very weakly
monotonic.
Example 7 (%SUC is not very weakly monotonic)
Let X = {a, b, c, d, e, f, g}. Consider the tournamentT onX defined by:

aTb, aTd, aTe, aTf, aTg,

bTc, bTd, bTe, bTf, bTg,

cTa, cTe, cTf, cTg,

dTc, dTe,

eTf,

fTd, fTg,

gTd, gTe.

It is easy to check, using the comparison function defined by (1), thatSUC(X,T ) =
{a, b, c}, SUC(X \ {a, b, c}, T ) = {e, f, g}. Hence, we havef ÂSUC(T ) d.

Consider now the tournamentV identical toT except thateV b. We have:
SUC(X,V ) = {a, b, c, d}, so thatd ÂSUC(V ) e. This shows that%SUC is not
very weakly monotonic.

Remark 8 (Monotonicity is not implied)
It is clearly tempting to look for a result similar to proposition 1 involving the
monotonicity of%S . This problem is far more difficult than with weak monotonic-
ity and we only have negative results on that point. Proposition 2 below implies
that proposition 1 is no longer true if monotonicity is substituted to weak mono-
tonicity.
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Remark 9 (SSP is not necessary)
For local and monotone choice proceduresπ, SSP is a sufficient condition for
%S to be weakly monotonic. It is not necessary however, even when attention is
restricted to the, well-structured, case of tournaments. Let us consider this case
and show that there are, on some setsX, choice procedures violatingSSP while
being weakly monotonic. We abuse notation in the sequel and writeT instead of
πT .

Suppose that|X| = 5. The following example shows thatSUC may violate
SSP .

Example 8 (SUC violatesSSP when|X| = 5)
Let X = {a, b, c, d, e}. Consider the tournamentT onX defined by:

aTb, aTd,

bTc, bTe,

cTa, cTd, cTe,

dTb, dTe,

eTa.

We haveSUC(X, T ) = {a, b, c, d} (e is covered byc) andSUC({a, b, c, d}, T ) =
{a, b, c} (d is covered bya). This violatesSSP sinceSUC(X, T ) ⊆ {a, b, c, d} ⊆
X butSUC({a, b, c, d}, T ) = {a, b, c} 6= SUC(X, T ) = {a, b, c, d}.

Let us now show that, when|X| ≤ 5, %SUC is weakly monotonic. It clearly
suffices to show that weak monotonicity holds when an alternative is improved
w.r.t. a single other alternative. The proof uses the following well-known facts on
uncovered elements in a tournament.

Lemma 2 (Miller (1977, 1980); Moulin (1986))
1. x ∈ SUC(A, T ) iff for all y ∈ A \ {x}, eitherxTy or [xTz and zTy], for

somez ∈ A (2-step principle).
2. SUC(A, T ) = {x} iff xTy for all y ∈ A \ {x}.
3. If |SUC(A, T )| 6= 1 then|SUC(A, T )| ≥ 3 and we haveCond(SUC(A, T ),

T |SUC(A,T )) = ∅.

Lemma 3
If |X| ≤ 4, %SUC is weakly monotonic.

Proof
If |X| ≤ 3, the proof easily follows from lemma 2 and the monotonicity ofSUC.
If |X| = 4, three cases arise by lemma 2.

1. If |Cl1(X, %SUC(T ))| = 1. Let{a} = Cl1(X, %SUC) = SUC(X,T ). Since
a is a Condorcet winner inX, it is impossible to improvea. If any b 6= a is im-
proved w.r.t.a, it becomes uncovered, using lemma 2, and weak monotonicity
of %SUC cannot possibly be violated. Ifb 6= a is improved w.r.t. an alternative
different froma, thena remains the Condorcet winner and it is clear that weak
monotonicity of%SUC cannot possibly be violated.
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2. If |Cl1(X, %SUC(T ))| = 3 and therefore|Cl2(X, %SUC(T ))| = 1. Weak
monotonicity of%SUC can only be violated if an element inCl1(X, %SUC(T )) =
SUC(X,T ) is improved. SinceSUC is monotonic, this improved element
will remain uncovered inX. Thus, weak monotonicity cannot possibly be vi-
olated.

