Biorders and bi-semiorders with frontiers

Denis Bouyssou Thierry Marchant

LAMSADE-CNRS Paris, France

Universiteit Gent Ghent, Belgium

October 2008 séminaire FNRS, Bruxelles

Introduction

Introduction

Context of today's talk

- preference modelling for MCDA
- conjoint measurement

Conjoint measurement

- set of objects: $X = X_1 \times X_2 \times \cdots \times X_n$
- preference relation on X: \succeq
- ullet study a number of models leading to a numerical representation of \succsim

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} u_i(x_i) \ge \sum_{i=1}^{n} u_i(y_i)$$

• many alternative models

Ordered classification

New premises

- replace \succeq with $\langle C^1, C^2, \dots, C^r \rangle$
- $\langle C^1, C^2, \dots, C^r \rangle$ is an ordered partition/covering of X
 - $x \in X$ is "good", x is "bad"
- objects in C^k are "more attractive" than objects in C^{k-1}
- objects in C^k are not necessarily "equally attractive"

Additive Model without frontier

$$x \in C^k \Leftrightarrow \sigma^{k-1} < \sum_{i=1}^n u_i(x_i) \le \sigma^k$$

Additive Model with frontier

$$x \in C^k \Leftrightarrow \sigma^{k-1} \le \sum_{i=1}^n u_i(x_i) \le \sigma^k$$

• $C^k \cap C^{k+1}$: thin frontier between categories C^k and C^{k+1}

Introduction

Particular cases

Two attributes, two categories, no frontier

•
$$X = X_1 \times X_2$$

$$x \in C^2 \Leftrightarrow 0 < u_1(x_1) + u_2(x_2)$$

$$\Leftrightarrow f(x_1) > g(x_2)$$

- $\bullet \ x \in C^2 \Leftrightarrow x_1 \ \Im \ x_2$
- \Im is a binary relation between X_1 and X_2
- T is a biorder (Ducamp & Falmagne, 1969)

Biorders

• Doignon, Ducamp & Falmagne (1984) give necessary and sufficient for the existence of a numerical representation of biorders

Particular cases

Two attributes, two categories with a frontier

$$(x_1, x_2) \in C^2 \setminus C^1 \Leftrightarrow 0 < u_1(x_1) + u_2(x_2) \Leftrightarrow x_1 \Im x_2$$
$$(x_1, x_2) \in C^2 \cap C^1 \Leftrightarrow 0 = u_1(x_1) + u_2(x_2) \Leftrightarrow x_1 \Im x_2$$
$$x_1 \Im x_2 \Leftrightarrow f(x_1) > g(x_2)$$
$$x_1 \Im x_2 \Leftrightarrow f(x_1) = g(x_2)$$

Main question

• generalize results on biorders to cope with a frontier

Outline

Outline

- Definitions and notation
- 2 Biorders
- 3 Interval orders and semiorders
 - Interval orders
 - Semiorders
- Biorders with frontier
 - Model
 - Interval order with frontier
 - Semiorder with frontier
- **Bi-semiorder**
- 6 Bi-semiorder with frontiers
- Discussion

Binary relations on a set

Relations on a set

- \bullet X is a set
- binary relation V on X is a subset of $X \times X$
- classic vocabulary and notation

Traces of a binary relation V

$$x \succsim_{V}^{\ell} y \Leftrightarrow [y \ V \ z \Rightarrow x \ V \ z]$$
$$x \succsim_{V}^{r} y \Leftrightarrow [z \ V \ x \Rightarrow z \ V \ y]$$
$$x \succsim_{V} y \Leftrightarrow [x \succsim_{V}^{\ell} y \text{ and } x \succsim_{V}^{r} y]$$

• \succsim_V^{ℓ} , \succsim_V^r , and \succsim_V are reflexive and transitive

Definitions and notation

Relations between two sets

Relations between two sets

- $A = \{a, b, \dots\}$ and $Z = \{p, q, \dots\}$ are two (wlog disjoint) sets
- a binary relation $\mathcal V$ between A and Z is a subset of $A \times Z$
- ullet any binary relation on X may be viewed a a binary relation between X and a disjoint duplication of X
- \mathcal{V}^{cd} as a relation between Z and A such that $p \mathcal{V}^{cd} a \Leftrightarrow Not[a \mathcal{V} p]$

Traces of \mathcal{V}

• trace of \mathcal{V} on A

$$a \succsim^A_{\mathcal{V}} b \Leftrightarrow [b \ \mathcal{V} \ p \Rightarrow a \ \mathcal{V} \ p, \text{ for all } p \in Z]$$

