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Abstract

Necessary and sufficient conditions under which semiorders on uncount-
able sets can be represented by a real-valued function and a constant thresh-
old are known. We show that the proof strategy that we used for construct-
ing representations in the case of denumerable semiorders can be adapted to
the uncountable case. We use it to give an alternative proof of the existence
of strict unit representations. In contrast to the countable case, semiorders
on uncountable sets that admit a strict unit representation do not necessar-
ily admit a nonstrict unit representation, and conversely. By adapting the
proof strategy used for strict unit representations, we establish a character-
ization of the semiorders that admit a nonstrict representation. Conditions
for the existence of other special unit representations are also obtained.

Keywords: semiorder, numerical representation, constant threshold,
uncountable sets

1 Introduction

Semiorders were introduced as a way of representing stimuli intensities as they are
perceived by a subject. A stimulus is not perceived as more intense than another,
unless it is more intense by at least some minimal value called just noticeable
difference (JND). The relation on a set of stimuli, comparing their intensities, has
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the peculiarity that indifference (i.e., stimuli indistinctness) may be intransitive.
Luce (1956) defined and studied relations allowing to capture such comparisons,
that he called semiorders. We refer to Aleskerov et al. (2007), Fishburn (1970,
1985), Monjardet (1978), Pirlot and Vincke (1997), Roubens and Vincke (1985),
Suppes et al. (1989) for detailed studies of various properties of semiorders.

All such relations, provided they are defined on finite sets of objects (e.g., stim-
uli), admit a numerical representation using real numbers and a positive constant
threshold. This constant threshold is closely related to the just noticeable dif-
ference. More recently, authors have considered semiorders on denumerable (i.e.,
finite or countably infinite) and on uncountable sets of objects, respectively. Not
all semiorders on infinite sets can be represented by a value function and a constant
threshold. Manders (1981) and Beja and Gilboa (1992) have given an additional
necessary and sufficient condition guaranteeing that semiorders on denumerable
sets can be represented in this way. Bouyssou and Pirlot (2020a) give an alterna-
tive proof of this result. The latter proof is, in a sense, constructive. It relies on a
double decomposition of the set of objects. This set is first decomposed into con-
nected components of the indifference relation. Second, each connected component
is partitioned into maximal indifference classes. One of these classes is selected as
a “baseline” in which a representative (which we call “ghost”) of each other object
is inserted in an appropriate order. Finally, using a numerical representation of
the order on the baseline, we construct a numerical representation of the semiorder
with unit threshold. In the present paper, we follow the same ideas of proof to
deal with uncountable sets of objects1.

There are actually (at least) two inequivalent ways of defining constant threshold
real valued numerical representations of semiorders. Scott and Suppes (1958)
consider numerical representations (u, k) consisting of a real-valued function u
defined on the set of objects and a constant threshold k > 0. The fact that
stimulus x is definitely perceived as more intense than stimulus y is represented
by the following strict inequality: u(x) > u(y) + k. The threshold k can thus be
interpreted as the largest unnoticeable difference. Alternatively, it can be decided
to represent the same fact by the nonstrict inequality: u(x) ≥ u(y) + k. Here k
can be interpreted as the least noticeable difference. We shall call the former type
of representation strict ; the latter shall be called nonstrict. While the existence of
one type of representation implies that of the other type for semiorders on finite
sets (Pirlot and Vincke, 1997, p. 72) and countably infinite sets (Beja and Gilboa,
1992, Th. 3.8, p. 436), this is no longer the case for semiorders on uncountable
sets.

In the general case, two different sets of necessary and sufficient conditions for

1We emphasize that the present paper is self-contained and can be read independently of the
one dealing with denumerable semiorders.
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the existence of a strict representation (also called a Scott–Suppes representation)
have been established by Beja and Gilboa (1992) and by Candeal and Induráin
(2010) (see also Giarlotta and Watson, 2016, who derive Candeal and Induráin’s
result from of a more general analysis). Both characterizations have in common
a condition that guarantees the existence of a strict representation in the denu-
merable case (we call it the Bounded P -chain condition below). On the top of
it, Candeal and Induráin impose a new separability condition that they name
s-separability. In this work, we factorize the s-separability condition into the
usual Debreu-separability of the trace (i.e., of the complete preorder induced by
the semiorder on the set of objects) and another condition that is easily inter-
pretable. This analysis clarifies the relationships between Candeal and Induráin’s
and Beja and Gilboa’s characterizations. Then, using the same strategy of proof
as in Bouyssou and Pirlot (2020a), we give an alternative proof of Candeal and
Induráin (2010)’s result. We shall discuss later the interest of this method.

Semiorders on uncountable sets that admit a nonstrict representation have been
characterized by Beja and Gilboa (1992) (while Candeal and Induráin (2010) did
not tackle this question). We establish another characterization, relying on the
same proof strategy as before, using a condition similar to s-separability. The new
type of separability can also be factorized into Debreu-separability of the trace and
another easily interpretable condition. The latter also clarifies the relationships
with Beja and Gilboa’s characterization. Note that the conditions that have to be
added to Debreu-separability for obtaining either strict or nonstrict representations
use the notions of noses and hollows that were fruitful in the study of finite
semiorders (Balof et al., 2013, Doignon, 1988, Pirlot, 1990, 1991).

The paper is organized as follows. In the next section, we introduce the notation
and recall the characterization by Candeal and Induráin (2010). In Section 3,
we show how one of the conditions used by Candeal and Induráin (2010) in their
characterization theorem can be split into a conjunction of simpler conditions.
In Section 4, we give an alternative proof of the existence of a strict unit repre-
sentation for semiorders under three simple conditions. These are necessary and
sufficient. We do the same in Section 5 for semiorders admitting nonstrict unit
representations. In the latter two sections, we also characterize the semiorders that
admit some special types of representations, namely hollows-faithful, noses-faithful
and strict-nonstrict unit representations. We conclude with a discussion.
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2 Notation and previous results

2.1 Notation and definitions

We use the same notation as in Bouyssou and Pirlot (2020a). Let S be a binary
relation on a set X. The relation S is a semiorder if it is complete2 (xSy or ySx,
for all x, y ∈ X), Ferrers (xSy and zSw ⇒ xSw or zSy, for all x, y, z, w ∈ X)
and semi-transitive (xSy and ySz ⇒ xSw or wSz, for all x, y, z, w ∈ X). In the
sequel, we shall often write the semiorder S as a pair (P, I) of relations, where
P (resp. I) denotes the asymmetric (resp. symmetric) part of S. P is a partial
order on X, i.e., an asymmetric and transitive relation, which is also Ferrers and
semitransitive. I is called the indifference relation; it is reflexive and symmetric
but not necessarily transitive. A complete preorder on X is a complete, reflexive,
and transitive relation. It is a particular case of a semiorder. A linear order (or
total order) on X is a complete, antisymmetric and transitive relation.

The trace %S of a semiorder S on X is the relation defined as follows: for all
x, y ∈ X, x %S y if for all z ∈ X, ySz implies xSz and zSx implies zSy. The
subscript S will be omitted whenever there is no ambiguity regarding the associated
semiorder. We use �, -, ≺, ∼ as is usual. It is well-known that the trace of a
semiorder is a complete preorder. Two elements x, y ∈ X such that x % y and
y % x, i.e., x ∼ y, are said to be equivalent. If x ∼ y, then, for all z ∈ X, we have
zSx iff zSy and xSz iff ySz.

Definition 1 (Strict and nonstrict unit representations)
A strict unit representation of the semiorder S = (P, I) on the set X is a function
u from X to R such that, for all x, y ∈ X,

u(x) > u(y) + 1 if xPy
−1 ≤ u(x)− u(y) ≤ 1 if xIy

(1)

A nonstrict unit representation of the semiorder S = (P, I) on the set X is a
function u from X to R such that, for all x, y ∈ X,

u(x) ≥ u(y) + 1 if xPy
−1 < u(x)− u(y) < 1 if xIy

(2)

y

Strict unit representations are the special case of the Scott-Suppes representations
(Candeal and Induráin, 2010), in which k = 1. When dealing with the existence of
a Scott-Suppes representation, it is not restrictive to focus on strict unit represen-
tations because the latter exists iff the former exists. Nonstrict unit representations

2Imposing that S is reflexive, instead of complete, would suffice since relations that are both
reflexive and Ferrers are complete.
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have been less studied (Beja and Gilboa, 1992, is an exception), probably because,
a semiorder defined on a denumerable set admits a strict representation iff it ad-
mits a nonstrict representation. This is no longer the case in the uncountable
case as will be shown in Section 5. In contrast, for other ordered structures, the
conditions for the existence of nonstrict representations are well-known. It is the
case for biorders (Aleskerov et al., 2007, Beja and Gilboa, 1992, Doignon et al.,
1984) and for interval orders (see Aleskerov et al., 2007, Ch. 6).

We shall only consider strict and nonstrict representations that assign the same
value to equivalent elements of X w.r.t. the trace % (i.e., regular representations,
Roberts and Franke, 1976). Consequently, we may assume henceforth that the
equivalence class of each element of X w.r.t. the trace of the semiorder is reduced
to a singleton. In other words, for all x, y ∈ X, x % y and y % x imply x = y.
This assumption can be made w.l.o.g. (Candeal and Induráin, 2010, Lemma 3.2).
Therefore, the trace % is a linear order on X. Its asymmetric part is denoted by
� and its symmetric part by ∼.

In Bouyssou and Pirlot (2020a, Section 2.2) (see also Manders, 1981), we have
shown that every semiorder S = (P, I), be it on a denumerable or uncountable
set, can be decomposed into connected components of the indifference relation I.
An I-connected component of (X,S) is a maximal subset Y of X such that, for
each pair x, y ∈ Y , there is an I-chain joining them, i.e., there are x1, x2, . . . , xn ∈
Y such that xIx1Ix2I . . . IxnIy. Furthermore, the relation P induces a linear
order (called “macro-ordering” by Giarlotta and Watson (2016)) on the set of
I-connected components of (X,S).

A necessary condition for the existence of a strict or a nonstrict unit representation
of a semiorder is the Bounded P -chain condition (see Property 1 below). Before
stating it, we need some definitions.

A P -chain is a family of elements (xj, j ∈ J) indexed by a set J ⊆ Z of consecutive
integers, such that xjPxj+1, for all j ∈ J with j + 1 ∈ J . The P -chain is bounded
if there are elements a and b such that bPxjPa, for all j ∈ J .

Property 1 (Bounded P -chain condition)
Every bounded P -chain is finite.

The semiorder S on the set X satisfies the Bounded P -chain condition if every P -
chain (xj, j ∈ J) (J a set of consecutive integers), that is contained in an interval
[a, b] of (X,%) has only finitely many elements (|J | < ∞) (Bouyssou and Pirlot,
2020a, Cor. 53).

Bouyssou and Pirlot (2020a, Proposition 54) establishes that the Bounded P -
chain condition is equivalent to the necessary and sufficient condition of Manders
(1981) for the existence of a unit representation of a semiorder on a denumer-
able set. The Bounded P -chain condition is also equivalent to Beja and Gilboa
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(1992)’s condition (Bouyssou and Pirlot, 2020a, Sections 5.2 and 5.3). Candeal
and Induráin (2010) call this property regularity3. If X is I-connected, it is clear
that (X,S) always satisfies the Bounded P -chain condition (Bouyssou and Pirlot,
2020a, Proposition 54).

The strategy followed in Bouyssou and Pirlot (2020a) to prove the existence of a
unit representation for a semiorder defined on a denumerable set is to prove the
existence of such a representation on each I-connected component of the semiorder
and then, assuming the Bounded P -chain condition, to show that it is possible to
assemble these representations into a representation of the whole semiorder. We
shall adopt the same strategy in case the semiorder is defined on an uncountable
set. Under an additional condition, we show that a strict unit representation exists
on each I-connected component and we assemble these representations assuming
the Bounded P -chain condition4. This can be done also for nonstrict unit repre-
sentations. A different condition, suitable for nonstrict representations, has to be
added to those used in the denumerable case.

In the next subsection, we recall Candeal and Induráin’s (2010) result and the
additional condition that they have to impose on semiorders in order to prove the
existence of a strict unit representation.

2.2 Candeal and Induráin’s (2010) result

Candeal and Induráin (2010) assume the following additional condition that they
call s-separability.

Definition 2 (s-separability)
A semiorder S = (P, I) on X is s-separable if there is a denumerable set E, E ⊆ X,
such that, for all a, b ∈ X with aPb, there are

c ∈ E such that aPc % b

and d ∈ E such that a % dPb y

The main result in Candeal and Induráin (2010, Theorem 3.6) can be rephrased
as follows.

Theorem 3 (Candeal and Induráin (2010))
A semiorder S on a set X admits a strict unit representation iff it satisfies the
Bounded P -chain condition and is s-separable.

3This regularity property should not be confused with the regularity property of representa-
tions introduced by Roberts and Franke (1976)

4As observed in Bouyssou and Pirlot (2020a, Remark 64) assembling representations on I-
connected components of a semiorder is possible for uncountable semiorders, under the same
conditions as for denumerable semiorders.
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Notice that the trace of an s-separable semiorder is d-separable or Debreu-separable
(Candeal and Induráin, 2010, Lemma 3.4), which is a condition guaranteeing the
existence of a numerical representation of the trace (i.e., the existence of a func-
tion v : X → R such that x % y iff v(x) ≥ v(y)). It can be assumed w.l.o.g. that
a representation of the semiorder also represents its trace. Indeed, a numerical
representation u of the semiorder must give distinct values to elements that are
not equivalent w.r.t. the trace. Therefore u must represent the trace since we
assumed that no elements are equivalent w.r.t. the trace. We recall the definition
of Debreu-separability below.

Definition 4 (d-separability)
A semiorder S = (P, I) is d-separable if its trace % is d-separable. The trace is
d-separable if it admits a denumerable order-dense set, i.e., there is a denumerable
set D ⊆ X, such that, for all a, b ∈ X with a � b, there is d ∈ D, such that
a % d % b. y

The d-separability of the trace is a necessary condition for the existence of both a
strict and a nonstrict (see Section 5) representation of a semiorder.

3 Another formulation of s-separability

In this section we revisit the s-separability condition and factorize it into d-
separability and another condition. The latter is expressed in terms of noses,
a notion introduced in Pirlot (1990, 1991), together with that of hollows. These
have proved useful in the study of the unit representations of finite semiorders
(Balof et al., 2013, Doignon, 1988, Pirlot, 1990, 1991).

The results in this section have appeared in Section 3.2 of Bouyssou and Pirlot
(2020b). For the ease of reading, we recall them here.

3.1 Noses and hollows

Let S = (P, I) be a semiorder on X. A nose of S is a pair (a, b) such that aPb
and a is the least element (w.r.t. �) which is preferred to b and b is the greatest
element (w.r.t. �) which a is preferred to. A hollow is a pair (a, b), with aIb and
a % b such that a is the greatest element (w.r.t. �) which is indifferent to b and b
is the least element (w.r.t. �) which is indifferent to a. More formally, we have:

Definition 5 (Noses and Hollows)
The ordered pair (a, b) ∈ X × X is a nose of S = (P, I) if aPb and there is no
c ∈ X such that aPc � b and there is no d ∈ X such that a � dPb.