3. If |Cl1(X, %SUC(T ))| = 4, weak monotonicity of%SUC follows from the
monotonicity ofSUC. 2

Lemma 4
If |X| = 5, %SUC is weakly monotonic.

Proof
Four cases arise by lemma 2.

1. If |Cl1(X, %SUC(T ))| = 1. Let{a} = Cl1(X, %SUC) = SUC(X,T ). Since
a is a Condorcet winner inX, it is impossible to improvea. If an alternative
not inCl1(X, %SUC(T )) is improved w.r.t.a, it becomes uncovered, because
of part 1 of lemma 2. Thus weak monotonicity cannot be violated. If an al-
ternative not inCl1(X, %SUC(T )) is improved w.r.t. another alternative not
in Cl1(X, %SUC(T )), it is clear that after the improvementa remains a Con-
dorcet winner and, thus, chosen alone inX. In view of lemma 3, weak mono-
tonicity cannot possibly be violated.

2. If |Cl1(X, %SUC(T ))| = 3 and, therefore,|Cl2(X, %SUC(T ))| = 1 and
|Cl3(X, %SUC(T ))| = 1. Let X = {a, b, c, d, e} and suppose w.l.o.g. that
Cl1(X, %SUC(T )) = SUC(X, T ) = {a, b, c}, Cl2(X, %SUC(T )) = {d}
andCl3(X, %SUC(T )) = {e}. We know from lemma 2 that there is a cir-
cuit linking a, b and c and thatdTe. We suppose w.l.o.g. that the circuit is
aTb, bTc, cTa.
It is impossible to improvee and to violate weak monotonicity. In view of
part 1 of lemma 2, observe thatd can beat at most one alternative in{a, b, c}
because we know thatd /∈ SUC(X, T ). If d beats exactly one alternative in
{a, b, c} any improvement ofd will make it uncovered. Hence, weak mono-
tonicity cannot be violated. Suppose therefore thatd does not beat any alterna-
tive in {a, b, c}. Becausee /∈ SUC(X, T ), e can beat at most one alternative
in {a, b, c}.
Suppose first thate does not beat any alternative in{a, b, c}. In anyT ′ improv-
ing d, it is not difficult to check that%SUC(T ′) = %SUC(T ) and no violation
of weak monotonicity can occur.
Suppose then thate beats one alternative in{a, b, c} and suppose w.l.o.g. that
eTa. If T ′ improvesd w.r.t. a, we still have%SUC(T ′) = %SUC(T ). If T ′

improvesd w.r.t. b thenSUC(X, T ′) = {a, b, c, d} so that no violation of
weak monotonicity can occur. IfT ′ improvesd w.r.t. c thenSUC(X, T ′) =
{a, b, c} so that no violation of weak monotonicity can occur.

3. If |Cl1(X, %SUC(T ))| = 4. We have|Cl2(X, %SUC(T ))| = 1. Weak mono-
tonicity of %SUC can only violated if an element inCl1(X, %SUC(T )) =
SUC(X,T ) is improved. SinceSUC is monotonic, this improved element
will remain uncovered inX. Thus, weak monotonicity cannot possibly be vi-
olated.
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4. If |Cl1(X, %SUC(T ))| = 5, weak monotonicity of%SUC follows from the
monotonicity ofSUC. 2

Remark 10
As conjectured by Perny (1995), it is possible to show that ifS is monotonic and
satisfiesβ+ then%S is weakly monotonic. This offers alternative sufficient con-
ditions onS guaranteeing the weak monotonicity of%S (since there are local,
monotonic choice procedures satisfyingSSP but violatingβ+, e.g.SES, it is
clear thatβ+ is not a necessary condition for weak monotonicity). It should nev-
ertheless be observed that:

– the result does not make use of the locality ofS, whereas the question of the
monotonicity of ranking by choosing procedures is only of particular interest
if S is local,

– it is well-known (see Moulin, 1986; Sen, 1977) thatβ+ is a very strong condi-
tion. For instance, in the case of tournaments, any choice procedureS sat-
isfying β+ and Condorcet must include the top cycleTC, i.e. the choice
procedure selecting inA the maximal elements of the asymmetric part of the
transitive closure onA of T . Clearly, such choice procedures are highly undis-
criminating.