• trace of \mathcal{V} on Z

$$p\succsim^Z_{\mathcal{V}}q\Leftrightarrow [a\ \mathcal{V}\ p\Rightarrow a\ \mathcal{V}\ q,\ \text{for all}\ a\in A]$$

• $\succsim^A_{\mathcal{V}}$ and $\succsim^Z_{\mathcal{V}}$ are reflexive and transitive

Biorders

Ferrers Property

- \bullet \mathcal{V} relation between A and Z
- \bullet \mathcal{V} is said to be a biorder if it has the Ferrers property

$$\left. \begin{array}{c} a \ \mathcal{V} \ p \\ \text{and} \\ b \ \mathcal{V} \ q \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} a \ \mathcal{V} \ \boldsymbol{q} \\ \text{or} \\ b \ \mathcal{V} \ \boldsymbol{p} \end{array} \right.$$

Some elementary properties

- \mathcal{V} is Ferrers iff $\succsim^A_{\mathcal{V}}$ is complete iff $\succsim^Z_{\mathcal{V}}$ is complete
- \mathcal{V} is Ferrers iff \mathcal{V}^{cd} is Ferrers
- traces generated by V and V^{cd} on A and Z are identical

Biorders

Numerical representation of biorders

Theorem (Doignon at al. 1984)

Let A and Z be finite or countably infinite sets and \mathcal{T} be a relation between A and Z. The following statements are equivalent:

- T is Ferrers
- $oldsymbol{2}$ there is a non-strict representation of $oldsymbol{\Im}$

$$a \Im p \Leftrightarrow f(a) \ge g(p)$$

 \bullet there is a strict representation of Υ

$$a \, \Im \, p \Leftrightarrow f(a) > g(p)$$

The functions f and g can always be chosen in such a way that

$$a \succsim_{\Upsilon}^{A} b \Leftrightarrow f(a) \geq f(b)$$

$$p\succsim^Z_{\mathfrak{T}}q\Leftrightarrow g(p)\geq g(q)$$

Strategy of proof

• build a relation Q on $A \cup Z$ such that the restriction of Q on $A \times Z$ is $\mathfrak T$

build a relation
$$Q$$
 on $A \cup Z$ such that the restriction of Q on $A \times Z$ is
$$\alpha \ Q \ \beta \Leftrightarrow \begin{cases}
\alpha \in A, \beta \in A, \text{ and } \alpha \succsim_{\mathfrak{T}}^{A} \beta, \\
\alpha \in Z, \beta \in Z, \text{ and } \alpha \succsim_{\mathfrak{T}}^{Z} \beta, \\
\alpha \in A, \beta \in Z, \text{ and } \alpha \mathfrak{T} \beta, \\
\alpha \in Z, \beta \in A, \text{ and } [\forall \gamma \in A, \delta \in Z, \gamma \mathfrak{T} \alpha \text{ and } \beta \mathfrak{T} \delta \Rightarrow \gamma \mathfrak{T} \delta]
\end{cases}$$

- when \mathfrak{T} is a biorder, Q is a weak order
- there is a real-valued function F on $A \cup Z$ such that

$$\alpha \ Q \ \beta \Leftrightarrow F(\alpha) \geq F(\beta)$$

• defining f (resp. g) as the restriction of F on A (resp. Z) leads to a non-strict representation

$$a \, \Im \, p \Leftrightarrow f(a) \ge g(p)$$

• to obtain a strict representation, use the same trick on \mathfrak{T}^{cd}

Biorder

Strict numerical representation of biorders

General case

- order-denseness conditions have to be invoked
- the strict and non-strict representations are no more equivalent
- Doignon at al. (1984) have given the necessary order-denseness conditions in both cases

Theorem (Doignon at al., 1984)

Let \mathcal{T} be a binary relation between A and Z. The following statements are equivalent:

① T is Ferrers and there is a finite or countably infinite subset $\mathcal{B}^* \subseteq A$ such that, for all $a \in A$ and $p \in Z$

$$a \, \Im \, p \Rightarrow \left[a \succsim_{\Im}^{A} b^{*} \text{ and } b^{*} \, \Im \, p, \text{ for some } b^{*} \in \mathcal{B}^{*} \right]$$

The functions f and g can always be chosen in such a way that they represent the traces.