The ordered pair (a, b) ∈ X ×X is a hollow of S = (P, I) if aIb, a � b, and there
is no c ∈ X such that bIc � a and there is no d ∈ X such that b � dIa. y
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Remark 6
A hollow can be equivalently defined in terms of the relation S. The pair (a, b),
with a � b, is a hollow iff bSa, for all d ≺ b, Not [dSa], and for all c � a, Not [bSc].
Indeed, since a � b, there is c with c � a and bIc iff there is c with � a and bSc;
likewise, there is d with b � d and dIa iff there is d with b � d and dSa. 3

Noses play a special role w.r.t. s-separability as shown by the following lemma.

Lemma 7
If the semiorder S = (P, I) on X is s-separable by the denumerable set E, then a
and b belong to E whenever (a, b) is a nose.

Proof
Let (a, b) be a nose, so that aPb. By the s-separability property, there is c ∈ E
such that aPc % b. By definition of a nose, we have c = b and therefore, b ∈ E.
Using s-separability, there is also d ∈ E such that a % dPb, which implies a = d
and a ∈ E since (a, b) is a nose. 2

Before presenting conditions equivalent to s-separability, we need to establish some
auxiliary results related to variants of noses.

Definition 8 (Half-noses)
The pair (a, b) ∈ X ×X is a lower half-nose (l-h-nose) of S = (P, I) if aPb and
there is no c ∈ X such that aPc � b. The pair (a, b) can be a nose. If it is not, we
say it is a proper l-h-nose if it is a l-h-nose and there is d ∈ X such that a � dPb.
The pair (a, b) ∈ X ×X is an upper half-nose (u-h-nose) of S = (P, I) if aPb and
there is no d ∈ X such that a � dPb. The pair (a, b) can be a nose. If it is not,
we say it is a proper u-h-nose if it is an u-h-nose and there is c ∈ X such that
aPc � b. We denote by LHN (resp. UHN) the set of right endpoints b (resp. left
endpoints a) of all proper l-h-noses (resp. u-h-noses) (a, b). y

The notion of lower half-nose is closely related to that of P -gap-edge point (Beja
and Gilboa, 1992, Definition P6 (a), p. 438). The element b ∈ X is a P -gap-edge-
point if and only if there is a ∈ X such that (a, b) is a lower half-nose. We have
the following result.

Lemma 9
If the semiorder S = (P, I) is d-separable, then the sets LHN and UHN are
denumerable.

Proof
We give the proof for LHN . The case of UHN is similar.
Let (a, b) be a proper l-h-nose. We define the set N(b) = {x ∈ X : xPb and ∀c �
b,Not [xPc]}. In other words, for all x ∈ N(b), (x, b) is a l-h-nose. It is clear that
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a ∈ N(b). Moreover, since (a, b) is proper, N(b) contains an element d 6= a such
that a � dPb. We now prove that N(b) is an interval w.r.t. �. Let x, x′ ∈ N(b).
If x′′ is such that x � x′′ � x′, then x′′ ∈ N(b). Indeed, x′′Pb since x′Pb and
for all c � b, Not [x′′Pc] since Not [xPc]. Let (a, b) and (a′, b′) be two proper l-
h-noses, with b 6= b′ ∈ LHN . It is clear that the associated intervals N(b) and
N(b′) are disjoint. Each of these intervals contains at least two distinct points
and therefore at least an element from the denumerable set D that d-separates
S = (P, I). Consequently, the set LHN is denumerable. 2

3.2 A reformulation of s-separability

We are in position to prove an equivalent formulation for s-separability.

Proposition 10
A semiorder S = (P, I) on X is s-separable iff % is d-separable and the set of
noses is denumerable.

Proof
Assume that the semiorder is s-separable. By Lemma 7, the set of noses is denu-
merable. The s-separability property implies that % is d-separable (Candeal and
Induráin, 2010, Lemma 3.4). We include the proof of this for completeness. Let
x, y ∈ X be such that x � y. There is z ∈ X such that xPz and zSy and/or
w ∈ X such that wPy and xSw. In the former case, s-separability entails that
there is d ∈ E such that x % dPz and, since zSy, we have x % d � y. In the latter
case, there is c ∈ E such that wPc % y and, since xSw, we have x � c % y.

Reciprocally, let D be a denumerable set that d-separates �. Let x, y ∈ X be such
that xPy. If (x, y) is not a nose,

1. either there is x′ ≺ x such that x′Py

2. or there is y′ � y such that xPy′.

In Case 1, by the d-separability of �, there is d ∈ D such that x′ - d - x.
Therefore we have x % dPy. Further, there are two cases. Either there is y′ � y
such that xPy′ or for all y′ � y, we have Not [xPy′]. In the former case, d-
separability implies that there is c ∈ D such that y′ % c % y. Then, we have
xPc % y. Otherwise, (x, y) is a proper l-h-nose. In order to have c ∈ E such that
xPc % y, we set c = y and include the denumerable set LHN of right endpoints
of the proper l-h-noses in E.

In Case 2, by the d-separability of �, there is c ∈ D such that y′ % c % y.
Therefore we have xPc % y. Further, either there is x′ ≺ x such that x′Py or for
all x′ ≺ x, we have Not [x′Py]. In the former case, d-separability implies that there
is d ∈ D such that x′ - d - x. Otherwise, (x, y) is a proper u-h-nose. In order
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to have d ∈ E such that x % dPy, we set d = x and include the denumerable set
UHN of left endpoints of the proper u-h-noses in E.

Finally, by considering E as the union of D, LHN , UHN and the set of elements
a, b such that (a, b) is a nose, which is denumerable by hypothesis, we obtain a
denumerable set E, which s-separates the semiorder (P, I). 2

Remark 11
It is easy to show that having a denumerable set of noses is a necessary condition
for a semiorder to have a strict unit representation. Indeed, assume that u is
a strict unit representation of the semiorder S = (P, I) and (a, b) is a nose of S.
Since aPb, we have u(a) > u(b)+1. Let εab be the positive number u(a)−u(b)−1.
By definition of a nose, there is no element c 6= b such that aPc � b and therefore,
there is no c such that u(c) ∈]u(b), u(a)−1], an interval of length εab > 0. To each
nose (a, b) is associated such an interval of positive length and all these intervals
are disjoint. Since there is only a denumerable number of disjoint intervals of
positive length in R, the number of noses is denumerable. 3

Remark 12
For proving the existence of a strict unit representation, we shall use d-separability
and the condition that the number of noses is denumerable, instead of s-separability.
In the proof, we shall only use the denumerable set D that is dense in the trace %
and the denumerable set of noses endpoints. We do not need to add the half-noses
or the half-hollows as we had to do in the second part of the proof of Proposi-
tion 10. In other words, we do not use all the points in the set E involved in
the s-separability property (see Definition 2). In the same vein, we do not need
to impose that the set of all P -gap-edge-points (Beja and Gilboa, 1992, p. 438)
is denumerable. Only the cardinality of the set of P -gap-edge-points that corre-
spond to noses needs to be controlled. Our condition that the set of noses has to
be denumerable refines both the s-separability condition and the denumerability
of the set of P -gap-edge-points (Beja and Gilboa, 1992, Theorem 4.5 (a), p. 439).
Its interpretation is straightforward and it bridges the gap between the conditions
imposed by Candeal and Induráin (2010) and those imposed by Beja and Gilboa
(1992). A similar analysis will be helpful in the study of nonstrict representations
(see Section 5.1). 3

4 Semiorders admitting a strict unit representa-

tion

In this section, we adapt the method proposed in Bouyssou and Pirlot (2020a) for
building a unit representation to the case of uncountable semiorders. In the denu-
merable case, we select an initial maximal indifference class I0 of an I-connected
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component of the semiorder and we insert a “ghost” of each other element of this
connected component at an appropriate position in I0. The set of all ghosts is
denoted Ĩ0 and %ϕ is a preorder on Ĩ0 extending the trace on I0. This insertion
procedure has to be refined in the uncountable case. The main constraint is to
insert the ghosts of all elements while ensuring the d-separability of the complete
preorder %ϕ on the set of ghosts Ĩ0. Moreover, in contrast to the denumerable case,
it is no longer possible to insert ghosts sequentially since X is uncountable. Notice
that, unlike in the denumerable case, we shall not attempt to keep the possibility
of generating all possible unit representations. We concentrate on proving there is
at least one.

4.1 Results on the partition into maximal indifference
classes

We assume that the semiorder (X,S) has been decomposed into its I-connected
components. In Bouyssou and Pirlot (2020a, Section 3), we showed that any I-
connected component of a semiorder can be partitioned into maximal indifference
classes. This was proved in the general case, without assuming that the semiorder
is defined on a denumerable set. Such a partition gives a particular role to a
baseline maximal indifference class I0. This partition is not unique in general, but
the results that follow are valid for any such partition.

Let D be any I-connected component of the semiorder S = (P, I) on the set
X. We abuse notation also using S = (P, I) for denoting the restriction of the
semiorder to the set D ⊆ X. Let (Im,m ∈ M), with M ⊆ Z, M 3 0, be a par-
tition of D into maximal indifference classes, as described in Bouyssou and Pirlot
(2020a, Section 3). We shall also use the more explicit notation . . . , I−l, . . . , I−1, I0,
I1, . . . , Ik, . . . for this partition, with indices k, l ≥ 0 such that k ∈M and −l ∈M .
Note that the set of indices M may be bounded or unbounded. We recall below
Bouyssou and Pirlot (2020a, Proposition 23) that collects useful properties of such
a partition.

Proposition 13
The sets (Im,m ∈M) have the following properties:

1. They are disjoint nonempty convex subsets of D.

2. Their elements are pairwise indifferent, i.e., for all x, y ∈ Im, we have xIy.

3. They form an ordered partition w.r.t. �, i.e. for all x ∈ Im−1 and z ∈ Im,
we have z � x.

4. For all m ≥ 0 for which Im and Im+1 exist, for all w ∈ Im+1, there is z ∈ Im
such that we have wPz.
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5. For all m < 0 for which Im and Im+1 exist, for all v ∈ Im, there is z ∈ Im+1

such that we have zPv.

6. For all m ∈M for which Im and Im+2 exist, for all w ∈ Im+2, for all v ∈ Im,
we have wPv.

7. D = ∪m∈MIm.

In the process of constructing a unit representation, we make the hypothesis that
the trace % of the semiorder S on X is d-separable and that the semiorder has a
denumerable set of noses. These properties of the semiorder on X are inherited
by its restriction to each I-connected component. The trace of the restriction of
the semiorder to an I-connected component is the restriction of the trace of the
semiorder to this component (because all elements in an I-connected component
compare identically to the elements of the other components).
Let E = E ′∪E ′′ denote the union of E ′, an order-dense denumerable subset w.r.t.
%, and the set E ′′ of all noses endpoints. The set E is thus at most denumerable.

4.2 Notation

In order to describe the construction process of a strict unit representation, we
need to introduce some notation and definitions.

Ordered bipartitions play an important role in the sequel. Therefore, we recall
some precise definitions (following Bridges and Mehta, 1995, p. 17). Let % be a
linear order on a set Y and � its asymmetric part. We call (A,B) an ordered
bipartition of Y if A∩B = ∅, A∪B = Y and x � y for all x ∈ A, y ∈ B. One of
the classes may be empty. An ordered bipartition (A,B), with A,B 6= ∅,

• is a jump if A has a least element and B has a greatest element;

• is a cut if either A has least element or B has a greatest element (but not
both);

• is a gap if neither A has a least element nor B has a greatest element.

Note that, in the absence of ambiguity, we shall write “bipartition” for “ordered
bipartition”5.

Each element x ∈ Im determines a bipartition (Am−1
x , Bm−1

x ) of Im−1 (provided
Im−1 exists) and a bipartition (Cm+1

x , Dm+1
x ) of Im+1 (provided Im+1 exists). We

have (see also Figure 1:

5We shall not adopt the term “decomposition”, which is used by Bridges and Mehta (1995)
as synonymous to “ordered bipartition” because we use “decomposition” for other purposes.
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• Am−1
x = {y ∈ Im−1 : xIy};

• Bm−1
x = {y ∈ Im−1 : xPy};

• Cm+1
x = {y ∈ Im+1 : yPx};

• Dm+1
x = {y ∈ Im+1 : yIx}.

For m > 0, Bm−1
x is non-empty; for m ≤ 0, Cm+1

x is non-empty. This follows from
Proposition 13.4 and 13.5.

x
Im

Dm+1
x Cm+1

x
Im+1

Bm−1
x Am−1

x
Im−1

Figure 1: Partitions determined by an element x ∈ Im

The construction of a representation proceeds by selecting a baseline maximal
indifference class I0 and inserting a representative of each element of Im,m ∈
M \{0} into I0 at an “appropriate location”, i.e., by positioning the representatives
among the elements of I0. In this way, we shall extend the trace % on I0 into a
complete preorder on I0 and the representatives of all other elements in D. In the
sequel, we shall refer to the representatives as ghosts (like in Bouyssou and Pirlot,
2020a). We recall that E denotes a denumerable set that d-separates the trace %
and contains all noses endpoints. Here is some notation that will be used in the
sequel:

ϕm(Im), for m ∈M ⊆ Z, is the set of ghosts of the elements in Im;

ϕm(x), for m ∈M,x ∈ Im, is the ghost of the element x in Im;

ϕ0(I0) = I0; ϕ0(x) = x, for all x ∈ I0;

I0,1 = I0 ∪ ϕ1(I1);

I0,k = I0 ∪ ϕ1(I1) ∪ . . . ∪ ϕk(Ik), for k ∈M,k > 0 ;

I−l,k = I0 ∪ ϕ1(I1) ∪ . . . ∪ ϕk(Ik) ∪ ϕ−1(I−1) . . . ∪ ϕ−l(I−l), for k, l ∈M,k, l > 0;

Em = E ∩ Im;
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E0,1 = E0 ∪ ϕ1(E1);

E0,k = E0 ∪ ϕ1(E1) ∪ . . . ∪ ϕk(Ek), for k ∈M,k > 0;

E−l,k = E0∪ϕ1(E1)∪ . . .∪ϕk(Ek)∪ϕ−1(E−1) . . .∪ϕ−l(E−l), for k, l ∈M,k, l > 0;

%0,1 is a complete preorder on I0,1, with �0,1, its asymmetric part, and ∼0,1, its
symmetric part;

%0,k is a complete preorder on I0,k, with �0,k, its asymmetric part, and ∼0,k, its
symmetric part, for k ∈M,k > 0;

%−l,k is a complete preorder on I−l,k, with �−l,k, its asymmetric part, and ∼−l,k,
its symmetric part, for k, l ∈M,k, l > 0.

4.3 Construction of I0,1

The set I0,1 is the union of I0 and the set of the ghosts of the elements of I1.
The ghost ϕ1(x) for x ∈ I1 is distinct from all elements of I0. It is defined as
being positioned between the two classes of the bipartition (A0

x, B
0
x), i.e., above all

elements in B0
x and below all elements in A0

x. More precisely, we define the relation
%0,1 on I0,1 as an extension of the order % on I0 which satisfies a %0,1 ϕ1(x) �0,1 b,
for all a ∈ A0

x and b ∈ B0
x.

