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Abstract Procedures designed to select alternatives on the basis of the results
of pairwise contests between them have received much attention in literature. The
particular case of tournaments has been studied in depth. More recently weak tour-
naments and valued generalizations thereof have been investigated. The purpose
of this paper is to investigate to what extent these choice procedures may be mean-
ingfully used to define ranking procedures via their repeated use, i.e. when the
equivalence classes of the ranking are determined by successive applications of
the choice procedure. This is what we call “ranking by choosing”.

As could be expected, such ranking procedures raise monotonicity problems.
We analyze these problems and show that it is nevertheless possible to isolate a
large class of well-behaved choice procedures for which failures of monotonicity
are not overly serious. The hope of finding really attractive ranking by choosing
procedures is however shown to be limited. Our results are illustrated on the case
of tournaments.

Key words Ranking procedures — Choice procedures — Monotonicity — Strong
Superset Property — Ranking by choosing — Tournaments

1 Introduction

In many different contexts, it is necessary to make a choice between alternatives
on the sole basis of the results of several kinds of pairwise contests between these
alternatives. Among the many possible examples, let us mention:

— Sports leagues (games usually involve two teams),
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— Social choice theory, via the use 6fl or C'2 Social Choice functions (as
defined by Fishburn, 1977), in view of the well-known results in McGarvey
(1953) and Debord (1987h),

— Multiple criteria decision making using “ordinal information” (see Arrow and
Raynaud, 1986; Roy, 1991), in view of the results in Bouyssou (1996),

— Psychology with, e.g., the study of binary choice probabilities (see Luce, 1959;
Suppes, Krantz, Luce and Tversky, 1989).

This problem has received close attention in recent years most particularly when
the result of the pairwise contests may be summarizedtbyrmamenian excel-

lent account of this literature may be found in Laslier, 1997) and much is known on
the properties and interrelations of such choice procedures. This line of research
has been recently extended to weak tournaments (ties are allowed, see Peris and
Subiza, 1999; Schwartz, 1986) and valued generalizations of (weak) tournaments
(intensity of preference or number of victories may be taken into account, see Bar-
rett, Pattanaik and Salles, 1990; Basu, Deb and Pattanaik, 1992; Dutta, Panda and
Pattanaik, 1986; Dasgupta and Deb, 1991; Dutta and Laslier, 1999; de Donder,
Le Breton and Truchon, 2000; Fodor and Roubens, 1994; Kitainik, 1993; Lit-
vakov and Vol'skiy, 1986; Nurmi and Kacprzyk, 1991; Pattanaik and Sengupta,
2000; Roubens, 1989).

The related problem afinking alternatives on the basis of the results of pair-
wise contests between these alternatives has comparatively received much less at-
tention in recent years (see, however, Henriet, 1985; Rubinstein, 1980), although
it generated classical studies (see Kemeny, 1959; Kemeny and Snell, 1962; Slater,
1961) and is clearly in the spirit of Social Welfare Functi@nis Arrow (Arrow,

1963). This is a pity since most classical applications of choice procedures are
also potential applications for ranking procedures. This is, e.g., clearly the case for
sports since most leagues want to rank order teams at the end of season and not
only to select the winner(s). This also the case in the many situations in which,
although a choice between alternatives is to be made, alternatives may disappear
(e.g. candidates for a position may withdraw), so that there is a necessity of build-
ing a waiting list.

The problem of devising sound ranking procedures for such situations can be
studied without explicit reference to choice procedures (see Bouyssou, 1992b;
Bouyssou and Perny, 1992; Bouyssou and Pirlot, 1997; Bouyssou and Vincke,
1997; Henriet, 1985; Rubinstein, 1980; Vincke, 1992). This is in line with the ad-
vice in Moulin (1986) to clearly distinguish the question of ranking alternatives
from the one of selecting winners.

We shall be concerned in this paper with quite a different approach to ranking
on the basis of pairwise contests that is intimately connected with choice proce-
dures. Several authors have indeed suggested (see Arrow and Raynaud, 1986; Roy,
1991) that a ranking procedure could well be devisedgcessive applications
of a choice procedure. The most natural way to do so goes as follows:

— Apply the choice procedure to the whole set of alternatives. Define the first
equivalence class of the ranking as the chosen elements in the whole set.
— Remove the chosen elements from the set of alternatives.
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— Apply the choice procedure to the reduced set. Define the second equivalence
class of the ranking as the chosen elements in the reduced set.

— Repeat the above two steps to define the following equivalence classes of the
ranking until there are no more alternatives to rank.

This is what we call “ranking by choosing”. An example may help clarify the
process.

Example 1 (Ranking by choosing with Copeland)
Let X = {a,b,c,d, e, f,g}. Consider the tournamefiton X defined by:

aTlb,aTf,
bTc,bTd, bTe,bT f,
cl'a,cTe,cTf, cTyg,
dTa,dTec,dTe,dTf,dTg
eTa,elf,eTyg,
ITg,
gTa,gTh.

Suppose that you want to use the Copeland choice procétiyed, T') selecting
the elements imd having a maximal Copeland score (i.e. maximal outdegre€) in
restricted toA as a basis for ranking alternatives.

Applying the above ranking by choosing algorithm successively leads to:

Cop(X,T) = {d},

Cop(X \{d},T) = {c},
Cop(X \{d,c},T) = {e},
Cop(X\{d,c,e},T) ={a,g},
Cop(X \ {a,d,c,e, g}, T) = {b},
Cop(X \{a,b,c,d,e, g}, T)={f}.

Hence we obtain the ranking (using obvious notatiah}: ¢ > ¢ > [a ~ g] >
b = f. This result is clearly different from the one that we would have obtained
ranking alternatives using their Copeland scoreXin.e.:

d=[b~cl=e>la~g] - f,

although both rankings clearly coincide on their first equivalence class.

Using ranking by choosing, we may associate a well-defined ranking procedure
to every choice procedure. A natural question arises. If the choice procedure has
“nice properties”, will it also be the case for the induced ranking procedure? This
is the subject of this paper.

Most ranking procedures that are used in practice are not of this ranking by
choosing type. Most often (take the example of most sports leagues) they are rather
based on some kind afcoring functionthat aggregates into a real number the
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results of the various pairwise contests, e.g. one may rank alternatives according
to their Copeland scores.

Although ranking procedures induced by choice procedures may seem com-
plex when compared to those based on scoring functions, several authors have
forcefully argued in favor of their reasonableness (see Arrow and Raynaud, 1986;
Roy, 1991) and many of them were proposed (see Arrow and Raynaud, 1986;
Debord, 1987a; Matarazzo, 1990; Roy, 1978). They are, in general, easy to com-
pute and rather easy to explain. They are—structurally—insensitive to a possible
withdrawal of (all) best ranked alternatives (see Vincke, 1992). Furthermore, if
the answer to the preceding question were to be positive, there would be a clear
interest in using well-behaved choice procedures as a basis for ranking procedures.