Interval orders

Definition

• an interval order T is an *irreflexive* Ferrers relation on a set X

Interval order as biorders

• an interval order T may be viewed as a biorder between X and a disjoint duplication of X

Strict representation of interval orders on countable sets

• there is a strict representation of T as a biorder

$$x T y \Leftrightarrow u(x) > v(y)$$

• irreflexivity implies that $u(x) \leq v(x)$, for all $x \in X$

Non-strict representation of interval orders on countable sets

• there is a non-strict representation of T as a biorder

$$x T y \Leftrightarrow u(x) \ge v(y)$$

• irreflexivity implies that u(x) < v(x), for all $x \in X$

Interval orders and semiorders

Semiorders

Definition

• a semiorder T is a semitransitive interval order

$$\left. \begin{array}{c} x \ V \ y \\ \text{and} \\ y \ V \ z \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} x \ V \ w \\ \text{or} \\ w \ V \ z \end{array} \right.$$

- the trace \succeq_V of a relation V is complete iff V is Ferrers and semitransitive
- the left and right traces are not contradictory, i.e., it is never true that $x \succ_V^{\ell} y$ and $y \succ_V^r x$

Semiorders as biorders

• on at most countable sets this leads to representation with no proper nesting of semiorders (Aleskerov et al., 2007)

$$u(x) > u(y) \Rightarrow v(x) \ge v(y)$$

• the general case is dealt with using the order-denseness condition presented above

Three models for semiorders

Representations with no proper nesting

$$x T y \Leftrightarrow u(x) > v(y)$$

$$u(x) > u(y) \Rightarrow v(x) \ge v(y)$$

$$u(x) \le v(x)$$

Representations with no nesting

$$x T y \Leftrightarrow u(x) > v(y)$$

$$u(x) \ge u(y) \Leftrightarrow v(x) \ge v(y)$$

$$u(x) \le v(x)$$

Constant threshold representations

$$x T y \Leftrightarrow u(x) > u(y) + 1$$

Interval orders and semiorders Semiorders

Sample result on semiorders

Results (Fishburn, 1985)

- representations with no nesting are equivalent to representations with no proper nesting
 - no proper nesting: u represents \succsim_*^{ℓ} , v represents \succsim_*^{r}
 - no nesting: u and v represent \succsim_*
- 2 on finite sets, constant threshold representations are equivalent to representations with no nesting

Biorders with frontier

Definition

- two disjoint relations T and F between the sets A and Z
- $\Re = \Im \cup \Im$
- $a \mathcal{N} p \Leftrightarrow Not[a \mathcal{R} p]$

Numerical representation with frontier

$$a \Im p \Leftrightarrow f(a) > g(p)$$

 $a \Im p \Leftrightarrow f(a) = g(p)$

Traces

- $\succsim_{\mathfrak{T}}^{A}$ (resp. $\succsim_{\mathfrak{T}}^{Z}$) is the trace of \mathfrak{T} on A (resp. on Z)
- $\succsim_{\mathcal{R}}^{A}$ (resp. $\succsim_{\mathcal{R}}^{Z}$) is the trace of \mathcal{R} on A (resp. on Z)
- $\bullet \ \succsim^A_\star = \ \succsim^A_\mathfrak{T} \cap \ \succsim^A_\mathfrak{R}$
- $\bullet \ \succsim_{\star}^{Z} \ = \ \succsim_{\Upsilon}^{Z} \cap \ \succsim_{\Upsilon}^{Z}$

Biorders with frontier Model

Biorders with frontier

Necessary conditions

- T is a biorder
- \bullet \Re is a biorder
- traces of \mathcal{T} and \mathcal{R} must be compatible $(\succsim^A_{\star}$ and \succsim^Z_{\star} are complete)
 - specific conditions
- F is "thin"

Thinness

• thinness for \mathcal{F} holds on A if

$$\left. \begin{array}{l} a \ \mathfrak{F} \ p \\ \text{and} \\ b \ \mathfrak{F} \ p \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} a \ \mathfrak{F} \ q \Leftrightarrow b \ \mathfrak{F} \ q \\ \text{and} \\ a \ \mathfrak{T} \ q \Leftrightarrow b \ \mathfrak{T} \ q \end{array} \right\} \Leftrightarrow a \sim_{\star}^{A} b$$

• thinness for \mathcal{F} holds on Z if

$$\left. \begin{array}{c} a \ \Im \ p \\ \text{and} \\ a \ \Im \ q \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} b \ \Im \ p \Leftrightarrow b \ \Im \ q \\ \text{and} \\ b \ \Im \ p \Leftrightarrow b \ \Im \ q \end{array} \right\} \Leftrightarrow p \sim_{\star}^{Z} q$$