In case several elements of I1 determine the same bipartition, their ghosts all have
to be inserted in between the classes of the bipartition. Let J(x) denote the set
of all elements in I1 which determine the same bipartition (A0

x, B
0
x) as x. For all

x1, x2 ∈ J(x), with x1 � x2, we have a %0,1 ϕ1(x1) �0,1 ϕ1(x2) �0,1 b, for all
a ∈ A0

x and b ∈ B0
x. At this stage, the only case in which we place a ghost ϕ1(x1)

and an element b of I0 in the same equivalence class of the relation %0,1 is when
(x1, a) is a hollow. In such a case, we set a ∼0,1 ϕ1(x1). Note that we are not
forced to make these elements equivalent in all cases6, but we shall systematically
choose this option in the rest of this section. We emphasize that a and ϕ1(x1) are
distinct elements in I0,1, yet they are equivalent w.r.t. ∼0,1.

The relation %0,1 just defined has the following properties.

Lemma 14
%0,1 is a preorder on I0,1 which extends % on I0, satisfies ϕ1(x) �0,1 ϕ1(y) for all
x, y ∈ I1 with x � y, and is d-separable using E0,1.

6In case (x1, a) is a hollow (with x1 ∈ I1 and a ∈ I0), we may decide to set a �0,1 ϕ1(x1)
instead of ϕ1(x1) ∼0,1 a. In such a case, a and x1 have to be added to E0,1. The latter option
can be taken as long as it preserves the denumerable character of the separating set, i.e., for at
most a denumerable set of hollows (x1, a).
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Proof
The fact that relation %0,1 is complete and transitive is an easy consequence of the
corresponding properties of % and of the construction of I0,1. By construction, we
have that %0,1 is an extension of % on I0, i.e., for all a, b ∈ I0, a %0,1 b iff a % b
and that the bijection ϕ1 mapping I1 onto ϕ1(I1) respects the order induced by %
on I1, i.e., for all x, y ∈ I1, x � y iff ϕ1(x) �0,1 ϕ1(y). The fact that relation %0,1

is complete and transitive is an easy consequence of the corresponding properties
of % and of the construction of I0,1.

The relation %0,1 is d-separable. Let z1 �0,1 z2 with z1, z2 ∈ I0,1. Four cases can
be distinguished.

Case 1 If z1, z2 ∈ I0 then we have z1 �0,1 z2 iff z1 � z2. These z1 and z2 can be
separated by an element from E0.

Case 2 If z1 = ϕ1(x1) and z2 = ϕ1(x2) for some x1, x2 ∈ I1, we know that
z1 �0,1 z2 implies x1 � x2. Since % is d-separable, there is an element in E1

separating x1 from x2. Therefore, z1 and z2 are separated by an element in
ϕ1(E1).

Case 3 If z1 = ϕ1(x1) and z2 ∈ I0, we have that z1 �0,1 z2 implies z2 ∈ B0
x1

. If z2
is not the greatest element in B0

x1
(w.r.t. �), then there is z ∈ B0

x1
such that

z1 �0,1 z � z2. By hypothesis, z2 can be separated from z, and therefore
from z1 by an element from E0. If z2 is the greatest element in B0

x1
and there

is x ∈ J(x1) with x1 � x, then ϕk(x1) �0,1 ϕk(x) �0,1 z2 and we can use
the separability of %. Therefore, z1 and z2 are separated by an element in
ϕ1(E1). Finally, we consider the case in which z2 is the greatest element in
B0

x1
and x1 is the least element in J(x1). In such a case, (x1, z2) is a nose.

Since z2 is a nose endpoint, it belongs to E0 and it separates z1 from z2.

Case 4 If z1 ∈ I0 and z2 = ϕ1(x2), we have that z1 �0,1 z2 implies that z1 ∈ A0
x2

.
If z1 is not the least element in A0

x2
(w.r.t. %), then there is z ∈ A0

x2
such

that z1 � z �0,1 z2. By hypothesis, z1 can be separated from z, and therefore
from z2, by an element from E0. If z1 is the least element in A0

x2
and there

is x ∈ J(x2) such that x � x2, then z1 %0,1 ϕ1(x) �0,1 ϕ1(x2). Using the
separability of %, we can separate z1 and z2 by an element in ϕ1(E1). Finally,
the case in which z1 is the least element in A0

x2
and x2 is the greatest element

such that z1 %0,1 ϕ1(x2) does not occur since this would mean that (x2, z1)
is a hollow; in such a case, by construction, ϕ1(x2) ∼0,1 z1 (note that, in the
next steps, this situation will not necessarily occur for hollows). 2
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4.4 Construction of I0,k

We assume that I0,k−1 has been constructed as well as the complete preorder
%0,k−1 on it. The set I0,k is the union of I0,k−1 and the set of the ghosts of the
elements of Ik. The ghost ϕk(x) for x ∈ Ik is an element which is distinct from all
elements of I0,k−1. It is defined as being positioned in between the classes of the
bipartition (Ax, Bx) of the set I0,k−1, endowed with the complete preorder %0,k−1,
with Ax ⊇ ϕk−1(Ak−1

x ) and Bx ⊇ ϕk−1(Bk−1
x ).

There is some arbitrariness in the definition of the bipartition (Ax, Bx), since there
may be elements of I0,k−2 lying in between ϕk−1(Ak−1

x ) and ϕk−1(Bk−1
x ). We can

choose to define the bipartition in different ways, for instance, we may assign to Bx

all the elements of I0,k−2 lying in between ϕk−1(Ak−1
x ) and ϕk−1(Bk−1

x ). Instead,
we may assign them all to Ax.

In the rest of this section, we select one of the possible options and show that it
leads to the definition of a d-separable complete preorder on I0,k.

For x ∈ Ik, let now J(x) denote the set of elements of Ik determining the same
bipartition (Ak−1

x , Bk−1
x ) in Ik−1 as x. Let L(x) be the set of elements7 of I0,k−1

which lie between ϕk−1(Ak−1
x ) and ϕk−1(Bk−1

x ), i.e., y ∈ L(x) ⇔ a �0,k−1 y �0,k−1
b, for all a ∈ ϕk−1(Ak−1

x ) and b ∈ ϕk−1(Bk−1
x ). We define the bipartition (Ax, Bx)

as follows:

Ax = L(x) ∪ {z ∈ I0,k−1 : ∃a ∈ ϕk−1(A
k−1
x ) such that z %0,k−1 a}, (3)

Bx = I0,k−1 \ Ax = {y ∈ I0,k−1 : ∃b ∈ ϕk−1(B
k−1
x ) such that b %0,k−1 y}.

We insert ghosts as follows. We set a %0,k ϕk(x′) %0,k ϕk(x′′) �0,k b, for all
a ∈ Ax, b ∈ Bx and x′, x′′ ∈ J(x) with x′ % x′′. We also impose ϕk(x′) �0,k ϕk(x′′)
whenever x′ � x′′ (see Figure 2). In the particular case in which Ax has a least
element a (w.r.t. %0,k−1) and J(x) has a greatest element x (w.r.t. %), we set8

ϕk(x) ∼0,k a. The relation %0,k on I0,k is completely defined as follows. For all
z1, z2 ∈ I0,k, we have the following cases:

Case 1 if z1, z2 ∈ I0,k−1, we have z1 %0,k z2 iff z1 %0,k−1 z2, hence %0,k extends
%0,k−1;

Case 2 if z1 = ϕk(x1) and z2 = ϕk(x2) for some x1, x2 ∈ Ik, we set z1 �0,k z2 iff
x1 � x2; note that this definition is compatible with the construction above
also in case x1 and x2 determine the same bipartition in Ik−1;

7Actually, L(x) is empty in case k = 1 and L(x) ⊆ I0,k−2 if k ≥ 2.
8Note that a is not necessarily the ghost of an element y ∈ Ik−1 such that (x, y) is a hollow.

It can happen that a least element in Ax is a ∈ L(x), which is the ghost of an element of Il, for
0 ≤ l < k − 1 (for more on this case, see Section 4.9).
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Case 3 if z1 = ϕk(x1) and z2 ∈ I0,k−1, we have z1 �0,k z2 iff z2 ∈ Bx1 and
z2 %0,k z1 iff z2 ∈ Ax1 . Furthermore, z2 ∼0,k z1 iff z2 is a least element in Ax1

(w.r.t. %0,k−1) and x1 is the greatest element in J(x1) (w.r.t. %).

x Ik

Bk−1
x Ak−1

x Ik−1

J(x)

Bx

ϕk−1(B
k−1
x ) ϕk−1(A

k−1
x )

I0,k−1

L(x)

Ax

Figure 2: Ghost insertion for the elements of Ik

With this definition, we have the following result, which generalizes Lemma 14.

Lemma 15
%0,k is a complete preorder on I0,k which extends %0,k−1, satisfies ϕk(x) %0,k ϕk(y)
for all x, y ∈ Ik with x % y, and is d-separable by E0,k.

Proof
It is easy to check that the relation %0,k defined above is complete, transitive, and
extends %0,k−1. It reproduces on ϕk(Ik) the order induced by the trace % on Ik.

We prove that relation %0,k is d-separable. We know by Lemma 14 that %0,1 is
d-separated by E0,1. We prove the result by induction, assuming that %0,k−1 is
d-separated by E0,k−1. Let z1, z2 ∈ I0,k be such that z1 �0,k z2.

Case 1 If z1, z2 ∈ I0,k−1 and z1 �0,k z2, we have z1 �0,k−1 z2. By the induction
hypothesis, we know that z1 and z2 can be separated by an element from
E0,k−1.

Case 2 If z1 = ϕk(x1) and z2 = ϕk(x2) for some x1, x2 ∈ Ik, we know that
z1 �0,k z2 implies x1 � x2. Since % is d-separable, there is an element in Ek

separating x1 from x2. Therefore, z1 and z2 are separated by an element in
ϕk(Ek).

Case 3 If z1 = ϕk(x1) and z2 ∈ I0,k−1, we have that z1 �0,k z2 implies that
z2 ∈ Bx1 . If z2 is not a greatest element in Bx1 (w.r.t. %0,k−1), then there
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is z ∈ Bx1 such that z1 �0,k z �0,k−1 z2. By the induction hypothesis,
z2 can be separated from z, and therefore from z1, by an element from
E0,k−1. If z2 is a greatest element in Bx1 and there is x ∈ J(x1) such that
x1 � x, then ϕk(x1) �0,k ϕk(x) �0,k z2 and we can use the separability of
%. Therefore, z1 and z2 are separated by an element in ϕk(Ek). Finally, we
have to consider the case in which z2 is a greatest element in Bx1 and x1 is
the least element in J(x1). In this case, there is y ∈ Ik−1 such that (x1, y) is
a nose and ϕk−1(y) ∼k−1 z2. Since y is a nose endpoint, it belongs to Ek−1
and ϕk−1(y) ∈ E0,k separates z1 from z2.

Case 4 If z1 ∈ I0,k−1 and z2 = ϕk(x2), we have that z1 �0,k z2 implies that
z1 ∈ Ax2 . If z1 is not the least element in Ax2 (w.r.t. %0,k−1), then there
is z ∈ Ax2 such that z1 �0,k z �0,k−1 z2. By the induction hypothesis, z1
can be separated from z, and therefore from z1, by an element from E0,k−1.
If z1 is a least element in Ax2 and there is x ∈ J(x2) with x � x2, then
z1 �0,k ϕk(x) �0,k ϕk(x2), and we can use the separability of %. Therefore,
z1 and z2 are separated by an element in ϕk(Ek). Finally, we have to consider
the case in which z1 is a least element in Ax2 and x2 is the greatest element
in J(x2). This is incompatible with z1 �0,k z2. Indeed, we decided to place
z2 = ϕk(x2) in the equivalence class of z1. We thus have z2 ∼k z1, which
contradicts z1 �0,k z2. 2

4.5 Construction of I−1,k

We assume that I0,k has been constructed as well as the complete preorder %0,k

on it. The set I−1,k is the union of I0,k and the set of the ghosts of the elements in
I−1. The ghost ϕ−1(x) for x ∈ I−1 is an element which is distinct from all elements
in I0,k. It is defined as being positioned in between the classes of a bipartition
(Cx, Dx) of the set I0,k, endowed with the complete preorder %0,k, with Cx ⊇ C0

x

and Dx ⊇ D0
x. There is some arbitrariness in the definition of the bipartition

(Cx, Dx), since there may be elements of I0,k lying in between C0
x and D0

x.

We select one of the possible options and show that it leads to the definition
of a d-separable complete preorder on I−1,k. For x ∈ I−1, let now K(x) denote
the set of elements of I−1 determining the same bipartition (C0

x, D
0
x) in I0 as

x. Let M(x) be the set of elements in I0,k which lie between C0
x and D0

x, i.e.,
y ∈M(x) ⇔ c �0,k y �0,k d, for all c ∈ C0

x and d ∈ D0
x. We define the bipartition

(Cx, Dx) as follows:

Cx = {z ∈ I0,k : ∃c ∈ C0
x such that z %0,k c}, (4)

Dx = I0,k \ Cx = M(x) ∪ {y ∈ I0,k : ∃d ∈ D0
x such that d %0,k y}.
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We insert ghosts as follows. We set c %−1,k ϕ−1(x′) %−1,k ϕ−1(x′′) %−1,k d, for all
c ∈ Cx, d ∈ Dx and x′, x′′ ∈ K(x) with x′ % x′′. We also impose ϕ−1(x′) �−1,k
ϕ−1(x′′) whenever x′ � x′′ (see Figure 3). In the particular case in which Dx has
a greatest element d (w.r.t. %0,k) and K(x) has a least element x (w.r.t. %), we
set9 ϕ−1(x) ∼−1,k d. The relation %−1,k on I−1,k is completely defined as follows.
For all z1, z2 ∈ I−1,k, we have the following cases:

Case 1 if z1, z2 ∈ I0,k, we have z1 %−1,k z2 iff z1 %0,k z2, hence %−1,k extends %0,k;

Case 2 if z1 = ϕ−1(x1) and z2 = ϕ−1(x2) for some x1, x2 ∈ I−1, we set z1 �−1,k z2
iff x1 � x2; note that this definition is compatible with the construction
above also in case x1 and x2 determine the same bipartition in I0;

Case 3 if z1 = ϕ−1(x1) and z2 ∈ I0,k, we have z1 %−1,k z2 iff z2 ∈ Dx1 , and
z2 �−1,k z1 iff z2 ∈ Cx1 . Furthermore, z2 ∼−1,k z1 iff z2 is a greatest element
in Dx1 (w.r.t. %0,k) and x1 is the least element in K(x1) (w.r.t. %).

x I−1

D0
x C0

x

I0,k

K(x)

M(x)

Dx Cx

Figure 3: Ghost insertion for I−1 into I0,k

With this definition, the following lemma, which extends Lemma 15, holds.

Lemma 16
%−1,k is a complete preorder on I−1,k which extends %0,k, satisfies ϕk(x) %−1,k
ϕk(y) for all x, y ∈ I−1 with x % y, and is d-separable by E−1,k.

Proof
It is easy to check that the relation %−1,k defined above is complete, transitive,
and extends %0,k. It reproduces on ϕk(I−1) the order induced by the trace % on
I−1.

9Note that (d, x) is a hollow only if d ∈ I0. Actually, d could belong to M(x) and be the
ghost of an element in Il, for 1 ≤ l ≤ k. In such a case (d, x) is no hollow.
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We prove that relation %−1,k is d-separable. We know by Lemma 15 that %0,k is
d-separated by E0,k. Let z1, z2 ∈ I−1,k be such that z1 �−1,k z2.

Case 1 If z1, z2 ∈ I0,k and z1 �−1,k z2, we have z1 �0,k z2. By Lemma 15, we
know that z1 and z2 can be separated by an element from E0,k.

