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1 Introduction

The purpose of this note is to write down the result on concordance rela-
tions that I presented in Luxembourg one year ago. The first two sections
are adapted from Bouyssou (1996). They prove a general result on concor-
dance relations. Section 4 shows how this general result applies to bipolar
concordance. The final section presents an approximation result on bipolar
outranking relations.

2 Definitions and notation

A valued relation T on a set X is a function from X ×X into [0, 1].

Remark 1
In this text, we always work between 0 and 1 with 1/2 playing the rôle of
the midpoint. A simple rescaling allows to work between −1 and 1 with 0
playing the rôle of a midpoint. •

A valued relation T is said to be reflexive if T (x, x) = 1, for all x ∈ X. A
valued relation T on X such that T (x, y) ∈ {0, 1}, for all x, y ∈ X, is said
to be crisp. As is usual, we write x T y instead of T (x, y) = 1 when T is a
crisp relation.

A crisp relation T on a set X is said to be:

• reflexive if x T x,

• complete if x T y or y T x,

• transitive if x T y and y T z ⇒ x T z,

• antisymmetric if x T y and y T x⇒ x = y,
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• Ferrers if (x T y and z T w)⇒ (x T w or z T y),

• semi-transitive if (x T y and y T z)⇒ (x T w or w T z),

for all x, y, z, w ∈ X.
We say that a crisp relation is:

• a linear order if it is complete, antisymmetric and transitive,

• a weak order if it is complete and transitive,

• a semi-order if it is reflexive, Ferrers and semi-transitive,

• an interval order if it is reflexive and Ferrers.

Remark 2
It is easy to check that a reflexive and Ferrers relation is necessarily complete.

If P (resp. I) is the asymmetric (resp. symmetric) part of a semiorder S,
it is easy to show that we have PIP ⊆ P , PPI ⊆ P and IPP ⊆ P (see, e.g.
Roubens and Vincke, 1985, page 35). In particular P is transitive. •

We denote by LOX (resp. WOX , SOX , IOX) the set of all linear orders
(resp. weak orders, semi-orders, interval orders) on a set X. It is well-known
that LOX ⊆ WOX ⊆ SOX ⊆ IOX all inclusions being strict as soon as X
is large enough.

Throughout this paper A = {a, b, c, . . . } will denote a finite set with
|A| = m ≥ 2 elements. We interpret the elements of A as “alternatives” to
be compared using an outranking method.

3 Generalized concordance

A “Generalized Concordance situation on A” consists in:

• a strictly positive integer n,

• n functions g1, g2, . . . , gn from A into R,

• n functions t1, t2, . . . , tn from R2 into [0, 1] such that, ∀i ∈ {1, 2, . . . , n},
ti is non-decreasing (resp. non-increasing) in its first (resp. second)
argument and ti(x, x) = 1, ∀x ∈ R,

• n strictly positive real numbers k1, k2, . . . , kn.

Remark 3
It is useful to have the following interpretation in mind:
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• n is the number of criteria,

• g1, g2, . . . , gn are the criteria,

• the function ti transforms the comparisons of alternatives on criterion
gi into a valued relation. •

On the basis of such a “situation”, the “Generalized Concordance” method
or more briefly the GC method (inspired by Perny, 1992, Perny and Roy,
1992) leads to a valued relation T on A letting, ∀a, b ∈ A:

T (a, b) =

∑n
i=1 ki ti(gi(a), gi(b))∑n

i=1 ki

We denote by GCA the set of all valued relations on A that can be obtained
with the GC method on the basis of a “Generalized Concordance situation
on A”. Since it was supposed that ti(x, x) = 1, all relations in T ∈ GCA are
obviously reflexive (i.e., T (a, a) = 1, ∀a ∈ A).

In what follows we study the structural properties of relations in GCA,
besides reflexivity. The following definitions will prove useful for this purpose.

Definition 1
Let T be a valued relation on a finite set A. The relation T is said to be a
t-g relation if there are:

• a real-valued function g on A and

• a function t from g[A]×g[A] into [0, 1] being non-decreasing (resp. non-
increasing) in its first (resp. second) argument and such that t(x, x) =
1,∀x ∈ g[A],

such that,
T (a, b) = t(g(a), g(b)),

for all a, b ∈ A.

The notion of t-g relation is very closely related to that of “monotone
scalability” used in Monjardet (1984) (after Fishburn, 1973), the only dif-
ference being the addition here of a restriction on t(x, x). By construction,
relations in GCA are “convex mixtures” of t-g relations.

Definition 2
Let T be a valued relation on a finite set A. We say that T is lower diagonal
stepped if T (a, a) = 1, for all a ∈ A and there is a linear order V on A such
that, for all a, b ∈ A,

a V b⇒ T (a, c) ≥ T (b, c) and T (c, a) ≤ T (c, b),∀c ∈ A.
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Apart from the restriction that T (a, a) = 1, a lower diagonal stepped
relation is identical to a relation having a “monotone board” as defined in
Monjardet (1984).