Remarks

- if T is a biorder, \mathcal{R} is a biorder, and \mathcal{F} is thin on both A and Z then both \succsim^A_{\star} and \succsim^Z_{\star} are complete
- the following four conditions are independent: \mathcal{T} is a biorder, \mathcal{R} is a biorder, thinness for \mathcal{F} holds on A, thinness for \mathcal{F} holds on Z
- \mathcal{F} is strictly monotonic wrt to \succsim^A_{\star} and \succsim^Z_{\star}

$$[a \ \mathcal{F} \ p \ \text{and} \ b \succ^A_\star a] \Rightarrow b \ \mathcal{T} \ p$$

$$[a \ \mathfrak{F} \ p \ \text{and} \ p \succ^{Z}_{\star} q] \Rightarrow a \ \mathfrak{T} \ q$$

$$[a \ \mathfrak{F} \ p \ \text{and} \ a \succ^A_\star c] \Rightarrow c \ \mathfrak{N} \ p$$

$$[a \ \mathfrak{F} \ p \ \text{and} \ r \succ^Z_\star p] \Rightarrow a \ \mathfrak{N} \ r$$

Biorders with frontier Model

Numerical representation of biorders with frontier

Proposition (B & M, 2008)

Let A and Z be finite or countably infinite sets and let \mathcal{T} and \mathcal{F} be a pair of disjoint relations between A and Z.

The following statements are equivalent:

- there is a representation of \mathcal{T} and \mathcal{F} as a biorder with frontier
- \mathfrak{D} T is a biorder, $\mathfrak{R} = \mathfrak{T} \cup \mathfrak{F}$ is a biorder and thinness holds on A and Z

The functions f and g can always be chosen in such a way that

$$\begin{array}{l} a \succsim_{\star}^{A} b \Leftrightarrow f(a) \geq f(b) \\ p \succsim_{\star}^{Z} q \Leftrightarrow g(p) \geq g(q) \end{array}$$

$$p \succsim_{\star}^{\mathbf{Z}} q \Leftrightarrow g(p) \ge g(q)$$

The binary relation \mathcal{L} on $A \cup Z$ defined letting

$$\alpha \, \mathscr{L} \, \beta \Leftrightarrow \begin{cases} \alpha \in A, \beta \in A, \text{ and } \alpha \succsim_{\star}^{A} \beta \\ \alpha \in Z, \beta \in Z, \text{ and } \alpha \succsim_{\star}^{Z} \beta \\ \alpha \in A, \beta \in Z, \text{ and } \alpha \, \Re \, \beta \\ \alpha \in Z, \beta \in A, \text{ and } Not[\beta \, \Im \, \alpha] \end{cases}$$

is a weak order when T is a biorder, \mathcal{R} is a biorder, and \mathcal{F} is thin on both A and Z

$$\alpha \, \mathcal{L} \, \beta \Leftrightarrow F(\alpha) \geq F(\beta)$$

$$a \, \Im \, p \Leftrightarrow [a \, \mathcal{L} \, p \text{ and } Not[p \, \mathcal{L} \, a]] \Rightarrow F(a) > F(p)$$

$$a \, \Im \, p \Leftrightarrow [a \, \mathcal{L} \, p \text{ and } p \, \mathcal{L} \, a] \Rightarrow F(a) = F(p)$$

$$Not[a \, \Re \, b] \Leftrightarrow [Not[a \, \mathcal{L} \, p] \text{ and } p \, \mathcal{L} \, a] \Rightarrow F(a) < F(p)$$

4 🗇 ▶

The general case

A subset $\mathcal{A}^* \subseteq A$ is dense for the pair \mathfrak{T} and \mathfrak{F} if, for all $a \in A$ and all $p \in \mathbb{Z}$,

$$a \, \Im \, p \Rightarrow [a \succsim_{\star}^{A} a^{*} \text{ and } a^{*} \, \Im \, p]$$

$$a \mathcal{N} p \Rightarrow [a^* \mathcal{N} p \text{ and } a^* \succsim^A_{\star} a]$$

for some $a^* \in \mathcal{A}^*$

Proposition (B & M, 2008)

The following statements are equivalent:

- there is a representation of \mathcal{T} and \mathcal{F} as a biorder with frontier
- \mathfrak{D} T is a biorder, $\mathfrak{R} = \mathfrak{T} \cup \mathfrak{F}$ is a biorder, thinness holds on A and Z, and there is a finite or countably infinite set $\mathcal{A}^* \subseteq A$ that is dense for the pair $\langle \mathfrak{T}, \mathfrak{F} \rangle$

The functions f and g can always be chosen in such a way that, for all $a, b \in A \text{ and } p, q \in Z,$

$$a \succsim_{\star}^{A} b \Leftrightarrow f(a) \ge f(b)$$
$$p \succsim_{\star}^{Z} q \Leftrightarrow g(p) \ge g(q)$$

$$p \succsim_{\star}^{Z} q \Leftrightarrow g(p) \ge g(q)$$

Interval order with frontier

Definition

- let T and F be two disjoint relations on X
- let $R = T \cup F$ and $I = R^{sc}$ (symmetric complement of R)

$$x T y \Leftrightarrow u(x) > v(y)$$
$$x F y \Leftrightarrow u(x) = v(y)$$
$$u(x) < v(x)$$

