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Introduction

Introduction

Context of today’s talk
preference modelling for MCDA
conjoint measurement

Conjoint measurement
set of objects: X = X1 ×X2 × · · · ×Xn

preference relation on X: %

study a number of models leading to a numerical representation of %

x % y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi)

many alternative models



Introduction

Ordered classification

New premises

replace % with 〈C1, C2, . . . , Cr〉
〈C1, C2, . . . , Cr〉 is an ordered partition/covering of X

x ∈ X is “good”, x is “bad”

objects in Ck are “more attractive” than objects in Ck−1

objects in Ck are not necessarily “equally attractive”

Additive Model without frontier

x ∈ Ck ⇔ σk−1 <
n∑

i=1

ui(xi) ≤ σk

Additive Model with frontier

x ∈ Ck ⇔ σk−1 ≤
n∑

i=1

ui(xi) ≤ σk

Ck ∩ Ck+1: thin frontier between categories Ck and Ck+1

Introduction

Particular cases

Two attributes, two categories, no frontier
X = X1 ×X2

x ∈ C2 ⇔ 0 < u1(x1) + u2(x2)
⇔ f(x1) > g(x2)

x ∈ C2 ⇔ x1 T x2

T is a binary relation between X1 and X2

T is a biorder (Ducamp & Falmagne, )

Biorders
Doignon, Ducamp & Falmagne () give necessary and sufficient for
the existence of a numerical representation of biorders



Introduction

Particular cases

Two attributes, two categories with a frontier

(x1, x2) ∈ C2 \ C1 ⇔ 0 < u1(x1) + u2(x2)⇔ x1 T x2

(x1, x2) ∈ C2 ∩ C1 ⇔ 0 = u1(x1) + u2(x2)⇔ x1 F x2

x1 T x2 ⇔ f(x1) > g(x2)
x1 F x2 ⇔ f(x1) = g(x2)

Main question
generalize results on biorders to cope with a frontier

Outline

Outline

1 Definitions and notation

2 Biorders

3 Interval orders and semiorders
Interval orders
Semiorders

4 Biorders with frontier
Model
Interval order with frontier
Semiorder with frontier

5 Bi-semiorder

6 Bi-semiorder with frontiers

7 Discussion



Definitions and notation

Binary relations on a set

Relations on a set
X is a set
binary relation V on X is a subset of X ×X
classic vocabulary and notation

Traces of a binary relation V

x %`
V y ⇔ [y V z ⇒ x V z]

x %r
V y ⇔ [z V x⇒ z V y]

x %V y ⇔ [x %`
V y and x %r

V y]

%`
V , %r

V , and %V are reflexive and transitive

Definitions and notation

Relations between two sets

Relations between two sets
A = {a, b, . . . } and Z = {p, q, . . . } are two (wlog disjoint) sets
a binary relation V between A and Z is a subset of A× Z
any binary relation on X may be viewed a a binary relation between X
and a disjoint duplication of X
Vcd as a relation between Z and A such that p Vcd a⇔ Not [a V p]

Traces of V

trace of V on A
a %A

V b⇔ [b V p⇒ a V p, for all p ∈ Z]
trace of V on Z

p %Z
V q ⇔ [a V p⇒ a V q, for all a ∈ A]

%A
V and %Z

V are reflexive and transitive



Biorders

Biorders

Ferrers Property
V relation between A and Z
V is said to be a biorder if it has the Ferrers property

a V p
and
b V q

⇒
 a V q

or
b V p

Some elementary properties

V is Ferrers iff %A
V is complete iff %Z

V is complete
V is Ferrers iff Vcd is Ferrers
traces generated by V and Vcd on A and Z are identical

Biorders

Numerical representation of biorders

Theorem (Doignon at al. )

Let A and Z be finite or countably infinite sets and T be a relation between
A and Z. The following statements are equivalent:

1 T is Ferrers
2 there is a non-strict representation of T

a T p⇔ f(a) ≥ g(p)
3 there is a strict representation of T

a T p⇔ f(a) > g(p)

The functions f and g can always be chosen in such a way that
a %A

T b⇔ f(a) ≥ f(b)

p %Z
T q ⇔ g(p) ≥ g(q)



Strategy of proof

build a relation Q on A ∪Z such that the restriction of Q on A×Z is T

α Q β ⇔


α ∈ A, β ∈ A, and α %A

T β,

α ∈ Z, β ∈ Z, and α %Z
T β,

α ∈ A, β ∈ Z, and α T β,

α ∈ Z, β ∈ A, and [∀γ ∈ A, δ ∈ Z, γ T α and β T δ ⇒ γ T δ]

when T is a biorder, Q is a weak order
there is a real-valued function F on A ∪ Z such that