Case 2 If z1 = ϕ−1(x1) and z2 = ϕ−1(x2) for some x1, x2 ∈ I−1, we know that
z1 �−1,k z2 implies x1 � x2. Since % is d-separable, there is an element in
E−1 separating x1 from x2. Therefore, z1 and z2 are separated by an element
in ϕ−1(E−1).

Case 3 If z1 = ϕ−1(x1) and z2 ∈ I0,k, we have that z1 �−1,k z2 implies that
z2 ∈ Dx1 . If z2 is not a greatest element in Dx1 (w.r.t. %0,k), then there is
z ∈ Dx1 such that z1 �−1,k z �0,k z2. By Lemma 15, z2 can be separated
from z, and therefore from z1, by an element from E0,k. If z2 is a greatest
element in Dx1 and there is x ∈M(x1) such that x1 � x, then ϕ−1(x1) �−1,k
ϕ−1(x) �−1,k z2, and we can use the separability of %. Therefore, z1 and z2
are separated by an element in ϕ−1(E−1). Finally, we have to consider the
case in which z2 is a greatest element in Dx1 and x1 is the least element in
K(x1). This is incompatible with z1 �−1,k z2 because, in this case, we have
decided that z1 = ϕ−1(x1) ∼−1,k z2.

Case 4 If z1 ∈ I0,k and z2 = ϕ−1(x2), we have that z1 �0,k z2 implies z1 ∈ Cx2 . If
z1 is not a least element in Cx2 (w.r.t. %0,k), then there is z ∈ Cx2 such that
z1 �−1,k z �0,k z2. By Lemma 15, z1 can be separated from z, and therefore
from z2, by an element from E0,k. If z1 is a least element in Cx2 and there is
x ∈ I−1 with z2 �0,k ϕ−1(x) �0,k ϕ−1(x2), then we can use the separability
of %. Therefore, z1 and z2 are separated by an element in ϕ−1(E−1). Finally,
we have to consider the case in which z1 is a least element in Cx2 and x2 is
the greatest element in K(x2). In this case, there is y ∈ I0 such that (y, x2)
is a nose and y ∼0,k z1. Since y is a nose endpoint, it belongs to E0 and it
separates z1 from z2. 2

4.6 Construction of I−l,k

This is the general step of the construction. Actually, depending on the order in
which we perform the ghosts insertions, we may need to build I−l,k starting either
from I−l+1,k or from I−l,k−1. We describe the construction of I−l,k starting from
I−l+1,k, leaving the construction starting from I−l,k−1 to the reader.

We assume that I−l+1,k has been constructed as well as the complete preorder
%−l+1,k on it. The set I−l,k is the union of I−l+1,k and the set of the ghosts of the
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elements in I−l. The ghost ϕ−l(x) for x ∈ I−l is an element which is distinct from
all elements of I−l+1,k. It is defined as being positioned in between the classes of a
bipartition (Cx, Dx) of the set I−l+1,k, endowed with the complete preorder %−l+1,k,
with Cx ⊇ ϕ−l+1(C

−l+1
x ) and Dx ⊇ ϕ−l+1(D

−l+1
x ). There is some arbitrariness in

the definition of the bipartition (Cx, Dx), since there may be elements of I−l+1,k

lying in between ϕ−l+1(C
−l+1
x ) and ϕ−l+1(D

−l+1
x ).

We select one of the possible options and show that it leads to the definition of
a d-separable complete preorder on I−l,k. For x ∈ I−l, let K(x) denote the set
of elements of I−l determining the same bipartition (C−l+1

x , D−l+1
x ) in I−l+1 as x.

Let M(x) be the set of elements of I−l+1,k which lie between ϕ−l+1(C
−l+1
x ) and

ϕ−l+1(D
−l+1
x ), i.e., y ∈ M(x) ⇔ c �0,k y �0,k d, for all c ∈ ϕ−l+1(C

−l+1
x ) and

d ∈ ϕ−l+1(D
−l+1
x ). We define the bipartition (Cx, Dx) as follows:

Cx = {z ∈ I−l+1,k : ∃c ∈ ϕ−l+1(C
−l+1
x ) such that z %−l+1,k c}, (5)

Dx = I−l+1,k \ Cx = M(x) ∪ {y ∈ I−l+1,k : ∃d ∈ ϕ−l+1(D
−l+1
x ) such that d %−l+1,k y}.

We insert ghosts as follows. We set c %−l,k ϕ−l(x′) %−l,k ϕ−1(x′′) %−l,k d, for all
c ∈ Cx, d ∈ Dx and x′, x′′ ∈ K(x) with x′ % x′′. We also impose ϕ−l(x′) �−l,k
ϕ−l(x′′) whenever x′ � x′′ (see Figure 4). In the particular case in which Dx has a
greatest element d (w.r.t. %−l+1,k) and K(x) has a least element x (w.r.t. %), we
set10 ϕ−l(x) ∼−l,k d. The relation %−l,k on I−l,k is completely defined as follows.
For all z1, z2 ∈ I−l,k, we distinguish the following cases:

Case 1 if z1, z2 ∈ I−l+1,k, we have z1 %−l,k z2 iff z1 %−l+1,k z2, hence %−l,k extends
%−l+1,k;

Case 2 if z1 = ϕ−l(x1) and z2 = ϕ−l(x2) for some x1, x2 ∈ I−l, we set z1 �−l,k z2
iff x1 � x2; note that this definition is compatible with the construction
above also in case x1 and x2 determine the same bipartition in I−l+1;

Case 3 if z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have z1 %−l,k z2 iff z2 ∈ Dx1 , and
z2 �−l,k z1 iff z2 ∈ Cx1 . Furthermore, z2 ∼−l,k z1 iff z2 is a greatest element
in Dx1 (w.r.t. %−l+1,k) and x1 is the least element in K(x1) (w.r.t. %).

With this definition, the following lemma, which extends Lemma 16, holds.

Lemma 17
%−l,k is a complete preorder on I−l,k which extends %−l+1,k, satisfies ϕk(x) %−l,k
ϕk(y) for all x, y ∈ I−l with x % y, and is d-separable by E−l,k.

10The pair (d, x) is a hollow if and only if d is the ghost of an element of I−l+1. This is not
always the case since d can belong to M(x) (see also footnote 9).
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Figure 4: Ghost insertion for I−l into I−l+1,k

Proof
It is easy to check that the relation %−l,k defined above is complete, transitive,
and extends %−l+1,k. It reproduces on ϕk(I−l) the order induced by the trace %
on I−l.

We prove that relation %−l,k is d-separable. We know by Lemma 16 that %−1,k is
d-separated by E−1,k. We prove the result by induction, assuming that %−l+1,k is
d-separable by E−l+1,k. Let z1, z2 ∈ I−l,k be such that z1 �−l,k z2.

Case 1 If z1, z2 ∈ I−l+1,k and z1 �−l,k z2, we have z1 �−l+1,k z2. By the induction
hypothesis, z1 and z2 can be separated by an element from E−l+1,k.

Case 2 If z1 = ϕ−l(x1) and z2 = ϕ−l(x2) for some x1, x2 ∈ I−l, we know that
z1 �−l,k z2 implies x1 � x2. Since % is d-separable, there is an element in
E−l separating x1 from x2. Therefore, z1 and z2 are separated by an element
in ϕ−l(E−l).

Case 3 If z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have that z1 �−l,k z2 implies that
z2 ∈ Dx1 . If z2 is not a greatest element in Dx1 (w.r.t. %−l+1,k), then
there is z ∈ Dx1 such that z1 �−l,k z �−l+1,k z2. By Lemma 15, z2 can
be separated from z, and therefore from z1, by an element from E−l+1,k. If
z2 is a greatest element in Dx1 and there is x ∈ M(x1) such that x1 � x,
then ϕ−l(x1) �−l,k ϕ−1(x) �−l,k z2, and we can use the separability of %.
Therefore, z1 and z2 are separated by an element in ϕ−l(E−l). Finally, we
have to consider the case in which z2 is a greatest element in Dx1 and x1 is
the least element in K(x1). This is incompatible with z1 �−l,k z2 because,
in this case, we decided that z1 = ϕ−l(x1) ∼−l,k z2.

Case 4 If z1 ∈ I−l+1,k and z2 = ϕ−l(x2) for some x2 ∈ I−l, we have that z1 �−l,k z2
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implies z1 ∈ Cx2 . If z1 is not a least element in Cx2 (w.r.t. %−l+1,k), then
there is z ∈ Cx2 such that z1 �−l+1,k z �−l,k z2. By the induction hypothesis,
z1 can be separated from z, and therefore from z2, by an element from
E−l+1,k. If z1 is a least element in Cx2 and there is x ∈ K(x2) with x � x2,
then z2 �−l,k ϕ−l(x) �−l,k ϕ−l(x2), and we can use the separability of %.
Therefore, z1 and z2 are separated by an element in ϕ−l(E−l). Finally, we
have to consider the case in which z1 is a least element in Cx2 and x2 is the
greatest element in K(x2). In this case, there is y ∈ I0 such that (y, x2) is a
nose and ϕ−l+1(y) ∼−l+1,k z1. Since y is a nose endpoint, it belongs to E−l+1

and ϕ−l+1(y) ∈ E−l+1,k separates z1 from z2. 2

At the end of this construction process, involving at most a countably infinite
number of steps, we obtain the set

Ĩ0 = I0 ∪ (
⋃
k≥0

ϕk(Ik)) ∪ (
⋃
l>0

ϕ−l(I−l)) = I0 ∪ (
⋃

m∈M
ϕm(Im)),

ordered by %ϕ, which is an extension of the linear order % on I0. It also extends
the complete preorder %−l,k, for all k,−l ∈ M . The restriction of %ϕ to ϕm(Im),
for m ∈ M,m 6= 0, is an isomorphic image of the linear order % on Ik. The
denumerable set Ẽ0 = E0 ∪ (

⋃
m∈M ϕm(Em)) d-separates the complete preorder

%ϕ. Indeed, for all x 6= y ∈ Ĩ0, x and y belong to I−l,k for some −l, k ∈ M and
by Lemma 17, they are separated by some element in E−l,k. Note that, while %
is a linear order on X (provided no pair of distinct elements are equivalent in the
semiorder, an hypothesis that was made w.l.o.g. in Section 2.1), %ϕ is a complete
preorder, in general. The equivalence class of an element may not be reduced to
a singleton since there are cases in which we set a ghost equivalent to another
element or another ghost in the course of the construction of (Ĩ0,%ϕ) (see also
Remark 34 in Bouyssou and Pirlot (2020a) for other possible cases of equivalence
of ghosts corresponding to elements in consecutive sets Im and Im+1).

Remark 18
Starting from I0,1 we may construct the ghosts of all the elements of a con-
nected semiorder. In case the decomposition in subsets (. . . , I−l, . . . , I0, . . . , Ik, . . .)
involves finitely many subsets, the construction may proceed by first exhaust-
ing all positive indices k, i.e., by constructing I0,k (using section 4.4) and then

building I−l,k, for l = 1, . . . , l (using sections 4.5 and 4.6). In case there are
a countably infinite number of subsets in the decomposition, one may proceed
by addressing alternatively the positive and the negative labels. For instance:
I0,1, I−1,1, I−1,2, I−2,2, . . .. The previous sections allow to do that provided we con-
sider as established the option left to the reader in section 4.6, i.e., building I−l,k
from I−l,k−1. 3
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4.7 Construction of a representation on an I-connected
component

Since the complete preorder %ϕ on Ĩ0 is d-separable, there exists a numerical
representation f : Ĩ0 → R of %ϕ such that f(x) ≥ f(y), for all x, y ∈ Ĩ0 such that
x %ϕ y.

In order to build a unit representation of the semiorder S = (P, I), we select a
numerical representation f of %ϕ into the ]0, 1[ real interval and we define the
function u on D as follows:

u(x) = f(ϕm(x)) + m for all x ∈ Im, (6)

for all m ∈M , and interpreting ϕ0 as the identity function.

Proposition 19
If f : X →]0, 1[⊂ R is a numerical representation of %ϕ on Ĩ0, then the function
u defined by (6) is a unit representation of the semiorder S = (P, I) restricted to
D, i.e., for all x, y ∈ D,

u(x) > u(y) + 1 iff xPy
−1 ≤ u(x)− u(y) ≤ 1 iff xIy

Proof
Let x, y be such that xPy. If y belongs to Ik (k ∈M), we have that x belongs to
Im for m ≥ k + 1 (by Proposition 13, items 13.4, 13.5 and 13.6). If x ∈ Ik+1, we
have u(x)−u(y) = f(ϕk+1(x)) + k + 1− f(ϕk(y))− k > 1, since ϕk+1(x) �ϕ ϕk(y)
by construction, and therefore f(ϕk+1(x)) > f(ϕk(y)).
If x ∈ Im, for m ≥ k + 2, we have u(x)− u(y) = f(ϕm(x)) +m− f(ϕk(y))− k ≥ 1
since m − k ≥ 2 and |f(ϕm(x)) − f(ϕk(y))| ≤ 1. Actually, u(x) − u(y) > 1.
Assume for contradiction that u(x)− u(y) = 1. This implies that m = k + 2 and
f(ϕm(x)) − f(ϕk(y)) = −1. The latter means that ϕm(x) is the least element in
(Ĩ0,%ϕ) and ϕk(y) is the largest. Consider first the case in which m > 0. Since
ϕm(x) is the least element in Ĩ0, we have that ϕm(x) -ϕ ϕm−1(z), for all z ∈ Im−1.
Therefore, xIz, for all z ∈ Im−1. This implies that x ∈ Im−1, by construction of
Im−1, a contradiction. Turning to the case in which m ≤ 0, i.e., k ≤ −2, we deduce
similarly that yIw, for all w ∈ Ik+1. This implies that y ∈ Ik+1, a contradiction.

Consider now a pair x, y ∈ D such that xIy. We assume w.l.o.g. that x � y and
y ∈ Ik (k ∈M). By Proposition 13, items 13.2, 13.3 and 13.5, we know that x ∈ Ik
or x ∈ Ik+1. In the former case, 0 < u(x)−u(y) = f(ϕk(x))+k−f(ϕk(y))−k ≤ 1,
since 0 ≤ f ≤ 1. In the latter case, we have 0 < u(x) − u(y) = f(ϕk+1(x)) + k +
1 − f(ϕk(y)) − k < 1 because f(ϕk+1(x)) − f(ϕk(y)) ≤ 0. To establish this, we
consider the following two possible cases:
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• k ≥ 0. By construction of the ghosts and the extension %ϕ of % for k ≥ 0,
we have ϕk(a) %ϕ ϕk+1(x) �ϕ ϕk(b) for all a ∈ A = {z ∈ Ik : xIz} and all
b ∈ B = {z ∈ Ik : xPz}. Since y belongs to A and f represents %ϕ, we have
that f(ϕk(y)) > f(ϕk+1(x)).