The situation is however more complex. The potential drawbacks of these rank-
ing by choosing procedures should be obvious: their very conception implies the
existence of discontinuities together with a progressive impoverishment of infor-
mation from one iteration to another. This is likely to create difficulties with most
wanted normative properties like monotonicity as was forcefully shown by Perny
(1992). The purpose of this paper is to explore the extent of these difficulties con-
centrating on monotonicity. An example will clarify how bad the situation can be.

Example 1 (continued)

Consider the tournamehtidentical toI" except that.V d. We now haveCop(X, V)
= {b, ¢,d}. We hada > b with T. We now obtairb > a with V, while the position
of a has clearly improved when going frofto V. This is a serious monotonicity
problem.

The problem studied in this paper is reminiscent of the well-know monotonic-
ity problems encountered in electoral procedures with “run-offs”, e.g. the French
system of plurality with run-off, the Hare, Coombs and Nansson procedures (see
Fishburn, 1977; Moulin, 1988) that also involve discontinuities. It is well-known
that they often have a disappointing behavior with respect to monotonicity (see
Fishburn, 1977, 1982; Moulin, 1988; Saari, 1994; Smith, 1973). Although these
difficulties are linked with our problem, electoral procedures with run-offs are
choice procedures and not ranking procedures. Hence the problem studied here
has distinctive characteristics.

Although many ranking by choosing procedures have been suggested, their
study has received limited attention so far. Perny (1992) showed that most proce-
dures of this type proposed in the literature violate monotonicity. He suggested to
study the problem more in depth. Shortly after, we proposed in Bouyssou (1995)
some results in that direction (since more powerful results appear difficult to ob-
tain, this text is a revised and simplified version of Bouyssou (1995)). More re-
cently, the problem was tackled in Durand (2001) and Juret (2001) in a Social
Choice context.

We show here that, rather surprisingly, there are non-trivial and rather well-
behaved choice procedures leading to ranking by choosing procedures satisfying
a weak form of monotonicity. The hope of finding really attractive ranking by
choosing procedures is however shown to be limited.
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The paper is organized as follows. The next section introduces our main defi-
nitions and elucidate our notation. Our results are collected in section 3. We apply
our results to the classical case of tournaments in section 4. A final section dis-
cusses our findings.

2 The setting

Throughout the papefX will denote afinite set with|X| = m > 1 elements.
Elements ofX will be interpreted as alternatives that are to be compared on the
basis the results of several kinds of pairwise contests. We dengtéXythe set

of all nonempty subsets of.

2.1 Pairwise contests between alternatives

Pairwise contests between alternatives arise in many different contexts. Therefore,
it is not surprising that many different models have been proposed to summarize
them. The most simple ones consist of binary relations: tournaments (see Laslier,
1997; Moulin, 1986), weak tournaments (see Peris and Subiza, 1999), reflexive
binary relations (see Vincke, 1992). More sophisticated models use real-valued
functions onX2: weighted tournaments (see de Donder et al., 2000), comparison
functions (see Dutta and Laslier, 1999) or general valued relations (see Kitainik,
1993; Fodor and Roubens, 1994; Roubens, 1989). Many of these models can be
justified by results saying that some type of aggregation methods lead to all (or
nearly all) instances of these models (see Bouyssou, 1996; Deb, 1976; Debord,
1987b; McGarvey, 1953).

Although our results can be extended to more general cases (see Bouyssou,
1995), we use throughout the paper the comparison function model presented in
Dutta and Laslier (1999). It is sufficiently flexible to include:

— all complete binary relations and, hence, to deal witl€dllsocial choice func-
tions in the sense of Fishburn (1977), i.e. all social choice functions based on
the simple majority relation of some profile of linear orders and

— all 0-weighted tournaments, as defined in de Donder et al. (2000) and, hence,
to deal with most (in fact with what de Donder et al. (2000) ca{l&d5 social
choice functions)”2 social choice functions in the sense of Fishburn (1977),
i.e. social choice functions that are based on a matrix giving for each ordered
pair (x, y) of alternatives the number(z, y) being the difference between the
number of linear orders in the profile for whichis ahead ofy minus the
number of linear orders for whichis ahead of:.

These two examples are detailed below. We refer to Dutta and Laslier (1999) for
more possible interpretations.

A comparison functionr on X is a skew-symmetric real-valued function on
X2 (i.e. such thatr(z,y) = —m(y, ), forallz, y € X). The set of all comparison
functions onX is denotedj( X ). We denote byr | 4 the restriction ofr on A C X,

i.e. the functionr | 4 on A such thatr |4 (z,y) = m(x,y), forallz,y € A.
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Example 2 (Weak Tournaments)

A weak tournament’ on X is a complete{Vy or yVz, for all z € X) binary
relation! on X. A tournameniis an antisymmetrica(V y andyVz = z = y, for
all z,y € X) weak tournament. We denof X) (resp.WT(X)) the set of all
tournaments (resp. weak tournaments)0nA transitive tournament (resp. weak
tournament) is a linear order (resp. weak order). We Ag&(X) the set of all
weak orders orX .

The interest in weak tournaments is explained by McGarvey’'s theorem (see
McGarvey, 1953) ensuring that afy € WJ(X) is the simple majority relation
of some profile of linear orders.

Note that any comparison function € §(X) induces a weak tournament
V € WIT(X) letting zVy < w(x,y) > 0. Conversely, any weak tournament
V € WT(X) induces a comparison functior,, € G(X) defined letting, for all
z,y € X,

1 ifzVyand Not[yVx],
mv(z,y) =< 0 if zVyandyVz, (1)
-1 ifyVzand Not[zVy].

We sometimes abuse notations in the sequel writingstead ofry when dealing
with weak tournaments.

Example 3 §-weighted tournaments)

A 0-weighted tournament (de Donder et al., 2000)X%ris a complete digraph
which set of vertices isX and in which each ar¢z, y) has a skew symmetric
integer valuationn(x, y). Using Debord’s theorem (see Debord, 1987b), a&ny
weighted tournament with all(x, y) having the same parity is the net preference
matrix of some profile of linear orders oXj, i.e. there is a profile of linear orders
such thatn(z, y) is the number of linear orders in the profile for whigh> y
minus the number of linear orders in the profile for which- x. Clearly the set
of comparison functions includes all 0-weighted tournaments.