α Q β ⇔ F (α) ≥ F (β)

defining f (resp. g) as the restriction of F on A (resp. Z) leads to a
non-strict representation

a T p⇔ f(a) ≥ g(p)

to obtain a strict representation, use the same trick on Tcd

Biorders

Strict numerical representation of biorders

General case
order-denseness conditions have to be invoked
the strict and non-strict representations are no more equivalent
Doignon at al. () have given the necessary order-denseness
conditions in both cases

Theorem (Doignon at al., )

Let T be a binary relation between A and Z. The following statements are
equivalent:

1 T is Ferrers and there is a finite or countably infinite subset B∗ ⊆ A
such that, for all a ∈ A and p ∈ Z

a T p⇒
[
a %A

T b∗ and b∗ T p, for some b∗ ∈ B∗
]

2 there is a strict representation of T

The functions f and g can always be chosen in such a way that they
represent the traces.



Interval orders and semiorders Interval orders

Interval orders

Definition
an interval order T is an irreflexive Ferrers relation on a set X

Interval order as biorders
an interval order T may be viewed as a biorder between X and a
disjoint duplication of X

Strict representation of interval orders on countable sets
there is a strict representation of T as a biorder

x T y ⇔ u(x) > v(y)
irreflexivity implies that u(x) ≤ v(x), for all x ∈ X

Non-strict representation of interval orders on countable sets
there is a non-strict representation of T as a biorder

x T y ⇔ u(x) ≥ v(y)
irreflexivity implies that u(x) < v(x), for all x ∈ X

Interval orders and semiorders Semiorders

Semiorders

Definition
a semiorder T is a semitransitive interval order

x V y
and
y V z

⇒
 x V w

or
w V z

the trace %V of a relation V is complete iff V is Ferrers and
semitransitive
the left and right traces are not contradictory, i.e., it is never true that
x �`

V y and y �r
V x

Semiorders as biorders
on at most countable sets this leads to representation with no proper
nesting of semiorders (Aleskerov et al., )

u(x) > u(y)⇒ v(x) ≥ v(y)
the general case is dealt with using the order-denseness condition
presented above



Interval orders and semiorders Semiorders

Three models for semiorders

Representations with no proper nesting

x T y ⇔ u(x) > v(y)
u(x) > u(y)⇒ v(x) ≥ v(y)

u(x) ≤ v(x)

Representations with no nesting

x T y ⇔ u(x) > v(y)
u(x) ≥ u(y)⇔ v(x) ≥ v(y)

u(x) ≤ v(x)

Constant threshold representations

x T y ⇔ u(x) > u(y) + 1

Interval orders and semiorders Semiorders

Sample result on semiorders

Results (Fishburn, )
1 representations with no nesting are equivalent to representations with

no proper nesting
no proper nesting: u represents %`

∗, v represents %r
∗

no nesting: u and v represent %∗

2 on finite sets, constant threshold representations are equivalent to
representations with no nesting



Biorders with frontier Model

Biorders with frontier

Definition
two disjoint relations T and F between the sets A and Z
R = T ∪ F

a N p⇔ Not [a R p]

Numerical representation with frontier

a T p⇔ f(a) > g(p)
a F p⇔ f(a) = g(p)

Traces

%A
T (resp. %Z

T ) is the trace of T on A (resp. on Z)
%A

R (resp. %Z
R) is the trace of R on A (resp. on Z)

%A
? = %A

T ∩%A
R

%Z
? = %Z

T ∩%Z
R

Biorders with frontier Model

Biorders with frontier

Necessary conditions
T is a biorder
R is a biorder
traces of T and R must be compatible (%A

? and %Z
? are complete)

specific conditions

F is “thin”

Thinness
thinness for F holds on A if

a F p
and
b F p

⇒
 a F q ⇔ b F q

and
a T q ⇔ b T q

⇔ a ∼A
? b

thinness for F holds on Z if
a F p
and
a F q

⇒
 b F p⇔ b F q

and
b T p⇔ b T q

⇔ p ∼Z
? q



Biorders with frontier Model

Remarks

if T is a biorder, R is a biorder, and F is thin on both A and Z then
both %A

? and %Z
? are complete

the following four conditions are independent: T is a biorder, R is a
biorder, thinness for F holds on A, thinness for F holds on Z
F is strictly monotonic wrt to %A

? and %Z
?