• k = −l < 0. By construction of the ghosts and the extension %ϕ of % for
k = −l < 0, we have ϕ−l+1(c) �ϕ ϕ−l(y) %ϕ ϕ−l+1(d) for all c ∈ C = {z ∈
I−l+1 : zPy} and all d ∈ D = {z ∈ I−l+1 : zIy}. Since x belongs to D
and f represents %ϕ, we have that f(ϕ−l(y)) = f(ϕk(y)) ≥ f(ϕ−l+1(x)) =
f(ϕk+1(x)). 2

Remark 20
Choosing a representation f ranging in the ]0, 1[ interval is restrictive, as observed
in Bouyssou and Pirlot (2020a), in the subsection of Section 4.2 devoted to the
construction of a representation. In contrast to the latter paper, we do not intend
here to guarantee that all possible numerical representations of the semiorder can
be obtained by our construction. Such an opportunity was already lost in the
procedure we followed for inserting the ghosts, which is described in Sections 4.4,
4.5 and 4.6. We indeed selected a particular way of inserting the new ghosts in
the previously constructed extension of I0. Therefore, in the sequel we just aim at
showing the existence of a representation. 3

The next result gives necessary and sufficient conditions for an I-connected semiorder
to have a strict unit representation. It is thus a generalization of Manders (1981,
Prop. 8, p. 237) and Bouyssou and Pirlot (2020a, Prop. 36), which deal with de-
numerable semiorders. Note that the Bounded P -chain condition is implied by
I-connectedness (see Bouyssou and Pirlot, 2020a, Prop. 54). Hence it need not be
imposed here.

Proposition 21
Let S = (P, I) be an I-connected semiorder on the set X and let % be its trace. S
admits a strict unit representation u, i.e., satisfying (1), iff the complete preorder
% is d-separable and S has an at most denumerable set of noses.

Proof
Both conditions are necessary. If u is a numerical representation of S and x � y
then u(x) > u(y). We may impose that u assigns the same value to all the
elements in the same equivalence class of ∼. In such a case u is a numerical
representation of the complete preorder %. It is well-known that the existence of
a denumerable set d-separating % is a necessary and sufficient condition for the
existence of a numerical representation of this complete preorder (Krantz et al.,
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1971, Th. 2, p. 40). We showed in Remark 11 that no representation satisfying (1)
exists when the set of noses is uncountable.

The construction of Ĩ0 endowed with the complete preorder %ϕ, jointly with Propo-
sition 19, establishes the existence of a numerical representation of S satisfying
(1). 2

4.8 Assembling representations on I-connected components

We now consider the general case in which the semiorder S = (P, I) on X is not
necessarily I-connected. The strategy followed in the denumerable case can also
be used in the general case (Bouyssou and Pirlot, 2020a, Remark 64). Assuming
that a strict unit representation exists for the restrictions of the semiorder to each
of its I-connected components, we assemble them into a strict unit representation
of the whole semiorder. In order to do so, we need assuming that the semiorder
satisfies the Bounded P -chain condition. The next proposition is our main result
concerning strict unit representations. It is a reformulation of Candeal and In-
duráin (2010, Th. 3.6, p. 487) in which the s-separability condition is factorized
into d-separability of the trace and denumerability of the set of noses. We em-
phasize that this factorization refines both the s-separability condition and the
P -gap-edge-points condition of Beja and Gilboa (1992) (see Remark 12 above).

Theorem 22
Let S = (P, I) be a semiorder on the set X and let % be its trace. S admits a unit
numerical representation u satisfying (1) iff the semiorder S satisfies the Bounded
P -chain condition, the complete preorder % is d-separable and S has an at most
denumerable set of noses. The latter three conditions are independent.

Proof
The necessity of the Bounded P -chain condition (Property 1) is obvious. If there
were an infinite P -chain in a interval [a, b] (i.e., the set {x : a - x - b}), it would
not be possible to assign a finite value to both u(a) and u(b). A numerical repre-
sentation u of the semiorder satisfies u(a) > u(b) whenever a � b. A representation
of the semiorder might not be a representation of the trace % in the sense that it
might distinguish some equivalent elements, i.e., one might have that u(a) > u(b)
for some a ∼ b. In such a case one may always transform u in a representation
u′ of the semiorder that gives the same value to all elements of each equivalence
class of %. As a result u′ is a numerical representation of %, which cannot exist if
% is not d-separable (Krantz et al., 1971, Th. 2, p. 40). It was shown in Remark
11 that a representable semiorder has an at most denumerable set of noses.

We now show the sufficiency of the conditions. Assuming Property 1, Proposition
23 in Bouyssou and Pirlot (2020a) implies that a representation of a semiorder
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can be built whenever there is a representation of the restrictions of the semiorder
to each of its I-connected components. If the whole semiorder has an at most
denumerable set of nodes, it is also the case of its restrictions to all I-connected
components. If the trace % is d-separable so are its restrictions to all I-connected
components. Therefore, applying Proposition 21, we know that there exists a
numerical representation on each I-connected component. Using Remark 64 in
Bouyssou and Pirlot (2020a), we know how to assemble them into a representation
of the whole semiorder.

To prove the independence of the three conditions, consider the following three
examples.

Example 23
Let X = R2. Consider the binary relation S such that S = P ∪ I with (x1, x2) P
(y1, y2) if x1 > y1 + 1 or [x1 = y1 + 1 and x2 > y2], while I is the symmetric
complement of P (i.e., xIy ⇔ Not [x P y] and Not [y P x]).
It is not difficult to show that S is a semiorder (that is not a complete preorder).
It is clear that for all x, y ∈ X, there is an I-chain joining them, so that this
semiorder is I-connected and therefore the Bounded P -chain condition holds. The
set of noses of S is easily seen to be empty. The trace of S is the lexicographic
preorder on R2. Hence, d-separability is violated (see Beardon et al., 2002, Bridges
and Mehta, 1995). 3

Example 24
Let S= (P, I) be the semiorder on R defined by xPy ⇔ x ≥ y + 1, while I is the
symmetric complement of P . For all x, y ∈ R, there is a P -chain joining them, so
that the Bounded P -chain condition holds. The trace % of S is ≥ on R, so that
the trace is d-separable. All ordered pairs (x, y) ∈ R2 such that x = y + 1 are
noses, which violates the denumerable noses condition. 3

Example 25
Let X = N ∪ {ω}. Consider the binary relation S such that ω P x, for all x ∈ N
and x P y iff x > y + 1, for all x, y ∈ N, while I is the symmetric complement
of P . Since X is denumerable, d-separability and the condition on noses trivially
hold. The Bounded P -chain condition is violated. 3

2

4.9 Hollows-faithful representations

In this section (which the reader may wish to skip without disadvantage for the
understanding of the rest of the paper) we investigate the existence of a special
type of strict representation that we shall call hollows-faithful representations.

27



The latter is a strict unit representation in which the values associated to the
endpoints of each hollow differ by exactly one unit. In the construction of the
set Ĩ0 and the complete preorder %ϕ detailed in Sections 4.3 to 4.6, we placed, in
some particular cases, the ghost of an element in Ik, k > 1 (resp. in I−l, l > 1)
into the equivalence class (w.r.t. %ϕ) of the ghost of an element in Ik−1 (resp. in
I−l+1). In the construction of I0,1 (see Section 4.3), the ghost ϕ1(x) of an element
x in I1 is set equivalent to an element a ∈ I0 if and only if (x, a) is a hollow (see
also footnote 6, page 14). When applying (6) to a numerical representation of
the complete preorder %ϕ on Ĩ0, we obtain a strict representation u, with u(x) =
u(a) + 1 for all hollows (x, a), x ∈ I1, a ∈ I0.

However, in all the other steps of the construction of (Ĩ0,%ϕ), there is no guarantee
that ghosts put in the same equivalence class always correspond to hollows. This
is emphasized in footnotes 8, 9 and 10.

We shall prove below that a semiorder admits a hollows-faithful representation as
soon as the semiorder has a strict unit representation. The proof will imply to
slightly modify the ghost insertion procedure (Sections 4.4 to 4.6). It also requires
to bring some change in the partitions (Im,m ∈M) to avoid that both endpoints
of a hollow might belong to the same class Im.

Proposition 26 (Existence of hollows-faithful representations)
Let S = (P, I) be a semiorder on the set X and let % be its trace. If the semiorder S
satisfies the Bounded P -chain condition, the complete preorder % is d-separable and
S has an at most denumerable set of noses, then S admits a strict unit numerical
representation u satisfying:

u(x)− u(y) = 1 iff (x, y) is a hollow. (7)

Proof
For proving the result, it suffices to establish the existence of a special strict unit
representation satisfying (7) for each I-connected component D of (X,S). Indeed,
assembling representations that fulfill (7) as described in Section 4.8 preserves this
property. We thus consider any I-connected component D of the semiorder. There
are two problems with the current construction of a strict unit representation that
need to be solved in view of constructing a representation satisfying (7): (i) both
hollow endpoints belonging to consecutive classes of a partition (Im,m ∈ M)
should be assigned to the same equivalence class of the complete preorder %ϕ;
(ii) hollow endpoints should not belong to the same class of the partition. We first
show how to solve (i) by slightly modifying the ghost insertion procedure described
in Sections 4.3 to 4.6. Then we show how to modify a partition (Im,m ∈ M) in
order to solve (ii) by avoiding the presence of both endpoints of a hollow in the
same class.

(i) Hollows-faithful insertion procedure.
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I0,1: no modification.

I0,k: only the insertion of the ghosts of elements x ∈ Ik such that (x, y) is a hollow
for some y ∈ Ik−1. In such a case, x is the largest element in J(x) and
ϕk−1(Ak−1

x ) has a least element ϕk−1(y). Instead of inserting ϕk(x) between
Ax and Bx as described in Section 4.4, we set ϕk(x) ∼0,k ϕk−1(y). This means
that we insert ϕk(x) in between Ax\L(x) and Bx∪L(x), setting it indifferent
to a least element in A(x) \ L(x). With this modified insertion, Lemma 15
remains true. Its proof need only be adapted in Cases 3 and 4. Regarding
Case 3, nothing changes unless x1 is the endpoint of a hollow (x1, y) with
y ∈ Ik−1. In such a case, we have ϕk(x1) ∼0,k ϕk−1(y). If z1 = ϕk(x1) and
z2 ∈ I0,k−1, we have that z1 �0,k z2 implies that z2 ∈ Bx1 ∪ L(x1). By the
induction hypothesis, there is z ∈ E0,k−1 which separates ϕk−1(y) and z2, i.e.,
ϕk−1(y) %0,k−1 z %0,k−1 z2. Since z1 ∼0,k ϕk−1(y) and %0,k extends %0,k−1,
we have that z ∈ E0,k−1 also separates z1 and z2 in (I0,k,%0,k). A similar
argument applies in Case 4.

I−1,k: only the insertion of the ghosts of elements x ∈ I−1 such that (y, x) is a
hollow for some y ∈ I0. In such a case, x is the least element in J(x) and
ϕ−1(D−1x ) has a largest element y. Instead of inserting ϕ−1(x) between Cx

and Dx as described in Section 4.5, we set ϕ−1(x) ∼−1,k y. This means that
we insert ϕ−1(x) in between Dx \M(x) and Cx ∪M(x), setting it indifferent
to a largest element in D(x)\M(x). With this modified insertion, Lemma 16
remains true. Its proof need only be adapted in Cases 3 and 4. Regarding
Case 3, nothing changes unless x1 is the endpoint of a hollow (y, x1) with
y ∈ I0. In such a case, we have ϕ−1(x1) ∼−1,k y. If z1 = ϕ−1(x1) and z2 ∈ I0,k,
we have that z1 �−1,k z2 implies that z2 ∈ Dx1 ∪M(x1). By the induction
hypothesis, there is z ∈ E0,k which separates y and z2, i.e., y %0,k z %0,k z2.
Since z1 ∼−1,k y and %−1,k extends %0,k, we have that z ∈ E0,k also separates
z1 and z2 in (I−1,k,%−1,k). A similar argument applies in Case 4.

I−l,k: only the insertion of the ghosts of elements x ∈ I−l such that (y, x) is a
hollow for some y ∈ I−l+1. In such a case, x is the least element in J(x)
and ϕ−l+1(D

−l+1
x ) has a largest element ϕ−l+1(y). Instead of inserting ϕ−l(x)

between Cx and Dx as described in Section 4.6, we set ϕ−l(x) ∼−l,k ϕ−l+1(y).
This means that we insert ϕ−l(x) in between Dx \ M(x) and Cx ∪ M(x),
setting it indifferent to a largest element in D(x)\M(x). With this modified
insertion, Lemma 17 remains true. Its proof need only be adapted in Cases 3
and 4. Regarding Case 3, nothing changes unless x1 is the endpoint of a
hollow (y, x1) with y ∈ I−l+1. In such a case, we have ϕ−l(x1) ∼−l,k ϕ−l+1(y).
If z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have that z1 �−l,k z2 implies that
z2 ∈ Dx1 ∪M(x1). By the induction hypothesis, there is z ∈ E−l+1,k which
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separates ϕ−l+1(y) and z2, i.e., ϕ−l+1(y) %−l+1,k z %−l+1,k z2. Since z1 ∼−l,k y
and %−l,k extends %−l+1,k, we have that z ∈ E−l+1,k also separates z1 and z2
in (I−l,k,%−l,k). A similar argument applies in Case 4.

Applying the usual construction of a representation described in Section 4.7, we
obtain a strict unit representation of the semiorder restricted to the I-connected
component D. Such a representation fulfills (7) for all hollows (x, y) for which x
and y belong to different indifference classes Im and Im+1.

(ii) Modifying the partition (Im,m ∈M).

With the construction of the partition (Im,m ∈ M) described in Bouyssou and
Pirlot (2020a, Section 3), it may happen that both endpoints of a hollow belong
to the same indifference class Im (see Example 27 below). In order to obtain a
partition (I ′m,m ∈M ′) without hollows inside a class I ′m, for all m ∈M ′, we may
restructure the initial partition as follows.

• Search for the smallest k ≥ 0 such that Ik contains both endpoints x, y of a
hollow (x, y). If this is the case for Ik, let I ′k = Ik \ {x}. Transfer x to I ′k+1

and, define I ′k+1 as the maximal indifference class whose least element is x;
however, if this class has a greatest element z, and (z, x) is a hollow, then
transfer z to Ik+2. Continue in this way, adapting the construction principles
explained in Bouyssou and Pirlot (2020a, Section 3) in order to avoid the
existence of hollows with both endpoints in the same class. If no Ik, k ≥ 0
containing both endpoints of a hollow is found, keep the classes (Ik, k ≥ 0)
unchanged.

• Search for the smallest l > 0 such that I−l contains both endpoints x, y of a
hollow (x, y). If this is the case for I−l, let I ′−l = I−l\{y}. Transfer y to I ′−l−1
and, define I ′−l−1 as the maximal indifference class whose largest element
is y; however, if this class has a least element w, and (y, w) is a hollow,
then transfer w to I−l−2. Continue in this way, adapting the construction
principles explained in Bouyssou and Pirlot (2020a, Section 3) in order to
avoid the existence of hollows with both endpoints in the same class. If no
I−l, l > 0 containing both endpoints of a hollow is found, keep the classes
(I−l, l ≥ 0) unchanged.

The obtained partition (I ′m,m ∈M ′) has no class which contains both endpoints of
a hollow. Applying the modified ghost insertion procedure described in the begin-
ning of this proof to the partition (I ′m,m ∈M ′) yields a strict unit representation
that fulfills condition (7). 2

We illustrate the previous result and its proof in the following example.
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Example 27
Consider the semiorder S = (P, I) defined on a set X as follows. Let X be the
following union of real intervals: X = [−0.5, 1.9[∪[2.1, 2.9]∪]3.1, 5.1] endowed with
the restriction to X of the usual strict unit semiorder on R. Assume that the
partition Im,m = −1, 0, . . . 5 is the one represented in Figure 5.