Remark

• results for interval orders with frontier are obvious corollaries of results on biorders with frontier

Biorders with frontier Interval order with frontier

Necessary conditions

- T is an interval order
- \bullet R is an interval order

Traces

- traces of T: \succsim_T^{ℓ} and \succsim_T^r
- traces of $R: \succeq_R^{\ell}$ and \succeq_R^r
- intersection of traces:

$$\succsim_{*}^{\ell} = \succsim_{T}^{\ell} \cap \succsim_{R}^{\ell}$$
$$\succsim_{*}^{r} = \succsim_{T}^{r} \cap \succsim_{R}^{r}$$

• we have to ensure that \succeq^{ℓ}_{*} and \succeq^{r}_{*} are complete

Necessary conditions

Thinness

 \bullet F is upper thin if

$$\left\{ \begin{array}{c} x \ F \ z \\ \text{and} \\ y \ F \ z \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} x \ F \ w \Leftrightarrow y \ F \ w \\ \text{and} \\ x \ T \ w \Leftrightarrow y \ T \ w \end{array} \right\} \Leftrightarrow x \sim_*^{\ell} y$$

• F is lower thin if

$$\left\{ \begin{array}{c} z \ F \ x \\ \text{and} \\ z \ F \ y \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} w \ F \ x \Leftrightarrow w \ F \ y \\ \text{and} \\ w \ T \ x \Leftrightarrow w \ T \ y \end{array} \right\} \Leftrightarrow x \sim_*^r y$$

Biorders with frontier

Interval order with frontie

Results

Proposition (B & M, 2008)

Let T and F be two disjoint relations on a *finite or countably infinite* set X. The following statements are equivalent:

- lacktriangledown the pair of relations T and F has a numerical representation as an interval order with frontier

We can always choose u and v in such a way that

$$x \succsim_*^{\ell} y \Leftrightarrow u(x) \ge u(y)$$
$$x \succsim_*^{r} y \Leftrightarrow v(x) \ge v(y)$$

General case

• A subset $\mathcal{X}^* \subseteq X$ is dense for the pair T and F if, for all $x, y \in X$,

$$x T y \Rightarrow [x \succsim_{*}^{\ell} x^{*} \text{ and } x^{*} T y]$$

$$x R^c y \Rightarrow [x^* R^c y \text{ and } x^* \succsim^{\ell}_* x]$$

for some $x^* \in \mathcal{X}^*$

Semiorder with frontier

Representations with no proper nesting

- let T and F be two disjoint relations on X
- let $R = T \cup F$ and $I = R^{sc}$ (symmetric complement of R)

$$x T y \Leftrightarrow u(x) > v(y)$$

$$x \mathrel{F} y \Leftrightarrow u(x) = v(y)$$

$$u(x) > u(y) \Rightarrow v(x) \ge v(y)$$

Biorders with frontier Semiorder with frontier

Necessary conditions

Necessary conditions

- $\langle T, F, I \rangle$ is a pseudo-order with a thin relation F
 - \bullet T is a semiorder
 - \bullet R is a semiorder
 - consistency conditions

Consistency conditions

$$TFI\subseteq T$$

$$IFT \subseteq T$$

$$FIT \subseteq T$$

$$TIF\subseteq T$$

Representations with no proper nesting

Proposition (B & M, 2008)

Let T and F be two disjoint relations on a finite or countably infinite X. The following statements are equivalent:

- the pair of relations has a representation with no proper nesting
- 2 T is a semiorder, R is a semiorder, $TFI \subseteq T$, $IFT \subseteq T$, F is upper thin, and F is lower thin

We can always choose u and v in such a way that

$$x \gtrsim_*^{\ell} y \Leftrightarrow u(x) \ge u(y)$$
$$x \gtrsim_*^{r} y \Leftrightarrow v(x) \ge v(y)$$

$$x \gtrsim_*^r y \Leftrightarrow v(x) \ge v(y)$$

General case

• A subset $\mathcal{X}^* \subseteq X$ is dense for the pair T and F if, for all $x, y \in X$,

$$x T y \Rightarrow [x \succsim_{*}^{\ell} x^{*} \text{ and } x^{*} T y]$$

$$x R^c y \Rightarrow [x^* R^c y \text{ and } x^* \succsim_*^{\ell} x]$$

for some $x^* \in \mathcal{X}^*$

Biorders with frontier Semiorder with frontier

Semiorder with frontier

Representations with no nesting

- let T and F be two disjoint relations on X
- let $R = T \cup F$ and $I = R^{sc}$ (symmetric complement of R)

$$x T y \Leftrightarrow u(x) > v(y)$$

$$x F y \Leftrightarrow u(x) = v(y)$$

$$u(x) \ge u(y) \Leftrightarrow v(x) \ge v(y)$$

Necessary conditions

- all conditions used for the case of representations with no proper nesting remain necessary
- a stronger version of thinness is needed