[a F p and b �A
? a]⇒ b T p

[a F p and p �Z
? q]⇒ a T q

[a F p and a �A
? c]⇒ c N p

[a F p and r �Z
? p]⇒ a N r

Biorders with frontier Model

Numerical representation of biorders with frontier

Proposition (B & M, )

Let A and Z be finite or countably infinite sets and let T and F be a pair of
disjoint relations between A and Z.
The following statements are equivalent:

1 there is a representation of T and F as a biorder with frontier
2 T is a biorder, R = T ∪ F is a biorder and thinness holds on A and Z

The functions f and g can always be chosen in such a way that
a %A

? b⇔ f(a) ≥ f(b)
p %Z

? q ⇔ g(p) ≥ g(q)



Biorders with frontier Model

Idea of proof

The binary relation L on A ∪ Z defined letting

α L β ⇔


α ∈ A, β ∈ A, and α %A

? β

α ∈ Z, β ∈ Z, and α %Z
? β

α ∈ A, β ∈ Z, and α R β

α ∈ Z, β ∈ A, and Not [β T α]
is a weak order when T is a biorder, R is a biorder, and F is thin on both A
and Z

α L β ⇔ F (α) ≥ F (β)

a T p⇔ [a L p and Not [p L a]]⇒ F (a) > F (p)
a F p⇔ [a L p and p L a]⇒ F (a) = F (p)

Not [a R b]⇔ [Not [a L p] and p L a]⇒ F (a) < F (p)

Biorders with frontier Model

The general case

A subset A∗ ⊆ A is dense for the pair T and F if, for all a ∈ A and all p ∈ Z,
a T p⇒ [a %A

? a∗ and a∗ T p]

a N p⇒ [a∗ N p and a∗ %A
? a]

for some a∗ ∈ A∗

Proposition (B & M, )

The following statements are equivalent:
1 there is a representation of T and F as a biorder with frontier
2 T is a biorder, R = T ∪ F is a biorder, thinness holds on A and Z, and

there is a finite or countably infinite set A∗ ⊆ A that is dense for the
pair 〈T,F〉

The functions f and g can always be chosen in such a way that, for all
a, b ∈ A and p, q ∈ Z,

a %A
? b⇔ f(a) ≥ f(b)

p %Z
? q ⇔ g(p) ≥ g(q)



Biorders with frontier Interval order with frontier

Interval order with frontier

Definition
let T and F be two disjoint relations on X
let R = T ∪ F and I = Rsc (symmetric complement of R)

x T y ⇔ u(x) > v(y)
x F y ⇔ u(x) = v(y)

u(x) < v(x)

Remark
results for interval orders with frontier are obvious corollaries of results
on biorders with frontier

Biorders with frontier Interval order with frontier

Necessary conditions

T is an interval order
R is an interval order

Traces

traces of T : %`
T and %r

T

traces of R: %`
R and %r

R

intersection of traces:
%`
∗ = %`

T ∩%`
R

%r
∗ = %r

T ∩%r
R

we have to ensure that %`
∗ and %r

∗ are complete



Biorders with frontier Interval order with frontier

Necessary conditions

Thinness
F is upper thin if

x F z
and
y F z

⇒
 x F w ⇔ y F w

and
x T w ⇔ y T w

⇔ x ∼`
∗ y

F is lower thin if
z F x
and
z F y

⇒
 w F x⇔ w F y

and
w T x⇔ w T y

⇔ x ∼r
∗ y

Biorders with frontier Interval order with frontier

Results

Proposition (B & M, )

Let T and F be two disjoint relations on a finite or countably infinite set X.
The following statements are equivalent:

1 the pair of relations T and F has a numerical representation as an
interval order with frontier

2 T is an interval order, R is an interval order and F is upper and lower
thin

We can always choose u and v in such a way that
x %`

∗ y ⇔ u(x) ≥ u(y)
x %r

∗ y ⇔ v(x) ≥ v(y)

General case
A subset X ∗ ⊆ X is dense for the pair T and F if, for all x, y ∈ X,

x T y ⇒ [x %`
∗ x

∗ and x∗ T y]

x Rc y ⇒ [x∗ Rc y and x∗ %`
∗ x]

for some x∗ ∈ X ∗



Biorders with frontier Semiorder with frontier

Semiorder with frontier

Representations with no proper nesting
let T and F be two disjoint relations on X
let R = T ∪ F and I = Rsc (symmetric complement of R)

x T y ⇔ u(x) > v(y)
x F y ⇔ u(x) = v(y)

u(x) < v(x)
u(x) > u(y)⇒ v(x) ≥ v(y)

Biorders with frontier Semiorder with frontier

Necessary conditions

Necessary conditions

〈T , F , I〉 is a pseudo-order with a thin relation F
T is a semiorder
R is a semiorder
consistency conditions