Definition 1 (Improving the position of an alternative)
Letm and#’ be two comparison functions oXi. We say thatr’ improvese € X
wrt.wifforall y,z € X\ {z},

' (y,2) = 7(y, 2) andr'(z,y) > 7(z,y).

We often denote®! a comparison function improving € X w.r.t. .

Letm € §(X), A C X, x,y € A. We say that: coversy in A if n(z,y) > 0
and, forallz € A\ {x,y}, 7(z, z) > 7(y, 2). Itis clear that the covering relation
thus defined is asymmetric and transitive. Hence its has maximal elements. We
denoteUC(A, ) C A the set of maximal elements of the covering relatiodin

1 We follow here the widely used terminology of Moulin (1986) and Peris and Subiza
(1999) although the termatchsuggested by Monjardet (1978) and Ribeill (1973) seems
more satisfactory. Note that we work here, for commodity, wifiexive(weak) tourna-
ments although most authors prefer the asymmetric version (see Laslier, 1997). This has no
consequences in what follows.
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This definition, due to Dutta and Laslier (1999), extends to comparison functions
a well-known concept due to Fishburn (1977) and Miller (1977, 1980).

We say that: sign-covers; in A for r if it coversy for the comparison function
Tsign defined by:

1 ifw(x,y) >0,
7T-sig'n(xa y) = 0 if W(I7y) = Oa
-1 ifxw(z,y) <0,

for all x,y € X. Itis clear that the sign covering relation is asymmetric and
transitive and, therefore, has maximal elements. We de$iG€ (A, 7) C A the

set of maximal elements of the sign covering relatiorinlt is easy to see that
SUC(A,n) CUC(A,n), while the two sets coincide for weak tournaments.

A Condorcet winnein A € P(X) for a comparison functiom € §(X) is an
alternativer that defeats all other alternatives.hin pairwise contests, i.e. such
thatm(x,y) > w(y,z), forally € A\ {«}. It is clear that the set of Condorcet
WinnersCond(A, ) is either empty or is a singleton.

Remark 1

When there is a Condorcet winner, it is clear thahd(X, 7) = SUC(A, w) and,
hence,Cond(X,n) C UC(A,n). The uncovered sdfC(A, ) may however
contain other alternatives.

2.2 Ranking procedures

A ranking procedure (for comparison functions®j - associates with each com-
parison functionr on X a weak order(w) € WO(X), i.e. is a function from
§(X) into WO(X). The asymmetric (resp. symmetric) part;of=) is denoted
=(m) (resp.~(m)).

Example 4 (Ranking procedures induced by a scoring function)

Many ranking procedures are basedsgoring function®n X . A simple? scoring
function associates with eaeh € §G(X), eachA C X and eachr € A a real
numberScorer(z, A, ) = Fiz|(7(2,y)yca\{«}), WhereFj, is a real-valued
function onRI4!=1 beingsymmetridn its arguments andondecreasingn all its
arguments. The ranking procedure- associated t&'core » ranks alternatives in
X according to their scor8corep(x, X, ), i.€.,

x Zp(m) y < Scorep(x, X, m) > Scorer(y, X, ), 2

forall z,y € X and allr € §(X).
Two scoring functions that are often used are:

— theCopelandscore in which? = > and

2 More general scoring functions can be defined having for argument the whole com-
parison functionr, as in methods based on Markov chains or on eigenvalues (see Laslier,
1997). We do not envisage them here and, hence, we omit “simple” in what follows.
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— theKramerscore in which?' = min.

Note that using the Copeland score on a O-weighted tournament corresponding to
a net preference matrix of a profile of linear orders amounts to ranking alternatives
according to their Borda score (see e.g. Young, 1974).

By definition, the functionf| x| used to comput&corer (z, X, ) is indepen-
dent ofx and symmetric in its arguments. Therefore, such ranking procedures do
not depend on a particular labeling of the alternatives. Furthermore, 8irge
have been supposed to be nondecreasing in all its arguments, the ranking will re-
spond in the expected direction to an improvement @f . This is formalized
below.

Let ¥'(X) be the set of all one-to-one functions &nh(i.e. permutations). Given a
comparison functionr and a permutationr € X(X), we definer? as the com-
parison function defined letting, for all y € X 77 (o (x),0(y)) = w(x, y).

Definition 2 (Neutral ranking procedures)
A ranking procedurez on X is said to beneutralif, for all for all = € §(X) and
allo € X(X),z =(m) y < o(z) Z(77) o(y).

Observe that with a neutral ranking procedure, if the comparison function is totally
indecisive, i.e. ift(z,y) = 7(y,z) = 0, for all x, y € X, then this indecisivity is
reflected in the weak order(n), i.e.z Z(7) y, forall z,y € X.

Definition 3 (Monotonic ranking procedure)
A ranking procedure- on X is said to be:

— strictly monotonidf
v Z(m)y =z -(7) y,

— monotonig if
zz(r)y =z (7)) yand
z=(m)y=z=(7") vy,

— weakly monotonidf
xZ(m)y =z z(7)y,

— very weakly monotonidf
z=(m)y =z (1) y,

forall z,y € X and allw, 7’ € G(X) such thatr # 7’ and=’ improvesr w.r.t.
(see definition 1).

Strict monotonicity requires that any improvement of the position of an alterna-
tive is sufficient to break ties irr. This is a very strong condition, although it
proves useful to characterize ranking procedures based on scoring funigtigns
that are increasing in all arguments (see Bouyssou, 1992b; Henriet, 1985; Rubin-
stein, 1980). Monotonicity implies weak monotonicity which in turn implies very
weak monotonicity. As already observed, it is easy to build a monotonic ranking
procedure using a scoring function. This will clearly be more difficult with rank-
ing by choosing procedures in view of example 1. In a weakly monotonic ranking
procedure, “efforts do not hurt”, since the position of the improved alternative
cannot deteriorate: it may only happen that beaten alternatives now tie with the
improved one. Very weak monotonicity only forbids strict reversalg iafter an
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improvement. Although this is a very weak condition, example 1 shows that it can
be violated with seemingly reasonable ranking by choosing procedures.

Remark 2

Durand (2001), in a classic social choice context, proves a negative result on the
existence of strictly monotonic ranking by choosing procedure. His ustriof
monotonicity tends to limit the scope of this result however.

Consider a weak ordd#” € WO(X) and its associated comparison function
mw as defined by (1). Sinc# is a weak order, it seems obvious to require that
any reasonable ranking procedure should not alter this ranking.

Definition 4 (Faithful ranking procedure)

A ranking procedure- on X is said to befaithful if, for all weak ordersiV €
WO(X)and allz,y € X,z Z(mw) y & = W y. A ranking procedure is said
to befaithful for linear ordersf the above condition holds for antisymmetric weak
orders, i.e. linear orders.