I−1

I0

I1

I2

I3

I4

−0.5 0

0 1

1 1.9

2.1 2.9

3.1 4.1

4.1 5.1

1.1

3.9

Figure 5: Partition in indifference classes for the semiorder (X,S). An empty
(resp. filled) circle indicates that the segment is open (resp. closed).

The pair (2.9, 2.1) in I2 is a hollow. In the numerical representation that defines
the semiorder, the difference between the values associated to the endpoints of this
hollow is equal to 0.8. The question we want to solve is whether there is a strict
unit representation of this semiorder in which the endpoints values of all hollows
differ by exactly one unit. Below, we modify the partition (Im,m = −1, . . . , 4) in
order to avoid having hollow endpoints in the same class (see Figure 6). Then we
illustrate the application of the modified ghost insertion procedure described in
the proof of Proposition 26.

Let us start with I0. This class contains the hollow (1, 0). We move 1 to I ′1.
I ′1 = [1, 1.9[. In I2, (2.9, 2.1) is a hollow. We move 2.9 to I ′3, leaving I ′2 = [2.1, 2.9[.
I ′3 starts with 2.9 up to 3.9. We do not include 3.9 in I ′3 in order to avoid including
the hollow (3.9, 2.9) in a class. So I ′3 = {2.9} ∪ [3.1, 3.9[. I ′4 = [3.9, 4.9[. Finally,
I ′5 = [4.9, 5.1]. There is one more class than in the original partition.

The modified ghost insertion procedure, applied to (I ′m,m = −1, . . . , 5), yields
Ĩ0 = I−1,5 ordered by %ϕ, as represented in Table 1. We start with the insertion of
the ghosts of the elements of I ′1 into I ′0. All elements of I ′1 are the upper endpoint
of a hollow, the other endpoint being in 1′0. Therefore, for all x ∈ I ′1 = [1, 1.9[,
its ghost ϕ1(x) is equivalent to the other endpoint y of the hollow (x, y), i.e.,
ϕ1(x) ∼0,1 y = x − 1. This is shown in the rows labeled I ′0 and I ′1 in Table 1.
Important elements of I ′0 have been singled out, namely, 0, 0.1, 0.5 and 0.9, because
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I ′−1

I ′0

I ′1

I ′2

I ′3

I ′4

I ′5

−0.5 0

0 1

1 1.9

2.1 2.9

3.1 3.92.9

3.9 4.9

4.9 5.1

1.1

4.1

Figure 6: Modified partition (I ′m,m = −1, . . . , 5) for the semiorder (X,S)

they correspond to transitions in Ĩ0 (0.3 does not correspond to a particular element
in I ′0; it is used to create a gap in which some ghosts from I ′4 and I ′5 need to be
inserted). We see that the endpoints of each hollow are inserted in the same
column of the table (single hollow endpoints in the columns headed by singular
values; intervals coupled in the hollow relation in intervals between singular values).
Each element in I ′2 = [2.1, 2.9[ is associated to an element of [1.1, 1.9[⊂ I ′1 by the
hollow relation. Therefore, we have, for all x ∈ I ′2, ϕ2(x) ∼0,2 ϕ1(x− 1) ∼0,2 x− 2.
The row labelled I ′2 in Table 1 shows that the elements in I ′2 are assigned to
the same columns as their associate elements through the hollow relation. The
insertion of the ghosts of I ′3 is similarly constrained by the hollow relation. The
least element 2.9 is associated to 2.1 because they form a hollow. Therefore the
ghosts of 2.9, 2.1, 1.1 and 0.1 are indifferent w.r.t. ∼0,3. The elements of ]3.1, 3.9[
are coupled to those of ]2.1, 2.9[. This is shown in Table 1 where the elements of
]3.1, 3.9[ are assigned to the columns between 0.3 and 0.9 just as the corresponding
elements of ]2.1, 2.9[. It is the insertion of I ′4 that creates the gap in the table.
The least element 3.9 is coupled to 2.9 and placed in the column headed by 0.1.
The elements in ]3.9, 4.1] are not upper endpoints of a hollow. Their ghosts have
to be inserted between those of 2.9 and those of all the elements of the interval
]3.1, 3.9[. Therefore, they are positioned in the table in the column between 0.1
and 0.3 and 4.1 is assigned to the column headed (arbitrarily) by 0.3. The elements
I ′5 are coupled to these in [3.9, 4.1] ⊂ I ′4. Their position in the table results from
this constraint. Finally, since the elements of I ′−1 = [−0.5, 0[ are coupled to the
elements in [0.5, 1[⊂ I ′0 by the hollow relation, forcing the position indicated in the
table.
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We are now in position to explain the headings row in the table. The row label f
refers to a representation of the complete preorder %−1,5=%ϕ on Ĩ0. If we assign
the heading value to the ghosts of the elements in the columns having a heading
and if we linearly interpolate between these values to assign values to the ghosts
in the intervals between the headed columns, we obtain a representation of %ϕ.
From this, we build a representation of the semiorder, which fulfills condition (7),
by using definition (6).

f 0 0.1 0.3 0.5 0.9 1
I ′0 0 ]0, 0.1[ 0.1 ]0.1, 0.5[ 0.5 ]0.5, 0.9[ 0.9 ]0.9, 1[
I ′1 1 ]1, 1.1[ 1.1 ]1.1, 1.5[ 1.5 ]1.5, 1.9[
I ′2 2.1 ]2.1, 2.5[ 2.5 ]2.5, 2.9[
I ′3 2.9 ]3.1, 3.5[ 3.5 ]3.5, 3.9[
I ′4 3.9 ]3.9, 4.1[ 4.1 ]4.1, 4.5[ 4.5 ]4.5, 4.9[
I ′5 4.9 ]4.9, 5.1[ 5.1
I ′−1 −.5 ]− .5,−.1[ −.1 ]− .1, 0[

Table 1: Ĩ0 and a function f that represents the complete preorder %ϕ on Ĩ0

Figure 7 represents in an obvious manner the semiorder as well as the hollows-
faithful strict unit representation obtained by applying (6) to the numerical rep-
resentation f of the complete preorder %ϕ on Ĩ0.

I ′−1

I ′0

I ′1

I ′2

I ′3

I ′4

I ′5

f
0 0.1 0.3 0.5 0.9 1

u([−.5, 0[)

u(0) u(]0.1, 1[)

u(1) u(1.1) u(]1.1, 1.9[)

u(]2.1, 2.9[)u(2.1)

u(]3.1, 3.9[)u(2.9)

u(3.9) u([4.1, 4.9[)

u(4.9) u(5.1)

u(0.1)

u(4.1)

Figure 7: Hollows-faithful strict unit representation of the semiorder (X,S)

Remark 28
The result in Proposition 26, i.e., the existence of hollows-faithful representa-
tions as soon as strict unit representations exist, is not limited to uncountable
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semiorders. Of course it holds – and so does the proof – for denumerable semiorders
under the Bounded P -chain condition, which guarantees the existence of a strict
unit representation (Bouyssou and Pirlot, 2020a, Th. 64). We did not mention this
result in Bouyssou and Pirlot (2020a) because our goal there was mainly to study
the “uniqueness” of the representation. Therefore we did not focus on special
representations but tried to show how to construct all possible representations. 3

4.10 Summary of results

In Section 4:

• We gave interpretable conditions for the existence of a strict unit represen-
tation of a semiorder in the general case. Our denumerable set of noses
condition refines both the s-separability condition of Candeal and Induráin
(2010) and the P -gap-edge-points of Beja and Gilboa (1992). The relation-
ship between the latter two conditions is thus clarified.

• We showed that the technique for constructing a strict unit representation,
that we developed in Bouyssou and Pirlot (2020a) in the denumerable case,
can be adapted to deal with the general case. In addition, we showed that
such a construction gives control on the representation. This assertion is
illustrated by establishing the existence of special representations, namely
the hollows-faithful representations.

The benefit of giving a particular role to noses and hollows will be further empha-
sized in the next section, which studies the existence of nonstrict unit representa-
tions. We shall see that, for nonstrict unit representations, the hollows play the
role played by the noses in the case of strict unit representations.

5 Nonstrict unit representations

Conditions guaranteeing that a semiorder has a nonstrict unit representation, i.e.,
a representation satisfying (2), have been established by Beja and Gilboa (1992,
Th. 4.5.b, p. 439). Candeal and Induráin (2010) did not study nonstrict unit
representations but a condition “dual” to their s-separability condition can be
formulated. The latter will play the role of s-separability for nonstrict unit repre-
sentations. We shall write down such a condition and factorize it into d-separability
of the trace and another condition, in the spirit of what we did for strict unit rep-
resentations. The latter condition refines both the condition dual to s-separability
and the condition of denumerability of the set of I-upper-edge-points used by Beja
and Gilboa (1992) in their characterization.
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In the case X is finite, all semiorders have both strict and nonstrict representations
(see, e.g., Pirlot and Vincke (1997), Section 4.2). In case X is countably infinite,
every semiorder that admits a strict unit representation has also a nonstrict unit
representation, and conversely (Beja and Gilboa (1992, Th. 3.8); this has already
been observed by Roberts (1979, footnote, p. 36)). It is even true (Bouyssou and
Pirlot, 2020a, Th. 64) that a semiorder on a denumerable set that admits a unit
representation also has a unit representation u that is simultaneously strict and
nonstrict (i.e., |u(x) − u(y)| 6= 1, for all x, y). The Bounded P -chain condition is
a necessary and sufficient condition for a semiorder on a denumerable set to have
both strict and nonstrict unit representations. For a semiorder on an uncountable
set it is no longer the case that it has a strict unit representation if and only if
it has a nonstrict one. Consider for instance the nonstrict unit semiorder on the
reals (Example 24). It has a trivial nonstrict unit representation. The set of its
noses is not denumerable. Therefore, by Theorem 22, this semiorder has no strict
unit representation. So, the two types of representation are not equivalent when
X is not denumerable.

Our goal in this section is to establish a new characterization of the semiorders
that admit a nonstrict unit representation.

5.1 Separability for nonstrict unit representations

We introduce another form of separability that can be viewed as “dual” w.r.t. s-
separability (Candeal and Induráin, 2010) and is useful to characterize semiorders
that admit a nonstrict unit representation.

Definition 29 (s′-separability)
A semiorder S = (P, I) is s′-separable if there is a denumerable set F , F ⊆ X,
such that, for all a, b ∈ X with aSb, there are

c ∈ F such that aSc % b

and d ∈ F such that a % dSb. y

This notion of separability implies that the number of hollows (see Definition 5)
of the semiorder is at most denumerable. The following lemma is the counterpart
of Lemma 7 in the context of s′-separability.

Lemma 30
If the semiorder S = (P, I) on X is s′-separable by the denumerable set F , then a
and b belong to F whenever (a, b) is a hollow.

Proof
Let (a, b) be a hollow, thus satisfying bIa hence bSa. By the s′-separability prop-
erty, there is c ∈ F such that bSc % a. By definition of a hollow, for all c � a, we
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have cPb. Therefore, c = a and a ∈ F . Using s′-separability, there is also d ∈ F
such that b % dSa, which implies b = d and b ∈ F . 2

Before proving a factorization result similar to Proposition 10, we introduce the
notion of half-hollow, adapting the notion of half-noses introduced in Definition 8.

Definition 31 (Half-hollows)
The ordered pair (a, b) ∈ X×X is a lower half-hollow (l-h-hollow) of S = (P, I) if
aIb, a � b, and there is no d ∈ X such that b � dIa. (a, b) is a proper l-h-hollow
if it is a l-h-hollow and there is c ∈ X such that bIc � a. (a, b) ∈ X × X is an
upper half-hollow (u-h-hollow) of S = (P, I) if aIb, a � b, and there is no c ∈ X
such that bIc � a. (a, b) is a proper u-h-hollow if it is an u-h-hollow and there is
d ∈ X such that b � dIa.
Let LHH (resp. UHH) denote the set of right endpoints b (resp. left enpoints a)
of all proper l-h-hollows (resp. u-h-hollow) (a, b). y

The notion of upper half-hollow is closely related to that of I-upper-edge point
(Beja and Gilboa, 1992, Definition P6 (b), p.438). The element a ∈ X is an
I-upper-edge-point if and only if there is b ∈ X such that (a, b) is an upper half-
hollow. We have the following result. It is the counterpart of Lemma 9 and its
proof is similar. We give it for the reader’s convenience.

Lemma 32
If the semiorder S = (P, I) is d-separable, then the sets LHH and UHH are
denumerable.

Proof
We only prove the result for LHH. The other case is dealt with similarly.

Let (a, b) be a proper l-h-hollow. We define the set H(b) = {x ∈ X : xIb, x �
b and ∀d ≺ b,Not [xId]}. In other words, for all x ∈ H(b), (x, b) is a l-h-hollow. It
is clear that a ∈ H(b). Moreover, since (a, b) is proper, H(b) contains at least one
other element c such that bIc � a. H(b) is an interval w.r.t. �. To show this let
x, x′ ∈ H(b). If x′′ is such that x � x′′ � x′, then x′′ ∈ H(b). Indeed, x′′Ib since
xIb and for all d ≺ b, Not [x′′Id] since Not [x′Ic].

Let (a, b) and (a′, b′) be two proper l-h-hollows, with b 6= b′ ∈ LHH. It is clear
that the associated intervals H(b) and H(b′) are disjoint. Each of these intervals
contains at least two distinct points and therefore at least an element from the
denumerable set D that d-separates S = (P, I). Consequently, LHH is denumer-
able. 2

Proposition 33
A semiorder S = (P, I) on X is s′-separable iff % is d-separable and the set of
hollows is denumerable.
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Proof
Assume that the semiorder is s′-separable. By Lemma 30, the set of hollows is
denumerable. The s′-separability property implies that % is d-separable. Let
x, y ∈ X be such that x � y. There is z ∈ X such that xPz and zSy and/or
w ∈ X such that wPy and xSw. In the former case, s′-separability entails that
there is c ∈ F such that zSc % y and, since xPz, we have x � c % y. In the latter
case, there is d ∈ F such that x % dSw and, since wPy, we have x % d � y.

Reciprocally, let D be a denumerable set that d-separates %. Let x, y ∈ X be such
that ySx. We first deal with the case y � x. By d-separability, there is z ∈ D
such that x - z - y, which implies ySz and zSx. Therefore we have ySz % x and
y % zSx. The other case is when x � y. If (x, y) is a hollow, the s′-separability
condition is trivially satisfied. Assuming that (x, y) is not a hollow, we have that

1. either there is x′ � x such that ySx′

2. or there is y′ ≺ y such that y′Sx.

In Case 1, by the d-separability of�, there is c ∈ D such that x′ % c % x. Therefore
we have ySc % x. Further, there are two cases. Either there is y′ ≺ y such that
y′Sx or for all y′ ≺ y, we have Not [y′Sx]. In the former case, d-separability implies
that there is d ∈ D such that y′ - d - y. Then, we have y % dSx. Otherwise,
(x, y) is a proper l-h-hollow. In order to have d ∈ F such that y % dSx, we set
d = y and include the denumerable set LHH of right endpoints of the proper
l-h-hollows in F .

In Case 2, by the d-separability of �, there is d ∈ D such that y′ - d - y.
Therefore we have xSc - y. Further, either there is x′ � x such that ySx′ or for
all x′ � x, we have Not [ySx′]. In the former case, d-separability implies that there
is c ∈ D such that x′ % c % x. Then, we have ySc % x. Otherwise, (x, y) is a
proper u-h-hollow. In order to have c ∈ F such that ySc % x, we set c = x and
include the denumerable set UHH of left endpoints of the proper u-h-hollows in
F .