Strong thinness

• F is strongly upper thin if

$$\left\{ \begin{array}{l} x \ F \ z \\ y \ F \ z \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} x \ T \ w \Leftrightarrow y \ T \ w \\ x \ F \ w \Leftrightarrow y \ F \ w \\ w \ F \ x \Leftrightarrow w \ F \ y \\ w \ T \ x \Leftrightarrow w \ T \ y \end{array} \right\} \Leftrightarrow x \sim_* y$$

• F is strongly lower thin if

Representations with no nesting

Proposition (B & M, 2008)

Let T and F be two disjoint relations on a finite or countably infinite set X. The following statements are equivalent:

- the pair of relations has a representation with no nesting
- 2 T is a semiorder, R is a semiorder, $TFI \subseteq T$, $IFT \subseteq T$, F is strongly upper thin, and F is strongly lower thin

We can always choose u and v in such a way that

$$x \succsim_{*} y \Leftrightarrow u(x) \ge u(y) \Leftrightarrow v(x) \ge v(y)$$

General case

open question

Semiorder with frontier

Representation with constant threshold

$$x T y \Leftrightarrow u(x) > u(y) + 1$$

$$x F y \Leftrightarrow u(x) = u(y) + 1$$

Proposition (B & M, 2008)

Let T and F be two disjoint relations on a *finite* set X. The following statements are equivalent:

- this pair of relations has a constant threshold representation
- 2 T is a semiorder, R is a semiorder, $TFI \subseteq T$, $IFT \subseteq T$, F is strongly upper thin, and F is strongly lower thin

We can always choose u and v in such a way that

$$x \succsim_* y \Leftrightarrow u(x) \ge u(y)$$

Bi-semiorder

Bi-semiorder

Definition (Ducamp & Falmagne, 1969)

Let \mathcal{T} and \mathcal{P} be two relations between the sets A and Z

$$a \mathcal{P} p \Leftrightarrow f(a) > g(p) + 1$$

$$a \, \Im \, p \Leftrightarrow f(a) > g(p)$$

More general models

many possible variants

$$a \, \mathcal{P} \, p \Leftrightarrow f(a) > \frac{h(p)}{p}$$

$$a \, \Im \, p \Leftrightarrow f(a) > g(p)$$

$$h(p)>g(p)$$

Notation

Traces

- trace of \mathfrak{T} on A (resp. Z) is denoted by $\succsim_{\mathfrak{T}}^{A}$ (resp. $\succsim_{\mathfrak{T}}^{Z}$)
- trace of \mathcal{P} on A (resp. Z) is denoted by $\succsim_{\mathcal{P}}^{A}$ (resp. $\succsim_{\mathcal{P}}^{Z}$)
- $\succsim^A_{\circ} = \succsim^A_{\mathfrak{T}} \cap \succsim^A_{\mathfrak{P}}$ and $\succsim^Z_{\circ} = \succsim^Z_{\mathfrak{T}} \cap \succsim^Z_{\mathfrak{P}}$

Necessary conditions

- the six relations $\succsim^A_{\mathfrak{I}}$, $\succsim^Z_{\mathfrak{I}}$, $\succsim^A_{\mathfrak{I}}$, $\succsim^A_{\mathfrak{I}}$, $\succsim^A_{\mathfrak{I}}$, $\succsim^A_{\mathfrak{I}}$ and $\succsim^Z_{\mathfrak{I}}$ are complete
- \succsim^A_{\circ} is complete iff $\succsim^A_{\mathfrak{T}}$ and $\succsim^A_{\mathfrak{T}}$ are complete and compatible
- $\bullet \succeq^Z_{\circ}$ is complete iff $\succeq^Z_{\mathfrak{T}}$ and $\succeq^Z_{\mathfrak{T}}$ are complete and compatible