Therefore, althoughβ+ andSSP are independent conditions, we do not pursue
this point here and leave to the interested reader the, easy, proof of the above claim
(seehttp://www.lamsade.dauphine.fr/˜bouyssou/ ).

Remark 11
It is not difficult to observe that the proof of proposition 1 makes no use of the
skew-symmetry property of comparison functions (when weak monotonicity is
properly redefined). It can therefore be easily extended to cover more general cases
(see Bouyssou, 1995), e.g. general valued (or fuzzy) binary relations (see Barrett
et al., 1990; Bouyssou, 1992a; Bouyssou and Pirlot, 1997). We do not explore this
point here.

3.2 Monotonicity

Let us consider the case of tournaments (see Laslier, 1997; Moulin, 1986). There
are neutral, monotonic andCondorcet choice proceduresS such that%S is mono-
tonic. This is clearly the case forTC which satisfies bothSSP andβ+. We already
observed thatTC is a very undiscriminating choice procedure for tournaments. It
would therefore be of interest to find more discriminating choice proceduresS so
that%S is monotonic. As show below, this proves difficult however.

Proposition 2 (Covering compatibility andAizerman)
LetS be a local, neutral and monotonic choice procedure satisfyingAizerman. If
S refinesUC then%S is not monotonic.
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Proof
A necessary condition for%S to be monotonic is thatS is properly monotonic.
Indeed, suppose that that, for someX, someπ ∈ G(X), somex, y ∈ X with
x 6= y, we havey /∈ S(A, π) andy ∈ S(A, πx↑), whereπx↑ improvesx w.r.t. π.
This would implyx ÂS(π) y andx ∼S(πx↑) y, violating monotonicity.

Thus, the claim will be proved if we can show that, for all neutral and mono-
tonic choice procedures refiningUC and satisfyingAizerman, there is a compar-
ison functionπ such thata ∈ S(X, π) b /∈ S(X, π) andb ∈ S(X,πa↑), i.e. thatS
is not properly monotonic. The following example suffices.

Example 9
Let X = {a, b, c, d, e}. Consider the tournamentT onX defined by:

aTd, aTe,

bTa,

cTa, cTb,

dTb, dTc, dTe,

eTb, eTc.

We haveUC(X, T ) = {a, c, d} andaTd, dTc andcTa. Therefore, sinceS re-
fines UC, we haveS(X, T ) ⊆ {a, c, d} ⊆ X. SinceS satisfiesAizerman,
S({a, c, d}, T ) ⊆ S(X, T ).

BecauseS is local and neutral, we know thatS({a, c, d}, T ) = {a, c, d}.
Hence we must haveS(X, T ) = {a, c, d}.

Consider now the tournamentV identical toT except thataV c. Using the same
reasoning as above, it is easy to check thatS(X,V ) = UC(X, V ) = {a, b, d}.
Henceb enter the choice set whilea is improved andS is not properly monotonic.

2

Remark 12
Perny (1998, 2000) has proposed a different negative result using a “positive dis-
crimination” condition on choice procedures that, in our framework, says that,
starting with any comparison function, it is always possible to obtain any alterna-
tive as the unique choice provided this alternative is “sufficiently” improved. This
negative result only deals withweakmonotonicity of%S however.

Remark 13
In a classic social choice context, Juret (2001, theorem 1) shows that monotonic
andrationalizablechoice procedures induce monotonic ranking by choosing pro-
cedures. This positive result seem to contrast with proposition 2. Let us however
observe that, when|X| ≥ 3, it easily follows from Moulin (1986) that there is no
local andCondorcet choice procedure satisfyingChernoff , i.e., for allπ ∈ G(X)
and allA,B ∈ P(X), [ A ⊆ B ] ⇒ S(B, π) ∩ A ⊆ S(A, π). Indeed suppose that
{x, y, z} ⊆ X and consider anyπ ∈ G(X) such thatπ(x, y) = 1, π(y, z) = 1
andπ(z, x) = 1. If S is local andCondorcet then we must haveS({x, y}, π) =
{x}, S({y, z}, π) = {y} andS({z, x}, π) = {z}. UsingChernoff implies that
S({x, y, z}, π) = ∅, a contradiction.