Finally, by considering F as the union of D, LHH, UHH and the set of elements
a, b such that (a, b) is a hollow, which is denumerable by hypothesis, we obtain a
denumerable set F , which s′-separates the semiorder (P, I). 2

Remark 34
It is easy to show that having a denumerable set of hollows is a necessary condition
for a semiorder to have a nonstrict unit representation. Indeed, assume that u is a
nonstrict unit representation of the semiorder S = (P, I) and (a, b) is a hollow of S.
Since bSa, we have u(b) > u(a)−1. Let εab be the positive number u(b)−u(a)+1.
By definition of a hollow, there is no element c ∈ X such that b � cSa and
therefore, there is no c such that u(c) ∈]u(a) − 1, u(b)], an interval of length

37



εab > 0. To each hollow (a, b) is associated such an interval of positive length and
all these intervals are disjoint. Since sets of disjoint intervals of positive length
in R have a finite or denumerable number of elements, the number of hollows is
denumerable. 3

Remark 35
For proving the existence of a nonstrict unit representation, we shall use d-separability
and the condition that the number of hollows is denumerable. We could do it
under the s′-separability assumption, but, in the proof, we shall only use the de-
numerable set D that is dense in the trace % and the denumerable set of hollows
endpoints. We do not need to add the half-noses or the half-hollows as we had
to do in the second part of the proof of Proposition 33. In other words, we do
not use all the points in the set F involved in the s′-separability property (see
Definition 29). In the same vein, we do not need to impose that the set of all
I-upper-edge-points (Beja and Gilboa, 1992, p. 438) is denumerable. Only the
cardinality of the set of I-upper-edge-points that correspond to hollows needs to
be controlled. Our condition that the set of hollows has to be denumerable refines
both the s′-separability condition and the denumerability of the set of I-upper-
edge-points (Beja and Gilboa, 1992, Theorem 4.5 (b), p. 439). Its interpretation
is straightforward and it clarifies the relationship between s′-separability and the
conditions imposed by Beja and Gilboa (1992). 3

5.2 Characterization of the semiorders admitting a non-
strict unit representation

The insertion process leading to prove the existence of a strict unit representation
of a semiorder can be slightly modified to accomodate nonstrict unit representa-
tions. In nonstrict representations the hollows play the role of the noses in strict
representations and vice versa. We shall prove that there is a nonstrict represen-
tation of a semiorder if and only if the semiorder satisfies the Bounded P -chain
condition, its trace is d-separable and the semiorder has a denumerable set of
hollows.

As in Section 4, we start by proving that these conditions are sufficient. We first
assume that the semiorder S = (P, I) on X has been decomposed into I-connected
components. Let D be such a connected component. Assuming that the restriction
to D of the semiorder has a denumerable set of hollows and that its trace is d-
separable, we adapt the construction of (Ĩ0,%ϕ) described in Sections 4.4 to 4.6 in
order to prove that the restriction to D of the semiorder admits a nonstrict unit
representation (as in Section 4.7). Let E = E ′ ∪ H be the denumerable set that
is the union of all hollows endpoints H and a denumerable subset E ′ of X which

38



d-separates the trace %. Using the notation defined in Section 4.2, we describe the
changes in the construction of I−l,k, for all −l, k ∈M with l > 0, k ≥ 0, below.

Construction of I0,1 Ghost insertion goes as described in Section 4.3. The only
difference relates to the positioning of the ghosts of the noses left endpoints
(instead of the hollows left endpoints). Whenever (x1, b) is a nose, with
x1 ∈ I1 and b ∈ I0, we place the ghost ϕ1(x1) of x1 in the equivalence class
of b in the relation %0,1. Note that, for a hollow (x1, a), the ghost ϕ1(x1) is
positioned strictly in between the classes of the bipartition (A0

x1
, B0

x1
), i.e.,

in such a way that we have a �0,1 ϕ1(x1) �0,1 b, for all b ∈ B0
x1

. There is
no change in the proof that the relation %0,1 that is obtained is a complete
preorder on I0,1 extending the trace % on I0 and reproducing on ϕ1(I1) the
trace order on I1. Slight adaptation is needed to show that this complete
preorder is d-separated by E0,1. The required modifications occur in Cases 3
and 4 in the proof of Lemma 14. Let z1 �0,1 z2 with z1, z2 ∈ I0,1.

Case 3 We consider the case z1 = ϕ1(x1) and z2 ∈ I0. We have that z1 �0,1

z2 implies z2 ∈ B0
x1

. The only subcase that differs from Lemma 14 is
when x1, z2 is a nose, i.e., when z2 is the greatest element in B0

x1
and

x1 is the least element in J(x1). Actually, such a case does not occur
since we have chosen to put z1 = ϕ1(x1) in the equivalence class of z2,
i.e., to set ϕ1(x1) ∼0,1 z2.

Case 4 This case deals with z1 ∈ I0 and z2 = ϕ1(x2). We have that z1 �0,1

z2 implies that z1 ∈ A0
x2

. The only subcase that differs from Lemma 14
is when z1 is the least element in A0

x2
and x2 is the greatest element

such that z1 %0,1 ϕ1(x2). This means that (x2, z1) is a hollow. Since x2

is a hollow endpoint, it belongs to E0, z2 = ϕ1(x2) belongs to E0,1 and
it separates z1 from z2.

This establishes Lemma 14 in the construction process of a nonstrict unit
representation.

Construction of I0,k Ghosts are inserted as in Section 4.4. The bipartition
(Ax, Bx) of I0,k−1 associated to element x in Ik is defined slightly differ-
ently. We choose to include in Bx (instead of Ax) the set L(x) of elements of
I0,k−2 which lie between ϕk−1(Ak−1

x ) and ϕk−1(Bk−1
x ). We have accordingly:

Ax = {y ∈ I0,k−1 : ∃a ∈ ϕk−1(A
k−1
x ) such that y %0,k−1 a}, (8)

Bx = I0,k−1 \ Ax = L(x) ∪ {z ∈ I0,k−1 : ∃b ∈ ϕk−1(B
k−1
x ) such that b %0,k−1 z}.

The definition of %0,k is the same as in Section 4.4 except for Case 3, i.e.,
when z1 = ϕk(x1) and z2 ∈ I0,k−1. Like in Section 4.4, we have z1 �0,k z2
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iff z2 ∈ Ax1 and z2 %0,k z1 iff z2 ∈ Bx1 . The only difference is the following.
When z2 is a greatest element in Bx1 (w.r.t. %0,k−1) and x1 is the least
element in J(x1) (w.r.t. %), we set z2 ∼0,k z1.

The proof of Lemma 15 requires adaptation only in Cases 3 and 4. Let
z1, z2 ∈ I0,k be such that z1 �0,k z2.

Case 3 If z1 = ϕk(x1) and z2 ∈ I0,k−1, we have that z1 �0,k z2 implies that
z2 ∈ Bx1 . The only subcase that differs from Lemma 15 is when z2 is the
greatest element in Bx1 and x1 is the least element in J(x1). Actually,
in such a case, we chose to put z1 = ϕk(x1) in the equivalence class of
z2, i.e., to set ϕk(x1) ∼0,k z2, which is not compatible with z1 �0,k z2.

Case 4 If z1 ∈ I0,k−1 and z2 = ϕk(x2), we have that z1 �0,k z2 implies that
z1 ∈ Ax2 . The only subcase that differs from Lemma 15 is when z1 is a
least element in Ax2 and x2 is the greatest element in J(x2) such that
z1 %0,k ϕk(x2). By definition of Ax2 , z1 = ϕk−1(x1) for some x1 ∈ Ik−1.
This means that (x2, x1) is a hollow. Since x2 is a hollow endpoint, it
belongs to Ek, z2 = ϕk(x2) belongs to E0,k and it separates z1 from z2.

Construction of I−1,k Ghosts are inserted in I0,k as in Section 4.5. The biparti-
tion (Cx, Dx) of I0,k associated to element x in I−1 is defined slightly differ-
ently. We choose to include in Cx (instead of Dx) the set M(x) of elements
of I0,k which lie between C0

x and D0
x, i.e., M(x) = {y ∈ I0,k : c �0,k y �0,k

d,∀c ∈ C0
x, d ∈ D0

x}. We have accordingly:

Cx = M(x) ∪ {z ∈ I0,k : ∃c ∈ C0
x such that z %0,k c}, (9)

Dx = I0,k−1 \ Cx = {y ∈ I0,k : ∃d ∈ D0
x such that d %0,k y}.

The definition of %−1,k is the same as in Section 4.5 except for Case 3, i.e.,
when z1 = ϕ−1(x1) and z2 ∈ I0,k. Like in Section 4.5, we have z1 �−1,k z2 if
z2 ∈ Dx1 , and z2 %−1,k z1 if z2 ∈ Cx1 . The only difference is the following.
Let K(x1) denote the set of elements in I−1 determining the same bipartition
(C0

x1
, D0

x1
) as x1. When z2 is a least element in Cx1 (w.r.t. %0,k) and x1 is

the greatest element in K(x1) (w.r.t. %), we set z2 ∼−1,k z1.
The proof of Lemma 16 requires adaptation only in Cases 3 and 4. Let
z1, z2 ∈ I−1,k be such that z1 �−1,k z2.

Case 3 If z1 = ϕ−1(x1) and z2 ∈ I0,k, we have that z1 �−1,k z2 implies that
z2 ∈ Dx1 . The only subcase that differs from Lemma 16 is when z2
is a greatest element in Dx1 and x1 is the least element in K(x1). By
definition (9) of the bipartition, z2 ∈ Dx1 , hence (z2, x1) is a hollow.
Therefore z2 ∈ E−1,k and it trivially separates z1 from z2.

40



Case 4 If z1 ∈ I−1,k and z2 = ϕ−1(x2), we have that z1 �−1,k z2 implies
that z1 ∈ Cx2 . The only subcase that differs from Lemma 16 is when
z1 is a least element in Cx2 and x2 is the greatest element in K(x2). By
construction, in such a case, z1 ∼−1,k z2 = ϕ−1(x2), which contradicts
z1 �−1,k z2.

Construction of I−l,k As in Section 4.6, we only deal with the construction of
I−l,k starting from I−l+1,k. Ghost insertion proceeds as in Section 4.6. The
bipartition (Cx, Dx) of I−l+1,k associated to element x in I−l is defined slightly
differently. We choose to include in Cx (instead of Dx) the set M(x) of
elements of I−l+1,k which lie between ϕ−l+1(C

−l+1
x ) and ϕ−l+1(D

−l+1
x ), i.e.,

M(x) = {y ∈ I−l+1,k : c �−l+1,k y �−l+1,k d,∀c ∈ C−l+1
x , d ∈ D−l+1

x }. We
have accordingly:

Cx = M(x) ∪ {z ∈ I−l+1,k : ∃c ∈ ϕ−l+1(C
−l+1
x ) such that z %−l+1,k c}, (10)

Dx = I−l+1,k \ Cx = {y ∈ I−l+1,k : ∃d ∈ ϕ−l+1(D
−l+1
x ) such that d %−l+1,k y}.

The definition of %−l+1,k is the same as in Section 4.6 except for Case 3, i.e.,
when z1 = ϕ−l(x1) and z2 ∈ I−l+1,k. Like in Section 4.6, we have z1 �−l,k z2
iff z2 ∈ Dx1 and z2 �−l,k z1 iff z2 ∈ Cx1 . The only difference is the following.
Let K(x1) denote the set of elements in I−l determining the same bipartition
(C−l+1

x1
, D−l+1

x1
) as x1. When z2 is a least element in Cx1 (w.r.t. %−l+1,k) and

x1 is the least element in K(x1) (w.r.t. %), we set z2 ∼−l,k z1.
The proof of Lemma 16 requires adaptation only in Cases 3 and 4. Let
z1, z2 ∈ I−l,k be such that z1 �−l,k z2.

Case 3 If z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have that z1 �−l,k z2 implies
that z2 ∈ Dx1 . The only subcase that differs from Lemma 17 is when
z2 is a greatest element in Dx1 and x1 is the least element in K(x1). By
definition (10) of the bipartition, z2 ∈ Dx1 , hence (z2, x1) is a hollow.
Therefore z2 ∈ E−l,k and it trivially separates z1 from z2.

Case 4 If z1 ∈ I−l+1,k and z2 = ϕ−l(x2), we have that z1 �0,k z2 implies
that z1 ∈ Cx2 . The only subcase that differs from Lemma 17 is when
z1 is a least element in Cx2 and x2 is the greatest element in K(x2). By
construction, in such a case, z1 ∼−l,k z2 = ϕ−l(x2), which contradicts
z1 �−l,k z2.

At the end of this construction process, involving at most a countably infinite
number of steps, we obtain, abusing notation, the set Ĩ0 = I0 ∪ (

⋃
k≥0 ϕk(Ik)) ∪

(
⋃

l>0 ϕ−l(I−l) = I0∪ (
⋃

m∈M ϕm(Im)), ordered by %ϕ, which is an extension of the
complete preorder % on I0. It also extends the order %−l,k, for all k,−l ∈M . The
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denumerable set Ẽ0 = E0 ∪
⋃

m∈M ϕm(Em) d-separates the complete preorder %ϕ.

Indeed, for all x 6= y ∈ Ĩ0, x and y belong to I−l,k for some −l, k ∈ M and by
Lemma 17, they are separated by some element in E−l,k. The complete preorder
%ϕ thus admits a numerical representation on the real numbers.

Leaning on this construction, we prove the following proposition, which is the
counterpart of Proposition 19.

Proposition 36
If f : X →]0, 1[⊂ R is a numerical representation of the complete preorder %ϕ

on Ĩ0, then the function u defined by (6) is a nonstrict unit representation of the
semiorder S = (P, I) restricted to D, i.e., for all x, y ∈ D,

u(x) ≥ u(y) + 1 iff xPy
−1 < u(x)− u(y) < 1 iff xIy

Proof
The proof is very similar to that of Proposition 19. We give it for the reader’s
convenience.

Let x, y be such that xPy. If y belongs to Ik (k ∈M), we have that x belongs to Im
for m ≥ k + 1 (by Proposition 13, items 13.4, 13.5 and 13.6). If x ∈ Ik+1, we have
u(x)− u(y) = f(ϕk+1(x)) + k + 1− f(ϕk(y))− k ≥ 1, since ϕk+1(x) %ϕ ϕk(y) by
construction, and therefore f(ϕk+1(x)) ≥ f(ϕk(y)). Equality occurs when (x, y) is
a nose, since, by construction, the ghost of x is set equivalent to the ghost of y in
the complete preorder %ϕ on Ĩ0.
If x ∈ Im, for m ≥ k + 2, we have u(x)− u(y) = f(ϕm(x)) +m− f(ϕk(y))− k > 1
since m− k ≥ 2 and |f(ϕm(x))− f(ϕk(y))| < 1.