Many other conditions can obviously be defined for ranking procedures (for an
overview, see Bouyssou and Vincke, 1997; Henriet, 1985; Rubinstein, 1980; Vincke,
1992). They will not be useful here. The analysis of ranking by choosing proce-
dures clearly calls now for a closer look at choice procedures.

2.3 Choice procedures

A choice procedure (for comparison functions @) S associates with each com-
parison functionr € §(X) and each nonempty subséte P(X) a nonempty set
of choser? alternatives included irl. More formally, achoice procedure on X

is a function fromP(X) x §(X) into P(X) such that, for alld € P(X) and all
m € §(X), S(A,m) C A. Given two choice procedure® andS, we say thats’
refinesS if, forall A € P(X) and allr € §(X), S'(4,7) C S(A, ).

Example 5 (Choice procedures induced by scoring functions)

Like with ranking procedures, many choice procedures are based on simple scoring
functions (again, we do not envisage here scoring functions that depend on the
entire comparison functiom). Using the notation introduced in example 4, we
simply have, for alld € P(X) and allz € A,

x € Sp(A, ) < Scorep(x, A, ) > Scorer(y, A, ), forally € A, (3)

Such choice procedures are clearly independent of the labeling of alternative and
have obvious monotonicity properties. Furthermore, the chosen elemehtsiiy
depends on the restriction| 4 of 7 to A. We formalize these properties below.

Definition 5 (Properties of a choice procedure)
A choice proceduré on X is said to be:

— neutralif
reSA ) & o(x) e S(A, ),

3 We use the terrshosereven if there may be more than one alternative o, )
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— localif
[mla =7'|a] = S(A,7) =S(4,7),
— Condorcet if
Cond(A,m) # & = S(A,m) = Cond(A, ),
— monotonicif
v €S(A,7m) = x € S(A, ),
— properly monotonidf it is monotonic and
[x #yandy ¢ S(A,m)] =y ¢ S(A77T$T)’

forall m,7’ € §(X), all A € P(X), all 0 € ¥(X), all z,y € X and all
7%l € G(X), with 7*T # 7, improvingz w.r.t. 7.

We refer to de Donder et al. (2000), Dutta and Laslier (1999), Henriet (1985),
Laslier (1997), Moulin (1986) and Peris and Subiza (1999) for a thorough overview
of the variety and the properties of neutral, lo€@ndorcet and monotonic choice
procedures. An example of such procedureslis”' (A, 7) (see Dutta and Laslier,
1999) as defined above.

Remark 3

Note that, with the question of ranking by choosing procedures in mind|ocdy

choice procedures raise problems. Using a non local choice procedure, e.g. the one
selecting in allA € P(X) alternatives of maximal Copeland scoreXn instead

of A, it is easy to obtain a monotonic ranking by choosing procedure.

Choice procedures may be viewed as associatidgoice function'see Moulin,

1985) onX to every comparison functiom defined onX. Hence, whermr is kept

fixed, classical properties of choice functions may be transferred to choice proce-
dures. We recall some of them below, referring the reader to Aizerman (1985), Aiz-
erman and Aleskerov (1995), Malishevski (1993), Moulin (1985) and Sen (1977)
for a detailed study of these conditions and their relations to the classical one
guaranteeing that a choice functions can be rationalized, i.e. that there is a com-
plete binary relation otX such that chosen elements in any subset are the greatest
elements of this binary relation restricted to that subset.

Definition 6 (Choice functions properties of choice procedures)
A choice proceduré on X is said to satisfy:

— Strong Superset Property S P) if
[S(A,7) CBC A]= S8(B,n) =S(A,n),
— Aizerman if
[S(A,7) CBC A]= S(B,nr) CS(A,n),
— ldempotencyif
S(S(A,m),m) =S(A,m),
- Bt if
[ACBandANS(B,n) # @] = S(A,7) CS(B,n),
forall 7 € §(X)and allA, B € P(X).

Remark 4
We follow here the terminology of Moulin (1985) that has gained wide acceptance.
Let us however observe that the nar&erman, is especially unfortunate since,



Monotonicity of ‘ranking by choosing’ 11

in fact, M. A. Aizerman and his collaborators apparemigywerused this condition
in their classical works on choice functions; on the contrary, they made central use
of SS P under the nam®utcast(see Aizerman and Malihevski, 1981; Aizerman,
1985; Aizerman and Aleskerov, 1995). We follow Sen (1977)Fbr

Let us observe that'SP clearly implies bothAizerman and ldempotency
The reverse implication is also true (see Aizerman and Aleskerov, 1995; Dutta
and Laslier, 1999; Moulin, 1985). On the other hasth P and 5T are inde-
pendent conditions (see Aizerman, 1985; Aizerman and Aleskerov, 1995; Mali-
shevski, 1993; Sen, 1977). Clearly, none of these conditions is sufficient to imply
that the choice function can be rationalized (for such conditions, see Aizerman and
Aleskerov, 1995; Moulin, 1985; Sen, 1977).

Remark 5 (Refining choices)
Let S be a choice procedure oxi and defineS! = S. For all integers: > 2, we

defineS* andS> letting, for allA € P(X) and allr € §(X),

SF(A,m) = S(S* (A, 7), ) and
S>(A,7m) =[] S"(A,m).

k>1

It is clear thatS* andS> are choice procedures. They are obtained by successive
refinements of. It is well-known that whers is monotonic but not idempotent,
it may happen thaf°° is not monotonic. This the case wiBlUUC' (see Laslier,
1997).

An apparently open question is to find necessary and sufficient conditions on
S so that this is the case. This problem is clearly related to the already-mentioned
monotonicity problems encountered in electoral procedures with runoffs. We do
not study it here.

2.4 Ranking procedures induced by choice procedures

Ranking by choosing procedures build a weak order by successive applications of
a choice procedure, its first equivalence class consisting of the elements chosen in
X, the second equivalence class of the elements chosen after the elements chosen
at the first step are removed frof and so on. We need some more notation in
order to formalize this idea. Lél/ be a weak order on a s&t. We denote by

Cle (Y, W) (wherek is an integee> 1) the elements in thi-th equivalence class

of W,i.e. Cly(Y, W) ={z €Y : 2Wy,Vy € Y} and, for allk > 2,

k—1
Clu(Y, W) ={x € Zp_1 =Y \ [|J CL(Y,W)]: aWy,¥y € Zp_1}.
(=1

Note thatCl, (Y, W) is always nonempty and that a weak order is clearly uniquely
defined by its ordered set of equivalence classes.
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Similarly, we denoteR (X, S, ), the unchosen elements & with 7 after
k € N applications ofS, i.e.