Bi-semiorder

Necessary conditions

Conditions

- $\mathcal{P} \subseteq \mathcal{T}$
- Υ is Ferrers $(\succsim^A_{\Upsilon}$ and \succsim^Z_{Υ} are complete)
- \mathcal{P} is Ferrers $(\succsim^{A}_{\mathcal{P}}$ and $\succsim^{Z}_{\mathcal{P}}$ are complete)
- compatibility of traces

$$\left\{ \begin{array}{c} a \ \mathcal{P} \ p \\ \text{and} \\ b \ \mathcal{T} \ q \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} b \ \mathcal{P} \ p \\ \text{or} \\ a \ \mathcal{T} \ q \end{array} \right.$$

$$\left\{ \begin{array}{c} a \ \mathcal{P} \ p \\ \text{and} \\ b \ \mathcal{T} \ q \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} a \ \mathcal{P} \ q \\ \text{or} \\ b \ \mathcal{T} \ p \end{array} \right.$$

Theorem, Ducamp & Falmagne (1969)

Let A and Z be *finite* sets. Let \mathfrak{T} and \mathfrak{P} be two relations between A and Z. The following statements are equivalent:

- lacktriangledown $egin{aligned} \mathfrak D & \text{and} \ \mathfrak T & \text{are biorders satisfying conditions} \end{aligned}$ the two compatibility conditions
- ② the pair of relations $\mathcal P$ and $\mathcal T$ has a constant threshold representation. We may always choose the functions f and g such that

$$\begin{array}{l} a \succsim_{\circ}^{A} b \Leftrightarrow f(a) \geq f(b) \\ p \succsim_{\circ}^{Z} q \Leftrightarrow g(p) \geq g(q) \end{array}$$

→ skip proof

Outline of proof

$$\alpha \ Q_{\circ} \ \beta \Leftrightarrow \begin{cases} \alpha, \beta \in A & \text{and } \alpha \succsim_{\circ}^{A} \beta \\ \alpha, \beta \in Z & \text{and } \alpha \succsim_{\circ}^{Z} \beta \\ \alpha \in A, \beta \in Z & \text{and } \alpha \ \Im \beta \\ \alpha \in Z, \beta \in A & \text{and } Not[\beta \ \Im \alpha] \end{cases}$$

 Q_{\circ} is a weak order

$$\alpha \ H_{\circ} \ \beta \Leftrightarrow \begin{cases} \alpha, \beta \in A & \text{and } \alpha \ \mathbb{P} \ \gamma \ \text{and } Not[\beta \ \mathbb{T} \ \gamma], \ \text{for some } \gamma \in Z \\ \alpha, \beta \in Z & \text{and } Not[\gamma \ \mathbb{T} \ \alpha] \ \text{and } \gamma \ \mathbb{P} \ \beta, \ \text{for some } \gamma \in A \\ \alpha \in A, \beta \in Z & \text{and } \alpha \ \mathbb{P} \ \beta \\ \alpha \in Z, \beta \in A & \text{and } Not[\gamma \ \mathbb{T} \ \alpha], \gamma \ \mathbb{P} \ \delta, \ \text{and } Not[\beta \ \mathbb{T} \ \delta] \\ & \text{for some } \gamma \in A, \delta \in Z \end{cases}$$

 H_{\circ} is a semiorder and Q_{\circ} refines the weak order underlying H_{\circ}

$$\alpha H_{\circ} \beta \Leftrightarrow F(\alpha) > F(\beta) + 1$$

 $\alpha Q_{\circ} \beta \Leftrightarrow F(\alpha) \ge F(\beta)$

Bi-semiorder with frontiers

Notation

- four relations \mathcal{P} , \mathcal{J} , \mathcal{T} and \mathcal{F} between the sets A and Z
- define $S = \mathcal{P} \cup \mathcal{J}$, $\mathcal{R} = \mathcal{T} \cup \mathcal{F}$
- we suppose that $\mathcal{P} \cap \mathcal{J} = \emptyset$, $\mathcal{T} \cap \mathcal{F} = \emptyset$, $\mathcal{J} \cap \mathcal{F} = \emptyset$, and $\mathcal{S} \subseteq \mathcal{T}$
- consequence: $\mathcal{P} \subseteq \mathcal{S} \subseteq \mathcal{T} \subseteq \mathcal{R}$

