A choice procedure S satisfies β^+ if $[A \subseteq B \text{ and } A \cap S(B,\pi) \neq \emptyset] \Rightarrow S(A,\pi) \subseteq S(B,\pi)$, for all $\pi \in \mathfrak{G}(X)$ and all $A, B \in \mathfrak{P}(X)$.

Proposition 1 (β^+ and weak monotonicity)

If S is monotonic and satisfies β^+ then \succeq_S is weakly monotonic.

Proof

We use the following:

Claim (Perny (1995))

If \mathcal{S} is monotonic and satisfies β^+ then, for all $a, b \in X$ and all $\pi \in \mathcal{G}(X)$, $a \succ_{\mathcal{S}} (\pi)b \Rightarrow a \succeq_{\mathcal{S}} (\pi^{a\uparrow})b$.

Proof

In violation of the claim suppose that $a \succ_{\mathcal{S}} (\pi)b$ and $b \succ_{\mathcal{S}} (\pi^{a\uparrow})a$. Since $b \succ_{\mathcal{S}} (\pi^{a\uparrow})a$, there is $A \subseteq X$ such that $a, b \in A, b \in \mathcal{S}(A, \pi^{a\uparrow})$ and $a \notin \mathcal{S}(A, \pi^{a\uparrow})$. Using β^+ , we must have $\{b\} = \mathcal{S}(\{a, b\}, \pi^{a\uparrow})$. Since \mathcal{S} is monotonic, this implies $\{b\} = \mathcal{S}(\{a, b\}, \pi)$. Using β^+ , this implies that for all $B \subseteq X$, $a, b \in B \Rightarrow b \in \mathcal{S}(B, \pi^{x\uparrow})$. Therefore, it cannot be true that $a \succ_{\mathcal{S}} (\pi)b$. \Box

In view of the above claim, it remains to prove that $a \sim_{\mathcal{S}} (\pi)b \Rightarrow a \succeq_{\mathcal{S}} (\pi^{a\uparrow})b$. Let $R(a,\pi) = \{x \in X : a \succeq_{\mathcal{S}} (\pi)x\}, P(a,\pi) = \{x \in X : a \succ_{\mathcal{S}} (\pi)x\}$, and $I(a,\pi) = \{x \in X : a \sim_{\mathcal{S}} (\pi)x\}$.

Let $c \in I(a, \pi)$ be such that $c \succeq_{\mathcal{S}} (\pi^{a\uparrow})x$, for all $x \in I(a, \pi)$. This implies $c \succeq_{\mathcal{S}} (\pi^{a\uparrow})a$. If $c \sim_{\mathcal{S}} (\pi^{a\uparrow})a$, there is nothing to prove. Suppose therefore that $c \succ_{\mathcal{S}} (\pi^{a\uparrow})a$, so that $R(a, \pi^{a\uparrow}) \subseteq R(c, \pi^{a\uparrow})$

We have, by construction, $I(a,\pi) \subseteq R(c,\pi^{a\uparrow})$. Using the above claim, we know that $P(a,\pi) \subseteq R(a,\pi^{a\uparrow})$. Hence, we know that $I(a,\pi) \cup P(a,\pi) = R(a,\pi) \subseteq R(c,\pi^{a\uparrow})$.

By definition, we know that $a \in \mathcal{S}(R(a,\pi),\pi)$. Since π is monotonic, this implies $a \in \mathcal{S}(R(a,\pi),\pi^{a\uparrow})$. Hence, we have $R(a,\pi) \subseteq R(c,\pi^{a\uparrow}), c \in R(a,\pi)$ and $c \in \mathcal{S}(R(c,\pi[a]),\pi^{a\uparrow})$. Using β^+ this implies $a \in \mathcal{S}(R(a,\pi),\pi^{a\uparrow})$, a contradiction. \Box

References

Perny, P. (1995), Monotonie des méthodes de rangement par choix répétés. Communication to the Groupe de Contact FNRS sur les Procédures de Choix dans les méthodes d'aide à la décision, January, Université de Liège, Liège, Belgium.