Ro(X,S,m) =X,
Ri(X,8,7) = Rp—1(X,S,7) \ S(Rp—1(X, S, ), ),

with the understanding th&(@, 7) = @. Note thatR (X, S, ) is nonempty by
construction.

Definition 7 (Ranking procedure induced by a choice procedure)
LetS be a choice procedure oii. The ranking procedure,s induced bys is the
ranking procedure such that, for atl € (X)) and all integerst > 1,

Clk(XviS) = S(Rk—l(Xv‘Saﬂ—)vTr)'

Some properties af are easily transferred {9 s.

Lemma 1 (Transferring properties from choice procedures to ranking procedures)
— If Sis neutral then- s is neutral,
— If Siis Condorcet thenz-s is faithful for linear orders,
— If Sis based on a scoring function with all functiofg, being increasing in
all arguments therr s is faithful.
— If Sis alocal, neutral,Aizerman and refined/C then’s is faithful.

Proof

The first three assertions are immediate from the definitions. Let us prove the last
one. Suppose thal’ is a weak order. It is clear th&tC(X, W) = Cl; (X, W).
SincesS refinesUC we must haveS (X, W) C Cly (X, W). We haveS(X, W) C
Cli(X,W) C X. Hence, sinc& is Aizerman, S(Cl1 (X, W), W) C S(X,W).
Since S is local and neutral, we know th&(Cl, (X, W), W) = Cli(X,W).
Hence S(X, W) = Cl; (X, W). The conclusion follows from a repetition of this
argument. O

Unfortunately, as shown in example 1 above, monotonicity is not transferred as
easily from choice procedures to ranking procedures. Since monotonicity seems to
be a vital condition for the reasonableness of a ranking procedure, we investigate
below which choice proceduréshave an associated ranking procedyye that

is monotonic or weakly monotonic.

Remark 6

It should be observed that given a scoring funct#enre - the ranking procedures
~r and s, may have quite different properties. Considering for instance the
Kramer scorescore i, and its extension to choice procedures, it is easy to see that
>~ min IS Not faithful (since all alternatives not belonging to the first equivalence of
a weak order are tied withr,;,). On the contrary, it is clear that thats_. is
indeed faithful.

min
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3 Results
3.1 Weak monotonicity

Our aim is to find conditions on choice procedures that would guarantee that the
ranking procedures they induce are weakly monotonic. As already shown by ex-
ample 1, there are choice procedusahat are neutral, local, (properly) monotonic
and Condorcet while s is not even very weakly monotonic. Guaranteeing that
s is weakly monotonic is therefore not as trivial a task as it might appear at first
sight.

Our central result in this section says that any local and monotonic choice pro-
cedure satisfying S P generates a ranking procedure that is weakly monotonic.

Proposition 1 6.5 P and weak monotonicity)
If S is local, monotonic and satisfigsS P then- s is weakly monotonic.

Proof

Suppose thaf is local, monotonic and satisfi€sS P and that- s is not weakly
monotonic. By definition this implies that for somes (X ), somez,y € X and
somer®! improvingz € X w.r.t. m, we haver =4(r) y andy =s(7*1) z.

SinceS is monotonic, it is impossible that € Cly (X, (7)) = S(X,7)
since this would imply: € Cl; (X, og(7*1)) = S(X, 7*1), which violatesy = s
(m®1)z. By construction, we know that ¢ Cl; (X, =g(7*1)) = S(X, n*T).

Let Z = X \ {z}. We haver | = =*!|;. SinceS is local, this implies
S(Z,m)=8(Z, 7).

Sincex ¢ S(X, ), we haveS(X,7) C Z C X andSSP impliesS(X, ) =
S(Z, ). Similarly, we know that: ¢ S(X, 7*1) so thatS(X,7*1) C Z C X and
SSP impliesS(X,n%") = S(Z, 7). BecauseS(Z, ) = S(Z, =), we have
S(X,m*") = S(X, ) and, hence(l; (X, zs(m)) = Cl1(X, (7). Note, in
particular thaty ¢ Cl; (X, =(m*1)).

Itis now impossible that € Cly(X, 2Z()). Indeed this would imply that €
S(Ry(X,S, ), ), sothat, using the monotonicity 8t z € S(R; (X, S, ), 71).
Since Ry (X,S,n) = Ry (X,S,n*1), this would implyz € Cly(X, = (7%1)),
which would contradicy =s (7%1)z.

BecauseS is local, the above reasoning can now be applie®toX, S, ) =
R1(X,S, 7). As above, this leads t615(X, = s(m)) = Cla(X, ms(7%")) and
y ¢ Cla(X, 2 (x"1)).

Iterating the above reasoning easily leads to a contradiction. O

Let us note that in the literature on tournaments it is possible to find rather well-
behaved choice procedures that are neutral, local, monotonic while satiSfyifg

(e.g. MCS, BP, as defined below, see Laslier, 1997). For general comparison
functions, Dutta and Laslier (1999) also present several such procedures. Proposi-
tion 1, therefore shows that there are many well-behaved weakly monotonic rank-
ing procedures induced by choice procedures. Let us give an example of such a
procedure.
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Example 6 (Sign Essential set)

The bipartisan seB P defined for tournaments (see Laffond, Laslier and LeBre-
ton, 1993a) has recently been generalized to comparison functions (see Dutta and
Laslier, 1999; de Donder et al., 2000). Observe that any comparison function
induces a symmetric two-person zero-sum game (in which each of the two play-
ers have the set of strategi&sand the payoff functions are given hyz, y) and

7(y, ). The same is clearly true fai;g,.

It is well-known that all such games have Nash equilibria in mixed strategies
(see von Neumann and Morgenstern, 1947). The Sign Essentidl B8) consists
in all pure strategies that are played with strictly positive probability in one of the
Nash equilibria in the symmetric two-person zero-sum game induced;hy.

Dutta and Laslier (1999) show th&tZ'S defines a choice procedure that is
monotonic,Condorcet and satisfies'S P, on top of being clearly local and neu-
tral. It is not difficult to show that it refine§ C (as well as several other reasonable
choice procedures). Hence, using lemma 1 and proposition 1, we knoyy $hat
is a neutral, faithful and weakly monotonic ranking procedure. It therefore quali-
fies as a very reasonable ranking by choosing procedure.

Remark 7 flizerman cannot be substituted 85 P)

The above proposition does not hold Afizerman is substituted toSSP. It is
well-known thatSU C' is monotonic and satisfie$izerman but violatesS'S P (see
Laslier, 1997). The following example shows thg§y ¢ is not even very weakly
monotonic.