Monotonicity of ‘ranking by choosing’ 19

SinceChernoff is a necessary condition forS to be rationalized and given
the correspondence noted above between our setting andC1 andC2 social choice
functions, in the sense of Fishburn (1977), this limits the scope of the result in Juret
(2001) either toC1 andC2 choice procedures that violate locality orCondorcet
or to C3 choice procedures, i.e. procedures that are neitherC1 (not based on the
simple majority relation) norC2 (not based on the 0-weighted tournament based
on the profile).

Proposition 2 is fairly negative as long asAizerman and the refinement ofUC are
considered important properties. When this is not the case, it is possible to envisage
several choice procedures inducing a monotonic ranking by choosing procedure.
As an example, consider the well knownTC∗ choice procedure (see Schwartz,
1986) for weak tournaments selecting in any subset, the maximal elements of the
asymmetric part of the transitive closure (on that subset) of the asymmetric part
of the weak tournament. Simple examples show thatTC∗ violatesAizerman and
does not refineUC. Vincke (1992) proves that%TC∗ is monotonic (see also Ju-
ret, 2001). It should however be noticed that%TC∗ is a very particular ranking
by choosing procedure since the transitive closure operation has a clearly global
character, in spite of the progressive restriction on the set of alternatives. This type
of ranking by choosing procedures are studied in Juret (2001).

4 Application: the case of tournaments

In this section we apply the above results and observations to the case of tourna-
ments, i.e. we only consider choice procedures defined for comparisons functions
derived from tournaments. This case is of particular interest because such choice
procedures have been analyzed in depth and, in spite of the restrictiveness of the
antisymmetry hypothesis, the underlying choice problem is encountered in many
different and important settings.

Laslier (1997) studies in detail seven4 different choice procedures.We briefly
present them below referring the reader to Laslier (1997), Laffond, Laslier and
LeBreton (1995) and Moulin (1986) for precise definitions and results:

Top Cycle TC selecting inA the element of the first equivalence class of the
weak order being the transitive closure ofT onA,

Copeland Cop selecting inA the alternatives with the highest Copeland score in
the tournament restricted toA,

Slater SL selecting inA all alternatives having the first rank in a linear order on
A at minimal distance of the restriction ofT onA,

Uncovered SetUC selecting all the uncovered alternatives inA (Fishburn, 1977;
Miller, 1977),

4 Since it is not known whether the Tournament Equilibrium Set introduced in Schwartz
(1990) is a monotonic choice procedure, we do not envisage it here. We refer the reader to
Laffond, Laslier and LeBreton (1993b) for a thorough analysis of the many open problems
concerning this choice procedure
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Banks B selecting all alternatives inA starting a maximal transitive path ofT on
A (Banks, 1985),

Minimal Covering Set MCS selecting all alternatives in the unique covering set
included inA of minimal cardinality (Dutta, 1988),

Bipartisan Set BP selecting inA all alternatives in the support of the unique
Nash equilibrium of the symmetric two-person zero-sum game onA induced
by T (Laffond et al., 1993a).

We summarize the monotonicity properties of the ranking procedures induced by
these seven choice procedures in the following:

Proposition 3 (Ranking by choosing procedures for Tournaments)
1. %TC is monotonic,
2. %MCS and%BP are weakly monotonic but not monotonic,
3. %UC , %B , %COP and%SL are not very weakly monotonic.

Proof
Part 1 is left to reader as an, easy, exercise. The weak monotonicity of%MCS and
%BP results from proposition 1, since it is well-known that both procedures are
neutral, local, monotonic and satisfySSP . The fact that they are not monotonic
follows from proposition 2 since they both refineUC.

Part 3. We respectively showed in examples 1 and 7 that%Cop and%UC are
not very weakly monotonic. It is easy to see that example 7 also shows that%B

is not very weakly monotonic; we have%UC = %B for both tournaments used in
this example. It remains to show that%SL is not very weakly monotonic. We skip
the quite cumbersome details of the computation of Slater’s orders below. Details
can be found athttp://www.lamsade.dauphine.fr/˜bouyssou . We
do not know whether this example is minimal.