Constant threshold representation

$$a \, \mathcal{P} \, p \Leftrightarrow f(a) > g(p) + 1$$

$$a \ \mathcal{J} \ p \Leftrightarrow f(a) = g(p) + 1$$

$$a \, \Im \, p \Leftrightarrow f(a) > g(p)$$

$$a \, \mathfrak{F} \, p \Leftrightarrow f(a) = g(p)$$

More general models

• many possible variants

Bi-semiorder with frontiers

Bi-semiorder with frontiers

Traces

$$a \succsim^{A}_{\diamond} b \Leftrightarrow \left\{ \begin{array}{l} b \, \mathcal{P} \, r \Rightarrow a \, \mathcal{P} \, r \\ b \, \mathcal{S} \, r \Rightarrow a \, \mathcal{S} \, r \\ b \, \mathcal{T} \, r \Rightarrow a \, \mathcal{T} \, r \\ b \, \mathcal{R} \, r \Rightarrow a \, \mathcal{R} \, r \end{array} \right\} \text{ for all } r \in Z$$

$$p \succsim_{\diamond}^{Z} q \Leftrightarrow \left\{ \begin{array}{l} c \, \mathcal{P} \, p \Rightarrow c \, \mathcal{P} \, q \\ c \, \mathcal{S} \, p \Rightarrow c \, \mathcal{S} \, q \\ c \, \mathcal{T} \, p \Rightarrow c \, \mathcal{T} \, q \\ c \, \mathcal{R} \, p \Rightarrow c \, \mathcal{R} \, q \end{array} \right\} \text{ for all } c \in A$$

Necessary conditions

- \mathcal{P} , \mathcal{S} , \mathcal{T} , and \mathcal{R} must be biorders
- all conditions (12 in total) necessary to imply that \succsim^A_{\diamond} on A and \succsim^Z_{\diamond} on Z are complete
- new thinness conditions

• when thinness conditions are imposed, some of the 12 compatibility conditions become redundant. In total 8 of them must be imposed

Bi-semiorder with frontiers

Result: finite case

Proposition (B & M, 2008)

Let A and Z be finite sets. Let \mathcal{P} , \mathcal{J} , \mathcal{T} , and \mathcal{F} be four relations between the sets A and Z such that $\mathcal{P} \cap \mathcal{J} = \emptyset$, $\mathcal{T} \cap \mathcal{F} = \emptyset$, $\mathcal{J} \cap \mathcal{F} = \emptyset$, and $\mathcal{P} \cup \mathcal{J} = \mathcal{S} \subseteq \mathcal{T}$. The following statements are equivalent:

- there is a constant threshold representation of $\langle \mathcal{P}, \mathcal{J}, \mathcal{T}, \mathcal{F} \rangle$
- ② \mathcal{P} , \mathcal{S} , \mathcal{T} , $\mathcal{R} = \mathcal{T} \cup \mathcal{F}$ are biorders satisfying the 8 compatibility conditions and such that thinness $^{\diamond}$ holds for both \mathcal{J} and \mathcal{F} on both A and Z

The functions f and g above can always be chosen so that, for all $a, b \in A$ and $p, q \in Z$,

$$\begin{array}{ccc} a \succsim_{\diamond}^{A} b \Leftrightarrow f(a) \geq f(b) \\ p \succsim_{\diamond}^{Z} q \Leftrightarrow g(p) \geq g(q) \end{array}$$

Idea of proof

- tedious ...
- ... but closely follows the strategy of Ducamp & Falmagne (1969)

Summary

Considering preference structures with frontier

- leads to interesting questions ...
- ...that are simple but not trivial

Results

- N & S conditions for the representation of biorders with frontier
 - intervals order with frontier
 - semiorders with frontier (representation with no proper nesting)
 - semiorders with frontier with no nesting (countable case)
 - semiorders with frontier with constant threshold (finite case)
- N & S conditions for the representation of bi-semiorders with frontiers with constant threshold in the finite case

Discussion

Applications

Conjoint measurement with ordered categories

- N & S conditions for an additive representation with two attributes and two categories with or without frontier
- N & S conditions for an additive representation with two attributes and three categories with or without frontiers in the finite case

Temporal logic

- interval orders are used to deal with the problem of locating "events" on a "time scale" given information on the fact that some entirely precede or follow others
- interval orders with frontier is the adequate model if one wishes to include "immediate succession" relations as in Golumbic & Shamir (1993)

Future research

Open problems & future research

- semiorder with frontier
 - representation with no nesting in the general case
- study the many variants of bi-semiorder with or without frontier

◆ 🗇 ▶

References

Bouyssou, D., Marchant, Th. (2008) Biorders and bi-semiorders with frontiers Working paper, 2008.

References

Ducamp, A. and Falmagne, J.-C. (1969) Composite measurement. Journal of Mathematical Psychology, **6**:359–390.

Fishburn, P. C. (1973)
Interval representations for interval orders and semiorders.

Journal of Mathematical Psychology, 10:91–105.

Fishburn, P. C. (1987)

Interval orders and intervals graphs.

Wiley, New York.

Nakamura, Y. (2002).
Real interval representations.

Journal of Mathematical Psychology, 46:140–177.