Example 7 £ su ¢ is not very weakly monotonic)

Let X = {a,b,¢,d,e, f, g}. Consider the tournamefiton X defined by:

alb,ald,ale,aT f,alyg,
ble,bTd, bTe,bT f,bTg,
cl'a,cle,cTf, cTyg,
dTc,dTe,
eT'f,
frd, fTg,
gld, gTe.
Itis easy to check, using the comparison function defined by (1)Stat( X, T) =
{a,b,c}, SUC(X \ {a,b,c},T) = e, f,g}. Hence, we hav§ sy (T) d.
Consider now the tournamef identical toT" except thateVb. We have:

SUC(X,V) = {a,b,c,d}, so thatd -syc (V) e. This shows that sy is not
very weakly monotonic.

Remark 8 (Monotonicity is not implied)

It is clearly tempting to look for a result similar to proposition 1 involving the
monotonicity of-s. This problem is far more difficult than with weak monotonic-
ity and we only have negative results on that point. Proposition 2 below implies
that proposition 1 is no longer true if monotonicity is substituted to weak mono-
tonicity.
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Remark 9 §SP is not necessary)
For local and monotone choice proceduresSSP is a sufficient condition for
7~ s to be weakly monotonic. It is not necessary however, even when attention is
restricted to the, well-structured, case of tournaments. Let us consider this case
and show that there are, on some s€tchoice procedures violatingS P while
being weakly monotonic. We abuse notation in the sequel and Writstead of
i
Suppose thatX| = 5. The following example shows th&t/C' may violate
SSP.

Example 8 §UC violatesSS P when| X | = 5)
Let X = {a,b,c,d, e}. Consider the tournamefiton X defined by:

aTb,aTd,
bT'e,bTe,
cl'a,cTd,cTe,
dTb,dTe,
eTa.

We haveSUC (X, T) = {a,b, ¢,d} (eis covered by) andSUC ({a, b, ¢,d},T) =
{a, b, c} (dis covered by:). This violatesSSP sinceSUC(X,T) C {a,b,c,d} C
X butSUC({a,b,c,d}, T) ={a,b,c} # SUC(X,T) = {a,b,c,d}.

Let us now show that, whelX| < 5, Z sy is weakly monotonic. It clearly
suffices to show that weak monotonicity holds when an alternative is improved
w.r.t. a single other alternative. The proof uses the following well-known facts on
uncovered elements in a tournament.

Lemma 2 (Miller (1977, 1980); Moulin (1986))

1.z € SUC(AT)iffforall y € A\ {x}, eitherzTy or [Tz and zT'y], for
somez € A (2-step principle).

2. SUC(A,T) ={a}iff Ty foraly € A\ {z}.

3. If|SUC(A,T)| # 1then|SUC(A,T)| > 3 and we haveCond(SUC (A, T),
Tlsvc(a,r)) = 2.

Lemma 3
If | X| <4, Zsuc is weakly monotonic.

Proof
If |X| < 3, the proof easily follows from lemma 2 and the monotonicitySéfC'.
If | X| = 4, three cases arise by lemma 2.

1 If|CL(X, Zgpe(T))] = 1. Let{a} = Cli(X, Zsuc) = SUC(X,T). Since
a is a Condorcet winner iX, it is impossible to improve. If any b # « is im-
proved w.r.t.a, it becomes uncovered, using lemma 2, and weak monotonicity
of Z sy ¢ cannot possibly be violated. 8f£ a is improved w.r.t. an alternative
different froma, thena remains the Condorcet winner and it is clear that weak
monotonicity of> sy cannot possibly be violated.
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2. If |Clh(X, Zgye(T))| = 3 and thereford Clo (X, gy (T))| = 1. Weak
monotonicity of sy can only be violated if an element @, (X, g (T)) =
SUC(X,T) is improved. SinceSUC' is monotonic, this improved element
will remain uncovered inX. Thus, weak monotonicity cannot possibly be vi-
olated.

3. If |Clh(X, Zsye(T))] = 4, weak monotonicity ofZ sy ¢ follows from the
monotonicity of SUC. a

Lemma 4
If | X| =5, Zsuc is weakly monotonic.

Proof
Four cases arise by lemma 2.

1 If|Ch(X, Zgpe(T)) = 1. Let{a} = Cli(X, Zsvuc) = SUC(X,T). Since
a is a Condorcet winner iX, it is impossible to improve. If an alternative
notin Cly (X, Z sy (1)) is improved w.r.ta, it becomes uncovered, because
of part 1 of lemma 2. Thus weak monotonicity cannot be violated. If an al-
ternative not inCl, (X, Z g (T)) is improved w.r.t. another alternative not
in Cli(X, Zsyo(T)), itis clear that after the improvementemains a Con-
dorcet winner and, thus, chosen aloneXinin view of lemma 3, weak mono-
tonicity cannot possibly be violated.

2. If |CL(X, Zgpe(T))| = 3 and, therefore|Cla(X, Zopye(T))| = 1 and
|Cl3(X, Zgye(T))| = 1. Let X = {a,b,c,d, e} and suppose w.l.o.g. that
Cli(X, iSUC(T)) = SUC(X,T) = {a,b,c}, Cla(X, iSUC(T)) = {d}
and Cl3(X, Zsyo(T)) = {e}. We know from lemma 2 that there is a cir-
cuit linking a, b and ¢ and thatdTe. We suppose w.l.o.g. that the circuit is
alb,bTc, cTa.

It is impossible to improve: and to violate weak monotonicity. In view of
part 1 of lemma 2, observe thdtcan beat at most one alternative{im b, ¢}
because we know that ¢ SUC(X,T). If d beats exactly one alternative in
{a, b, c} any improvement ofl will make it uncovered. Hence, weak mono-
tonicity cannot be violated. Suppose therefore thdbes not beat any alterna-
tive in {a, b, c}. Because ¢ SUC(X,T), e can beat at most one alternative
in {a,b,c}.

Suppose first thatdoes not beat any alternativefin, b, c}. In anyT” improv-
ing d, it is not difficult to check thaiz ¢, (1") = Z gy (T) and no violation
of weak monotonicity can occur.

Suppose then thatbeats one alternative ifu, b, ¢} and suppose w.l.0.g. that
eTa. If T improvesd w.r.t. a, we still havez ¢, (T") = Zgpa(T). If T
improvesd w.r.t. b then SUC(X,T") = {a,b,c,d} so that no violation of
weak monotonicity can occur. If” improvesd w.r.t. ¢ thenSUC(X,T') =
{a, b, c} so that no violation of weak monotonicity can occur.

