
A choice procedure S satisfies β+ if [ A ⊆ B and A ∩ S(B, π) 6= ∅ ] ⇒
S(A, π) ⊆ S(B, π), for all π ∈ G(X) and all A, B ∈ P(X).

Proposition 1 (β+ and weak monotonicity)
If S is monotonic and satisfies β+ then %S is weakly monotonic.

Proof
We use the following:

Claim (Perny (1995))
If S is monotonic and satisfies β+ then, for all a, b ∈ X and all π ∈ G(X),
a �S (π)b ⇒ a %S (πa↑)b.

Proof
In violation of the claim suppose that a �S (π)b and b �S (πa↑)a. Since b �S
(πa↑)a, there is A ⊆ X such that a, b ∈ A, b ∈ S(A, πa↑) and a /∈ S(A, πa↑).
Using β+, we must have {b} = S({a, b}, πa↑). Since S is monotonic, this
implies {b} = S({a, b}, π). Using β+, this implies that for all B ⊆ X,
a, b ∈ B ⇒ b ∈ S(B, πx↑). Therefore, it cannot be true that a �S (π)b. 2

In view of the above claim, it remains to prove that a ∼S (π)b ⇒ a %S (πa↑)b.
Let R(a, π) = {x ∈ X : a %S (π)x}, P (a, π) = {x ∈ X : a �S (π)x}, and
I(a, π) = {x ∈ X : a ∼S (π)x}.

Let c ∈ I(a, π) be such that c %S (πa↑)x, for all x ∈ I(a, π). This implies
c %S (πa↑)a. If c ∼S (πa↑)a, there is nothing to prove. Suppose therefore
that c �S (πa↑)a, so that R(a, πa↑) ⊆ R(c, πa↑)

We have, by construction, I(a, π) ⊆ R(c, πa↑). Using the above claim,
we know that P (a, π) ⊆ R(a, πa↑). Hence, we know that I(a, π) ∪ P (a, π) =
R(a, π) ⊆ R(c, πa↑).

By definition, we know that a ∈ S(R(a, π), π). Since π is monotonic, this
implies a ∈ S(R(a, π), πa↑). Hence, we have R(a, π) ⊆ R(c, πa↑), c ∈ R(a, π)
and c ∈ S(R(c, π[a]), πa↑). Using β+ this implies a ∈ S(R(a, π), πa↑), a
contradiction. 2
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