Consistency conditions

TFI ⊆ T
IFT ⊆ T
FIT ⊆ T
TIF ⊆ T



Biorders with frontier Semiorder with frontier

Representations with no proper nesting

Proposition (B & M, )

Let T and F be two disjoint relations on a finite or countably infinite X.
The following statements are equivalent:

1 the pair of relations has a representation with no proper nesting
2 T is a semiorder, R is a semiorder, TFI ⊆ T , IFT ⊆ T , F is upper

thin, and F is lower thin
We can always choose u and v in such a way that

x %`
∗ y ⇔ u(x) ≥ u(y)

x %r
∗ y ⇔ v(x) ≥ v(y)

General case
A subset X ∗ ⊆ X is dense for the pair T and F if, for all x, y ∈ X,

x T y ⇒ [x %`
∗ x

∗ and x∗ T y]

x Rc y ⇒ [x∗ Rc y and x∗ %`
∗ x]

for some x∗ ∈ X ∗

Biorders with frontier Semiorder with frontier

Semiorder with frontier

Representations with no nesting
let T and F be two disjoint relations on X
let R = T ∪ F and I = Rsc (symmetric complement of R)

x T y ⇔ u(x) > v(y)
x F y ⇔ u(x) = v(y)

u(x) < v(x)
u(x) ≥ u(y)⇔ v(x) ≥ v(y)



Biorders with frontier Semiorder with frontier

Necessary conditions

all conditions used for the case of representations with no proper
nesting remain necessary
a stronger version of thinness is needed

Strong thinness
F is strongly upper thin if

x F z

y F z

}
⇒


x T w ⇔ y T w

x F w ⇔ y F w

w F x⇔ w F y

w T x⇔ w T y

⇔ x ∼∗ y

F is strongly lower thin if

z F x

z F y

}
⇒


x T w ⇔ y T w

x F w ⇔ y F w

w F x⇔ w F y

w T x⇔ w T y

⇔ x ∼∗ y

Biorders with frontier Semiorder with frontier

Representations with no nesting

Proposition (B & M, )

Let T and F be two disjoint relations on a finite or countably infinite set X.
The following statements are equivalent:

1 the pair of relations has a representation with no nesting
2 T is a semiorder, R is a semiorder, TFI ⊆ T , IFT ⊆ T , F is strongly

upper thin, and F is strongly lower thin
We can always choose u and v in such a way that

x %∗ y ⇔ u(x) ≥ u(y)⇔ v(x) ≥ v(y)

General case
open question



Biorders with frontier Semiorder with frontier

Semiorder with frontier

Representation with constant threshold

x T y ⇔ u(x) > u(y) + 1
x F y ⇔ u(x) = u(y) + 1

Proposition (B & M, )

Let T and F be two disjoint relations on a finite set X. The following
statements are equivalent:

1 this pair of relations has a constant threshold representation
2 T is a semiorder, R is a semiorder, TFI ⊆ T , IFT ⊆ T , F is strongly

upper thin, and F is strongly lower thin
We can always choose u and v in such a way that

x %∗ y ⇔ u(x) ≥ u(y)

Bi-semiorder

Bi-semiorder

Definition (Ducamp & Falmagne, )

Let T and P be two relations between the sets A and Z

a P p⇔ f(a) > g(p) + 1
a T p⇔ f(a) > g(p)

More general models
many possible variants

a P p⇔ f(a) > h(p)
a T p⇔ f(a) > g(p)

h(p) > g(p)



Bi-semiorder

Notation

Traces

trace of T on A (resp. Z) is denoted by %A
T (resp. %Z

T )
trace of P on A (resp. Z) is denoted by %A

P (resp. %Z
P)

%A
◦ = %A

T ∩%A
P and %Z

◦ = %Z
T ∩%Z

P

Necessary conditions

the six relations %A
T , %Z

T , %A
P , %Z

P, %A
◦ and %Z

◦ are complete
%A
◦ is complete iff %A

T and %A
P are complete and compatible

%Z
◦ is complete iff %Z

T and %Z
P are complete and compatible

Bi-semiorder

Necessary conditions

Conditions
P ⊆ T

T is Ferrers (%A
T and %Z

T are complete)
P is Ferrers (%A

P and %Z
P are complete)

compatibility of traces

a P p
and
b T q

⇒
 b P p

or
a T q

a P p
and
b T q

⇒
 a P q

or
b T p



Bi-semiorder

Result

Theorem, Ducamp & Falmagne ()

Let A and Z be finite sets. Let T and P be two relations between A and Z.
The following statements are equivalent:

1 P and T are biorders satisfying conditions the two compatibility
conditions

2 the pair of relations P and T has a constant threshold representation
We may always choose the functions f and g such that

a %A
◦ b⇔ f(a) ≥ f(b)

p %Z
◦ q ⇔ g(p) ≥ g(q)

skip proof

Outline of proof

α Q◦ β ⇔


α, β ∈ A and α %A

◦ β

α, β ∈ Z and α %Z
◦ β

α ∈ A, β ∈ Z and α T β

α ∈ Z, β ∈ A and Not [β T α]
Q◦ is a weak order

α H◦ β ⇔



α, β ∈ A and α P γ and Not [β T γ], for some γ ∈ Z
α, β ∈ Z and Not [γ T α] and γ P β, for some γ ∈ A
α ∈ A, β ∈ Z and α P β

α ∈ Z, β ∈ A and Not [γ T α], γ P δ, and Not [β T δ]
for some γ ∈ A, δ ∈ Z

H◦ is a semiorder and Q◦ refines the weak order underlying H◦

α H◦ β ⇔ F (α) > F (β) + 1
α Q◦ β ⇔ F (α) ≥ F (β)



Bi-semiorder with frontiers

Bi-semiorder with frontiers

Notation
four relations P, J, T and F between the sets A and Z
define S = P ∪ J, R = T ∪ F

we suppose that P ∩ J = ∅, T ∩ F = ∅, J ∩ F = ∅, and S ⊆ T

consequence: P ⊆ S ⊆ T ⊆ R

Constant threshold representation

a P p⇔ f(a) > g(p) + 1
a J p⇔ f(a) = g(p) + 1
a T p⇔ f(a) > g(p)
a F p⇔ f(a) = g(p)

More general models
many possible variants

Bi-semiorder with frontiers

Bi-semiorder with frontiers

Traces

a %A
� b⇔


b P r ⇒ a P r
b S r ⇒ a S r
b T r ⇒ a T r
b R r ⇒ a R r

 for all r ∈ Z

p %Z
� q ⇔


c P p⇒ c P q
c S p⇒ c S q
c T p⇒ c T q
c R p⇒ c R q

 for all c ∈ A



Bi-semiorder with frontiers

Necessary conditions

P, S, T, and R must be biorders
all conditions (12 in total) necessary to imply that %A

� on A and %Z
� on

Z are complete
new thinness conditions

a F p
and
b F p

⇒ a ∼A
� b

a F p
and
a F q

⇒ p ∼Z
� q

a J p
and
b J p

⇒ a ∼A
� b

a J p
and
a J q

⇒ p ∼Z
� q

when thinness conditions are imposed, some of the 12 compatibility
conditions become redundant. In total 8 of them must be imposed

Bi-semiorder with frontiers

Result: finite case

Proposition (B & M, )

Let A and Z be finite sets. Let P, J, T, and F be four relations between the
sets A and Z such that P∩ J = ∅, T ∩F = ∅, J∩F = ∅, and P∪ J = S ⊆ T.
The following statements are equivalent:

1 there is a constant threshold representation of 〈P, J,T,F〉
2 P, S, T, R = T ∪ F are biorders satisfying the 8 compatibility conditions

and such that thinness� holds for both J and F on both A and Z
The functions f and g above can always be chosen so that, for all a, b ∈ A
and p, q ∈ Z,

a %A
� b⇔ f(a) ≥ f(b)

p %Z
� q ⇔ g(p) ≥ g(q)

Idea of proof
tedious . . .
. . . but closely follows the strategy of Ducamp & Falmagne ()



Discussion

Summary

Considering preference structures with frontier
leads to interesting questions . . .
. . . that are simple but not trivial

Results
N & S conditions for the representation of biorders with frontier

intervals order with frontier
semiorders with frontier (representation with no proper nesting)
semiorders with frontier with no nesting (countable case)
semiorders with frontier with constant threshold (finite case)

N & S conditions for the representation of bi-semiorders with frontiers
with constant threshold in the finite case

Discussion

Applications

Conjoint measurement with ordered categories
N & S conditions for an additive representation with two attributes and
two categories with or without frontier
N & S conditions for an additive representation with two attributes and
three categories with or without frontiers in the finite case

Temporal logic
interval orders are used to deal with the problem of locating “events” on
a “time scale” given information on the fact that some entirely precede
or follow others
interval orders with frontier is the adequate model if one wishes to
include “immediate succession” relations as in Golumbic & Shamir
()



Discussion

Future research

Open problems & future research
semiorder with frontier

representation with no nesting in the general case

study the many variants of bi-semiorder with or without frontier
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