3. If|CLh(X, Zgye(T))| = 4. We have| Cla (X, Zgpyo(T))] = 1. Weak mono-
tonicity of ZZsyc can only violated if an element 07, (X, Z gy (T)) =
SUC(X,T) is improved. SinceSUC' is monotonic, this improved element
will remain uncovered inX. Thus, weak monotonicity cannot possibly be vi-
olated.
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4. If |Ch(X, Zgya(T))| = 5, weak monotonicity of- sy follows from the
monotonicity of SUC. a

Remark 10

As conjectured by Perny (1995), it is possible to show th&ti§ monotonic and
satisfiess™ then—s is weakly monotonic. This offers alternative sufficient con-
ditions onS guaranteeing the weak monotonicity @fs (since there are local,
monotonic choice procedures satisfyifg P but violating 3+, e.g. SES, it is
clear that3™ is not a necessary condition for weak monotonicity). It should nev-
ertheless be observed that:

— the result does not make use of the localitySofwhereas the question of the
monotonicity of ranking by choosing procedures is only of particular interest
if Sis local,

— itis well-known (see Moulin, 1986; Sen, 1977) th#t is a very strong condi-
tion. For instance, in the case of tournaments, any choice procétised-
isfying 8™ and Condorcet must include the top cycl&C, i.e. the choice
procedure selecting id the maximal elements of the asymmetric part of the
transitive closure onl of T'. Clearly, such choice procedures are highly undis-
criminating.

Therefore, althougl3* and SSP are independent conditions, we do not pursue
this point here and leave to the interested reader the, easy, proof of the above claim
(seehttp://www.lamsade.dauphine.fr/"bouyssou/ ).

Remark 11

It is not difficult to observe that the proof of proposition 1 makes no use of the
skew-symmetry property of comparison functions (when weak monotonicity is
properly redefined). It can therefore be easily extended to cover more general cases
(see Bouyssou, 1995), e.g. general valued (or fuzzy) binary relations (see Barrett
et al., 1990; Bouyssou, 1992a; Bouyssou and Pirlot, 1997). We do not explore this
point here.

3.2 Monotonicity

Let us consider the case of tournaments (see Laslier, 1997; Moulin, 1986). There
are neutral, monotonic andondorcet choice procedureS such that: s is mono-

tonic. This is clearly the case f@tC which satisfies botl¥'S P and3*. We already
observed thal'C' is a very undiscriminating choice procedure for tournaments. It
would therefore be of interest to find more discriminating choice procedises
that>— s is monotonic. As show below, this proves difficult however.

Proposition 2 (Covering compatibility andizerman)
LetS be alocal, neutral and monotonic choice procedure satisfyitggrman. If
S refinesU C then’ s is not monotonic.
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Proof

A necessary condition for,s to be monotonic is tha$ is properly monotonic.
Indeed, suppose that that, for sod¥e somer € G(X), somez,y € X with
x # y, we havey ¢ S(A, ) andy € S(A,7*"), wherex®T improvesz w.r.t. 7.
This would implyz =s(7) y andz ~s(7*1) y, violating monotonicity.

Thus, the claim will be proved if we can show that, for all neutral and mono-
tonic choice procedures refinidgC' and satisfyingdizerman, there is a compar-
ison functions such thatz € S(X,7) b ¢ S(X, ) andb € S(X, 7?1), i.e. thatS
is not properly monotonic. The following example suffices.

Example 9
Let X = {a,b,¢,d,e}. Consider the tournamefiton X defined by:

aTld,aTe,
bTa,
cT'a,cTh,
dTb,dTc,dTe,
eTb, eTc.

We haveUC(X,T) = {a,c,d} andaTd,dTc andcTa. Therefore, since re-
finesUC, we haveS(X,T) C {a,c,d} C X. SinceS satisfiesAizerman,
S{a,c,d}, T) CS(X,T).

BecauseS is local and neutral, we know th&({a,c,d},T) = {a,c,d}.
Hence we must haw8(X,T) = {a,c,d}.

Consider now the tournamevitidentical toT" except thatV ¢. Using the same
reasoning as above, it is easy to check gk, V) = UC(X,V) = {a,b,d}.
Henceb enter the choice set whileis improved ands is not properly monotonic.

O

Remark 12

Perny (1998, 2000) has proposed a different negative result using a “positive dis-
crimination” condition on choice procedures that, in our framework, says that,
starting with any comparison function, it is always possible to obtain any alterna-
tive as the unigue choice provided this alternative is “sufficiently” improved. This
negative result only deals witheakmonotonicity of>-s however.

Remark 13

In a classic social choice context, Juret (2001, theorem 1) shows that monotonic
andrationalizablechoice procedures induce monotonic ranking by choosing pro-
cedures. This positive result seem to contrast with proposition 2. Let us however
observe that, whepX| > 3, it easily follows from Moulin (1986) that there is no
local andCondorcet choice procedure satisfyinghernoff, i.e., for allr € §(X)
andallA,B € P(X),[AC B] = S§(B,m) N A C S(A, ). Indeed suppose that
{z,y,2} C X and consider any € §(X) such thatr(z,y) = 1, n(y,2) = 1
andr(z,z) = 1. If S is local andCondorcet then we must hav€({z, y},7) =

{z}, S{y, z},7) = {y} andS({z,x},7) = {z}. Using Chernoff implies that
S{z,y, z}, ) = @, a contradiction.
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Since Chernoff is a necessary condition f&f to be rationalized and given
the correspondence noted above between our setting'ameshdC2 social choice
functions, in the sense of Fishburn (1977), this limits the scope of the result in Juret
(2001) either taC'1 andC2 choice procedures that violate locality 6pndorcet
or to C3 choice procedures, i.e. procedures that are neitiefnot based on the
simple majority relation) no€2 (not based on the 0-weighted tournament based
on the profile).

Proposition 2 is fairly negative as long dgzerman and the refinement @f C are
considered important properties. When this is not the case, it is possible to envisage
several choice procedures inducing a monotonic ranking by choosing procedure.
As an example, consider the well knoWrC* choice procedure (see Schwartz,
1986) for weak tournaments selecting in any subset, the maximal elements of the
asymmetric part of the transitive closure (on that subset) of the asymmetric part
of the weak tournament. Simple examples show i@t violatesAizerman and

does not refind/C'. Vincke (1992) proves that ¢+ is monotonic (see also Ju-

ret, 2001). It should however be noticed thatc+ is a very particular ranking

by choosing procedure since the transitive closure operation has a clearly global
character, in spite of the progressive restriction on the set of alternatives. This type
of ranking by choosing procedures are studied in Juret (2001).

4 Application: the case of tournaments

In this section we apply the above results and observations to the case of tourna-
ments, i.e. we only consider choice procedures defined for comparisons functions
derived from tournaments. This case is of particular interest because such choice
procedures have been analyzed in depth and, in spite of the restrictiveness of the
antisymmetry hypothesis, the underlying choice problem is encountered in many
different and important settings.