Consider now a pair x, y ∈ D such that xIy. We assume w.l.o.g. that x � y and
y ∈ Ik (k ∈M). By Proposition 13, items 13.2, 13.3 and 13.5, we know that x ∈ Ik
or x ∈ Ik+1. In the former case, 0 < u(x)−u(y) = f(ϕk(x))+k−f(ϕk(y))−k < 1,
since 0 < f < 1. In the latter case, we have 0 < u(x) − u(y) = f(ϕk+1(x)) + k +
1 − f(ϕk(y)) − k < 1 because f(ϕk+1(x)) − f(ϕk(y)) < 0. To establish this, we
consider the following two possible cases:

• k ≥ 0. By construction of the ghosts and the extension %ϕ of % for k ≥ 0,
we have ϕk(a) �ϕ ϕk+1(x) �ϕ ϕk(b) for all a ∈ A = {z ∈ Ik : xIz} and all
b ∈ B = {z ∈ Ik : xPz}. Since y belongs to A and f represents %ϕ, we have
that f(ϕk(y)) > f(ϕk+1(x)).

• k = −l < 0. By construction of the ghosts and the extension %ϕ of % for
k = −l < 0, we have ϕ−l+1(c) �ϕ ϕ−l(y) �ϕ ϕ−l+1(d) for all c ∈ C = {z ∈
I−l+1 : zPy} and all d ∈ D = {z ∈ I−l+1 : zIy}. Since x belongs to D
and f represents %ϕ, we have that f(ϕ−l(y)) = f(ϕk(y)) > f(ϕ−l+1(x)) =
f(ϕk+1(x)). 2
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To save space, we do not write down explicitly the counterpart of Proposition 21 for
I-connected components. It obviously holds and we leave its proof to the reader.
The following result states necessary and sufficient conditions for the existence of
a nonstrict unit representation of a semiorder. It is a counterpart of Theorem 22.

Theorem 37
Let S = (P, I) be a semiorder on the set X and let % be its trace. The following
conditions are equivalent.

1. S admits a nonstrict unit numerical representation u , i.e., satisfying (2);

2. S satisfies the Bounded P -chain condition, the complete preorder % is d-
separable and S has a denumerable set of hollows;

3. S satisfies the Bounded P -chain condition and is s′-separable.

The conditions listed in item 2 are independent.

Proof
The equivalence of the second and third items results from Proposition 33. The
conditions stated in item 2 are necessary for a semiorder to admit a nonstrict unit
representation. The necessity of Property 1 and of the d-separability of the trace
% is shown exactly as for strict representations (see the proof of Theorem 22). A
semiorder that has a nonstrict unit representation cannot involve an uncountable
set of hollows. This is shown in Remark 34.

Regarding the sufficiency of these conditions, consider any I-connected component
D of the semiorder. If the semiorder has a denumerable set of hollows and its trace
is d-separable, these properties are inherited by the restrictions of the semiorder
and of its trace to D. Therefore, we may apply the construction of (Ĩ0,%ϕ) de-
tailed in the beginning of the present section. Using Proposition 36, we obtain a
nonstrict unit representation of the restriction of the semiorder to D. Such a rep-
resentation can be obtained for each I-connected component. Under the Bounded
P -chain condition, we know (Bouyssou and Pirlot, 2020a, Remark 64) that it is
possible to assemble the unit representations on all connected components into a
unit representation of the whole semiorder.

To prove the independence of the three conditions listed in item 2, we slightly
modify Examples 23, 24 and 25.

Example 38
Let X = R2. Consider the binary relation S such that S = P ∪ I with (x1, x2) P
(y1, y2) if x1 > y1 + 1 or [x1 = y1 + 1 and x2 ≥ y2], while I is the symmetric
complement of P (i.e., xIy ⇔ Not [x P y] and Not [y P x]).
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The only difference w.r.t. Example 23 is that the nonstrict inequality x2 ≥ y2
replaces the strict inequality x2 > y2 in the definition of P . This results in an
empty set of hollows, trivially implying the condition on hollows. One shows as in
Example 23 that the Bounded P -chain condition holds and that d-separability is
violated. 3

Example 39
Let S = (P, I) be the semiorder on R defined by xPy if x > y + 1, while I
is the symmetric complement of P . This relation satisfies the Bounded P -chain
condition. Its trace is ≥ on R; it is therefore d-separable. Every pair (x, y) ∈ R2

with x = y + 1 is a hollow, hence S does not satisfy the denumerable hollows
condition. 3

Example 40
Let X = N ∪ {ω}. Consider the binary relation S such that ω P x, for all x ∈ N
and x P y iff x ≥ y + 1, for all x, y ∈ N, while I is the symmetric complement of
P . Since X is denumerable, d-separability and the condition on hollows trivially
hold. The Bounded P -chain condition is violated. 3

2

Remark 41
We proved in preamble of Section 5 that a semiorder that has a nonstrict unit
representation need not have a strict unit representation. We are now in a position
to prove the converse. Consider for instance the semiorder in Example 39. The
set of its hollows is not denumerable. Therefore, by Theorem 37, this semiorder
has no nonstrict unit representation. 3

Remark 42 (Noses-faithful representations)
In Section 4.9 we showed that all semiorders that admit a strict unit representa-
tion also admit a special one in which the endpoints of all hollows are separated
by exactly one unit in the representation (hollows-faithful representation). This
result has been established by modifiying the ghost insertion procedure leading
to the construction of (Ĩ0,%ϕ). This modification consists in placing the ghosts
of the hollows in order that they are equivalent w.r.t. %ϕ. For any semiorder
that admits a nonstrict representation, a similar trick can be used to construct a
nonstrict representation in which the values assigned to the endpoints of each nose
differ by exactly one unit. We call such a representation noses-faithful. Such a
representation is obtained by modifying the construction of (Ĩ0,%ϕ) described in
the beginning of Section 5 in the same spirit as what has been done in Section 4.9
for strict representations. For nonstrict representations, the insertion procedure
should set the ghosts of noses endpoints as equivalent w.r.t. the %ϕ relation. We
leave it to the reader to convince herself that this modification is possible and can
be done in a way that preserves the essential properties of %ϕ on Ĩ0. 3
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5.3 Both strict and nonstrict unit representation

A third sort of numerical representation of a semiorder can be investigated using
the tools that we developed to tackle strict unit representations and nonstrict ones.

Definition 43
A strict-nonstrict unit representation of the semiorder S = (P, I) on the set X is
a function u from X to R such that, for all x, y ∈ X,

u(x) > u(y) + 1 if xPy
−1 < u(x)− u(y) < 1 if xIy

(11)

y

With such a representation, the values of two elements of X never differ by exactly
one unit.

For semiorders on a denumerable set, it is well-known that they have a strict
representation if and only if they have a nonstrict one (Beja and Gilboa, 1992).
Moreover, if such a semiorder has a representation (strict or nonstrict), it has a
strict-nonstrict one. This is no longer the case with semiorders on an uncountable
set.

Proposition 44
A semiorder on an uncountable set admits a strict-nonstrict representation iff it
satisfies the Bounded P -chain condition (Property 1), its trace is d-separable and
the number of noses and hollows is at most denumerable.

Proof
Necessity immediately results from Theorems 22 and 37 since a strict-nonstrict
representation is both a strict unit representation and a nonstrict one.

These conditions are also sufficient. This can be proved by adapting the method
used for constructing (Ĩ0,%ϕ) for strict unit representations and nonstrict ones.
When inserting ghosts of noses or hollows endpoints, one has to make sure that the
ghost of any nose (resp. hollow) endpoint and the corresponding other endpoint
are never equivalent w.r.t. to the preorder %ϕ. It is easy to check that the
construction described in Section 4 actually allows to do that in case noses and
hollows are denumerable (see also footnote 6, p. 14). 2

6 Discussion

6.1 Summary

In this paper we have investigated the conditions under which a semiorder on a
set of any cardinality admits a unit representation, either strict or nonstrict.
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We have exhibited a set of three independent conditions that are necessary and
sufficient for the existence of a strict unit representation of a semiorder. This has
been achieved by factorizing s-separability into d-separability and the condition
that the set of noses is denumerable. We feel that these three conditions have a
clear interpretation.

The bounded P -chain condition deals with the fact that the threshold is constant
and positive. As noted in Bouyssou and Pirlot (2020a, Remark 50), it resembles an
Archimedean condition. It applies as soon as the set X is infinite, even countably
infinite. It is not specific to strict unit representations. It is easy to check that it
is also a necessary condition for nonstrict unit representations.

The d-separability condition ensures that the trace of the semiorder, which is a
complete preorder, has a numerical representation. This is clearly necessary for
strict unit representations but is not specific to them. As can be easily checked,
d-separability is also necessary for nonstrict unit representations.

Our final condition states that the set of noses is denumerable. It is specific to
strict unit representations. For obtaining necessary and sufficient conditions guar-
anteeing the existence of nonstrict unit representations, we keep unchanged the
first two conditions used in the case of strict representations. The third condition
is obtained by replacing our condition on “noses” by a condition on the dual notion
of “hollows”, in a very natural way.

Our results are linked to the discussion in Candeal and Induráin (2010, Sec. 4, p.
489) of Theorem 4.5 in Beja and Gilboa (1992, p. 439). This theorem asserts that
a “Generalized Numerical Representation” (GNR) with S open exists iff S is a
semiorder (for which % is antisymmetric) satisfying d-separability and the bounded
P -chain condition and such that the set of P -gap-edge-points is denumerable (see
below Definition 8, for a definition of P -gap-edge-points).

As noted by Candeal and Induráin (2010), the proof of this result (see Beja and
Gilboa, 1992, p. 446–448) refers to “positive threshold GNR in which S is open”.
This is tantamount to what we have called a strict unit representation. Hence,
Candeal and Induráin (2010) wonder whether Beja and Gilboa (1992) were the
first to characterize semiorders having a strict unit representation. They state (p.
489, last par. of 2nd col.) that the result in Beja and Gilboa (1992) should be
amended by the addition of a condition stating, in our terms, that the set of all
right endpoints of lower-half noses should be denumerable.

Our results allow us to be more specific. It is clear that if x is a P -gap-edge-point,
there is a y such that (y, x) is a nose or a proper lower-half nose (see Definitions 5
and 8). In other terms, x is the right endpoint of a l-h-nose. A l-h-nose, is either
a proper l-h-nose or a nose. Whenever d-separability is in force, we do not have to
ensure the fact that the set of right endpoints of proper l-h-noses is denumerable
(Lemma 9). We only have to require that the set of noses is denumerable, which is
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clearly implied by the requirement that the set of all right endpoints of l-h noses is
denumerable: requiring that the set of P -gap-edge-points is denumerable therefore
implies that the set of right endpoints of noses as well as the set of right endpoints
of proper l-h-noses are denumerable. Proposition 10 and Theorem 22 show that
this is sufficient to guarantee the existence of a strict unit representation. This
condition can be weakened however since, as shown in Lemma 9, d-separability
implies that the set of proper l-h-noses is denumerable. Hence, our result sharpens
Beja and Gilboa’s result discussed in Candeal and Induráin (2010, Sec. 4), while
ensuring its correctness. To bring our result closer to the one of Beja and Gilboa,
we could require that the set of all right endpoints of noses is denumerable instead
of requiring that the set of all noses is denumerable. Clearly, these two conditions
are equivalent: to the right endpoint of a nose corresponds a unique nose (see
Bouyssou and Pirlot, 2020b, Remark 1).

A similar discussion can be written down for nonstrict representations. We have
shown that Beja and Gilboa’s condition that the set of I-upper-edge-points is
denumerable can be weakened into our condition that the set of hollows is denu-
merable. Indeed, an I-upper-edge-point is the left endpoint of an upper half-hollow
(Definition 31). The latter is either a proper upper half-hollow or a hollow. By
Lemma 32, we know that the set of proper upper half hollows is denumerable as
soon as the semiorder is d-separable. Therefore, we do not need to impose that
the set of proper upper half-hollows is denumerable. For a d-separable semiorder,
as soon as the set of hollows is denumerable, the set of upper half-hollows, hence
the set of I-upper-edge-points, is also denumerable. The similarity with the dis-
cussion of the case of strict representations can be made complete. We formulated
a condition in the spirit of Candeal and Induráin’s s-separability condition, which
is necessary for the existence of nonstrict representations. This s′-separability con-
dition is equivalent to d-separability of the trace and the condition that the set
of hollows is denumerable. Its relationship with Beja and Gilboa’s condition that
the set of I-upper-edge-points is denumerable, can be analyzed as we did above
for the case of strict representations.

For characterizing the semiorders that admit either strict or nonstrict unit rep-
resentations, we used the same proof idea. This proof technique is elementary
(we only rely on the existence of numerical representations for complete preorders
that are d-separable) and constructive (at least in the case of finite semiorders, the
ghost construction can be actually implemented to build numerical representations
(see Bouyssou and Pirlot, 2020a, Remark 39). It is also unifying. Variants of the
same proof technique allow to deal with uncountable and denumerable semiorders,
and with the case of strict and nonstrict representations. It allows to prove the
existence of various types of special representation: hollows-faithful (Section 4.9),
noses-faithful (Remark 42) and strict-nonstrict representations (Section 5.3). We
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believe that this proof technique can be fruitful for solving other questions.

6.2 Some directions for further work

Let us first observe that we have left open the question of uniqueness of the rep-
resentation (be it strict or nonstrict) for semiorders on uncountable sets. This
contrasts with what we did for semiorders on denumerable sets. In Bouyssou and
Pirlot (2020a), we sought to keep the construction process of a unit representa-
tion as general as possible, in order to guarantee that any unit representation can
be obtained by this process (see Bouyssou and Pirlot, 2020a, Prop. 46 and Re-
mark 62). This allowed us to have a good control on the degrees of freedom in
the set of unit representations of a semiorder on a denumerable set. In the un-
countable case, we made an arbitrary choice of a manner of inserting ghosts that
guarantees the d-separability of the complete preorder defined on the set of ghosts.
Since we do not know how to describe all possible manners of inserting ghosts that
preserve d-separability, we have lost control on the set of all possible strict (and
nonstrict) unit representations in the uncountable case. Hence, the question of the
uniqueness of a unit representation in the uncountable case remains open.

There is also a number of questions related to previous work by several authors
that require further investigation.

Candeal et al. (2012, Th. 4.11) proved that, for a semiorder, s-separability is
equivalent to any of a series of conditions guaranteeing separability for interval
orders. These conditions were introduced in Oloriz et al. (1998) and further studied
in Bosi et al. (2001) (see also the analysis of separability conditions for biorders in
Doignon et al. (1984) and Nakamura (2002)). It would be useful to examine these
conditions, equivalent to s-separablility for semiorders, and see whether some of
them, by way of factorization, could lead to sharper characterization results.

A second issue of interest is related to the kind of real interval representations
of biorders, interval orders and semiorders introduced and studied by Nakamura
(2002). In these representations, each object is associated an interval, but some
objects can be assigned an open one while others are assigned a closed one.
The author characterizes the biorders, interval orders and semiorders that admit
such “mixed” representations. For semiorders, the particular case of unit length
mixed representations is not specifically investigated. Therefore, characterizing the
semiorders that admit unit length mixed representations is still an open question.

In his study of dense threshold structures, Narens (1994) has given a characteri-
zation of semiorders that are isomorphic to the classical semiorder on the reals or
the rationals. More generally, one may want to characterize semiorders that are
isomorphic to an interval (bounded or not) of the reals or the rationals, endowed
with the restriction of the classical semiorder on the reals. The proof technique
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used in the present paper (and its companion Bouyssou and Pirlot, 2020a) can be
adapted to establish characterizations for such semiorders. This will be the topic
of a future paper.

We also expect that the same idea of proof could be beneficial for the characteriza-
tion of the semiorders that admit a continuous unit representation (an issue that
has received attention (Campión et al., 2008, Gensemer, 1987a,b, 1988) but seems
not to be completely solved).
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