Example 10 (%SL is not very weakly monotonic)
Let X = {a, b, c, d, e, f, g, h, i}. Consider the tournamentT onX defined by:

aTb, aTe, aTg, aTh, aT i,

bT c, bTe, bTf, bTg, bT i,

cTa, cTd, cTe, cTf,

dTa, dTb, dTe, dT i,

eTf, eTh,

fTa, fTd, fTh, fT i,

gTc, gTd, gTe, gTf, gTh,

hTb, hTc, hTd, hT i,

iT c, iTe, iTg.

Linear orders at minimal distance ofT are at distanced = 10. There are
exactly40 such orders and we haveSL(X, T ) = {a, b, d, f, g, h}. It is clear that
the restriction ofT to {c, e, i} is the linear orderiT c, cTe, iTe. Hence, we have
i ÂSL(T ) c.

Consider now the tournamentV identical toT except thatiV a. Again skip-
ping details, linear orders at minimal distance ofV are at distanced = 10. There
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are exactly11 such orders. We haveSL(X, V ) = {b, g, h}. Similarly, we obtain
SL(X \ {b, g, h}, V ) = {c}. Thereforec ÂSL(V ) i. This shows that%SL is not
very weakly monotonic.

2

5 Discussion

Using a ranking by choosing procedure raises serious monotonicity problems.
Rather surprisingly, as shown by proposition 1, it is possible to isolate a class of
well-behaved choice procedures that lead toweaklymonotonic ranking by choos-
ing procedures. If weak monotonicity is considered as an attractive property, these
ranking procedures may well be good candidates to compete with other ranking
procedures. If monotonicity is considered of vital importance, then the situation is
more critical since, as shown in proposition 2, there are no local, neutral, mono-
tonic andAizerman choice procedure that is reasonably discriminatory being in-
cluded inUC and inducing a monotonic ranking procedure. This suggests several
directions for future research.

It would clearly be interesting to look for necessary and sufficient conditions
onS for %S to be (weakly) monotonic. In view of remark 9, this task is likely to
be complex since the repeated use ofS in order to build%S only uses the result
of the application ofS on a relatively small number of subsets. Another intriguing
problem would be to look for connections between the problem studied here and
the one of finding necessary and sufficient conditions guaranteeing thatS∞ is
monotonic. More research in this direction is clearly needed.

The difficulties encountered with ranking procedures induced by choice proce-
dures may also be considered as an incentive to study ranking procedures for their
own sake, i.e. independently of any choice procedure. Research in that direction
has already started (see Bouyssou, 1992b; Bouyssou and Perny, 1992; Bouyssou
and Pirlot, 1997; Bouyssou and Vincke, 1997; Henriet, 1985; Fodor and Roubens,
1994; Gutin and Yeo, 1996; Kano and Sakamoto, 1983; Rubinstein, 1980; Vincke,
1992) mainly considering ranking procedures based on scoring functions. This is
at variance with the advice in Moulin (1986) to focus research on ranking pro-
cedure based on the approximation of a tournament (or a comparison function)
by linear orders (or weak orders). This idea dates back at least to Barbut (1959),
Kemeny (1959), Kemeny and Snell (1962) and Slater (1961). Although it raises
fascinating deep combinatorial questions and difficult algorithmic problems (see
Barth́elémy, Gúenoche and Hudry, 1989; Barthélémy and Monjardet, 1981, 1988;
Bermond, 1972; Charon-Fournier, Germa and Hudry, 1992; Charon, Hudry and
Woirgard, 1996; Hudry, 1989; Monjardet, 1990), this line of research raises other
difficulties. As argued in Perny (1992) and Roy and Bouyssou (1993),

– the choice of the distance function should be analyzed with care as soon as one
leaves the, easy, case of a distance between tournament and linear orders (see,
e.g. Roy and Słowiński, 1993),

– the likely occurrence of multiple optimal solutions to the optimization problem
underlying the approximation is not easily dealt with,
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– the normative properties of such procedures are not easy to analyze (see, how-
ever, Young and Levenglick, 1978).

Hence, studying simpler procedures, e.g. the ones based on scoring functions
maybe a good starting point. In many common situations,rankingand notchoos-
ing is the central question and there is a real need for a thorough study of ranking
procedures.
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