Laslier (1997) studies in detail sevenlifferent choice procedures.We briefly
present them below referring the reader to Laslier (1997), Laffond, Laslier and
LeBreton (1995) and Moulin (1986) for precise definitions and results:

Top Cycle T'C selecting inA the element of the first equivalence class of the
weak order being the transitive closurelobn A,

Copeland Cop selecting inA the alternatives with the highest Copeland score in
the tournament restricted i,

Slater SL selecting inA all alternatives having the first rank in a linear order on
A at minimal distance of the restriction @fon A,

Uncovered SetUC selecting all the uncovered alternativesdr§Fishburn, 1977;
Miller, 1977),

4 Since it is not known whether the Tournament Equilibrium Set introduced in Schwartz
(1990) is a monotonic choice procedure, we do not envisage it here. We refer the reader to
Laffond, Laslier and LeBreton (1993b) for a thorough analysis of the many open problems
concerning this choice procedure
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Banks B selecting all alternatives iA starting a maximal transitive path @fon
A (Banks, 1985),

Minimal Covering Set M C'S selecting all alternatives in the unique covering set
included inA of minimal cardinality (Dutta, 1988),

Bipartisan Set BP selecting inA all alternatives in the support of the unique
Nash equilibrium of the symmetric two-person zero-sum game @mduced
by T (Laffond et al., 1993a).

We summarize the monotonicity properties of the ranking procedures induced by
these seven choice procedures in the following:

Proposition 3 (Ranking by choosing procedures for Tournaments)
1. Zr¢ is monotonic,

2. ~nmes andz g p are weakly monotonic but not monotonic,

3. Zves 2B, Zecop andz gy, are not very weakly monotonic.

Proof
Part 1 is left to reader as an, easy, exercise. The weak monotoni¢ity;ef and
7 pp results from proposition 1, since it is well-known that both procedures are
neutral, local, monotonic and satisfS P. The fact that they are not monotonic
follows from proposition 2 since they both refibe”.

Part 3. We respectively showed in examples 1 and 7:that, andZyc are
not very weakly monotonic. It is easy to see that example 7 also showg that
is not very weakly monotonic; we havey = 775 for both tournaments used in
this example. It remains to show thak, is not very weakly monotonic. We skip
the quite cumbersome details of the computation of Slater’s orders below. Details
can be found abttp://www.lamsade.dauphine.fr/"bouyssou . We

do not know whether this example is minimal.
Example 10% s is not very weakly monotonic)
Let X = {a,b,c,d,e, f, g, h,i}. Consider the tournameffiton X defined by:
aTlb,aTle,alg,aTh,ali,
bTle,bTe, bT f,bTg,bT,
cl'a,cl'd,cTe,cTf,
dT'a,dTb,dTe,dT',
el f,eTh,
fTa, fTd, fTh, fT1,
gTe,gTd, gTe,gTf,gTh,
hTb, hTc, hT'd, hT4,
iTc,iTe,iTqg.
Linear orders at minimal distance @f are at distancel = 10. There are

exactly40 such orders and we have (X, T) = {a,b,d, f, g, h}. Itis clear that
the restriction ofl" to {c, e, i} is the linear ordeiT'c, cTe,iTe. Hence, we have
t>-SL (T) C.

Consider now the tournamet identical to7T" except thatV a. Again skip-
ping details, linear orders at minimal distancelofire at distancé = 10. There
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are exactlyl1 such orders. We hav€L(X,V) = {b, g, h}. Similarly, we obtain
SL(X \ {b,g,h},V) = {c}. Thereforec =g (V) 4. This shows that s, is not
very weakly monotonic.

O

5 Discussion

Using a ranking by choosing procedure raises serious monotonicity problems.
Rather surprisingly, as shown by proposition 1, it is possible to isolate a class of
well-behaved choice procedures that leasvaklymonotonic ranking by choos-

ing procedures. If weak monotonicity is considered as an attractive property, these
ranking procedures may well be good candidates to compete with other ranking
procedures. If monotonicity is considered of vital importance, then the situation is
more critical since, as shown in proposition 2, there are no local, neutral, mono-
tonic andAizerman choice procedure that is reasonably discriminatory being in-
cluded inUC and inducing a monotonic ranking procedure. This suggests several
directions for future research.

It would clearly be interesting to look for necessary and sufficient conditions
on S for —s to be (weakly) monotonic. In view of remark 9, this task is likely to
be complex since the repeated useSah order to build-s only uses the result
of the application of5 on a relatively small number of subsets. Another intriguing
problem would be to look for connections between the problem studied here and
the one of finding necessary and sufficient conditions guaranteeingsthas
monotonic. More research in this direction is clearly needed.

The difficulties encountered with ranking procedures induced by choice proce-
dures may also be considered as an incentive to study ranking procedures for their
own sake, i.e. independently of any choice procedure. Research in that direction
has already started (see Bouyssou, 1992b; Bouyssou and Perny, 1992; Bouyssou
and Pirlot, 1997; Bouyssou and Vincke, 1997; Henriet, 1985; Fodor and Roubens,
1994; Gutin and Yeo, 1996; Kano and Sakamoto, 1983; Rubinstein, 1980; Vincke,
1992) mainly considering ranking procedures based on scoring functions. This is
at variance with the advice in Moulin (1986) to focus research on ranking pro-
cedure based on the approximation of a tournament (or a comparison function)
by linear orders (or weak orders). This idea dates back at least to Barbut (1959),
Kemeny (1959), Kemeny and Snell (1962) and Slater (1961). Although it raises
fascinating deep combinatorial questions and difficult algorithmic problems (see
Barthelemy, Gienoche and Hudry, 1989; Ba&alémy and Monjardet, 1981, 1988;
Bermond, 1972; Charon-Fournier, Germa and Hudry, 1992; Charon, Hudry and
Woirgard, 1996; Hudry, 1989; Monjardet, 1990), this line of research raises other
difficulties. As argued in Perny (1992) and Roy and Bouyssou (1993),

— the choice of the distance function should be analyzed with care as soon as one
leaves the, easy, case of a distance between tournament and linear orders (see,
e.g. Roy and Stowiski, 1993),

— the likely occurrence of multiple optimal solutions to the optimization problem
underlying the approximation is not easily dealt with,
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— the normative properties of such procedures are not easy to analyze (see, how-
ever, Young and Levenglick, 1978).

Hence, studying simpler procedures, e.g. the ones based on scoring functions
maybe a good starting point. In many common situatiossking and notchoos-

ing is the central question and there is a real need for a thorough study of ranking
procedures.
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