Definition 3
Let T be a valued relation on a finite set A. We say that T is linear if,

[T (a, c) > T (b, c) or T (c, a) < T (c, b)]⇒
[T (a, d) ≥ T (b, d) and T (d, a) ≤ T (d, b)],

for all a, b, c, d ∈ A.

The following lemma is a direct consequence of Monjardet (1984, Theorem
13). For the sake of completeness we outline its proof.

Lemma 1
Let T be a valued relation on a finite set A. The following statements are
equivalent:

1. T is a t-g relation,

2. T is reflexive and linear,

3. T is lower diagonal stepped.

Proof
The part [1 ⇒ 2] is obvious.

[2 ⇒ 3]. Define the crisp relation %T (called the trace of T ), letting, for
all a, b ∈ A,

a %T b⇒ [T (a, c) ≥ T (b, c) and T (c, a) ≤ T (c, b) for all c ∈ A].

The relation %T is reflexive and transitive. It is easy to see that it is also
complete when T is linear. Consider now any linear order V extending %T ,
i.e., such that V ⊆ %T (such a linear order exists by Szpilrajn’s lemma).
Using the reflexivity and the linearity of T , it is easy to prove that T is lower
diagonal stepped using such a linear order.

[3 ⇒ 1]. Since A is a finite set and V is a linear order, there is a real-
valued function g on A such that, for all a, b ∈ A, g(a) ≥ g(b) ⇔ a V b.
Given such a function g define t(g(a), g(b)) = T (a, b). The valued relation
T being lower diagonal stepped, it is easy to prove that t is a well-defined
real-valued function on g[A]× g[A], has the required monotonicity property
and is such that t(g(a), g(a)) = 1, for all a ∈ A (for details, see Fishburn,
1973, Theorem 1 and A). 2
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Definition 4
Let K be a set of crisp relations on a finite set A. The valued relation T on
A is said to be representable in K if there is a function φ from K into [0, 1]
such that: ∑

K∈K

φ(K) = 1

for which:

T (a, b) =
∑
K∈K

φ(K)K(a, b),

for all a, b ∈ A.

From Lemma 1, we know that relations in GCA are “convex mixtures” of lower
diagonal stepped relations. We proceed by showing that these relations are
particular convex mixtures of elements of SOA, i.e. crisp semi-orders. We
shall use two lemmas.

Lemma 2
Let T be a crisp relation on a finite set A. The relation T is lower diagonal
stepped if and only if T ∈ SOA.

Proof
Results immediately from the classical properties of semi-orders, see, e.g.,
Fishburn (1970) or Roubens and Vincke (1985). 2

Lemma 3
Let T be a valued relation on a finite set A. If T is lower diagonal stepped
then it is representable in SOA.

Proof
Since A is finite and T is lower diagonal stepped, it takes up to m(m−1)/2 =
r values in (0, 1). These r, non-necessarily distinct, values are such that:

0 < q1 ≤ q2 ≤ · · · ≤ qr < 1.

For any i = 1, 2, . . . , r, define the crisp relation Ti on A letting, for all a, b ∈ A,
a Ti b ⇔ T (a, b) ≥ qi. Since T is lower diagonal stepped, it is easy to see
that Ti is lower diagonal stepped, for i = 1, 2, . . . , r. Thus, we know from
Lemma 2, that Ti ∈ SOA. Let T∗ be the crisp relation on A such that, for
all a, b ∈ A, a T∗ b⇔ T (a, b) ≥ 1. It is clear that T∗∈ SOA.
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Define a function φ from SOA into [0, 1] letting, for all W ∈ SOA:

φ(W ) =



q1 if W = T1,

q2 − q1 if W = T2,

...

qr − qr−1 if W = Tr,

1− qr if W = T∗,

It is easy to see that: ∑
W∈SOA

φ(W ) = 1,

and that, with this function φ, T is representable in SOA. 2

Combining Lemmas 1, 2 and 3 allows us to state a characterization of the
elements of GCA.

Proposition 1
Let T be a valued relation on a finite set A. Then T ∈ GCA if and only if it
representable in the set SOA of all semi-orders on A.

Proof
[T is representable in SOA ⇒ T ∈ GCA].

Let K = {T1, T2, . . . , T`} be the set of all semi-orders T in SOA such that
φ(T ) > 0 (since A is finite, so is SOA and, hence, K). The set A being finite,
for any Ti, i = 1, 2, . . . , `, there is a function ui from A into R such that,
∀a, b ∈ A, a Ti b⇔ ui(a) ≥ ui(b)− 1.

Consider a “situation” involving ` criteria and let: ki = φ(Ti), gi = ui,
ti(x, y) = 1 if x ≥ y− 1 and 0 otherwise. With such a function ti, we clearly
have that ti(x, x) = 1. Furthermore, ti is nondecreasing in its first argument
and nondecreasing in its second argument. It is obvious that applying the
GC method to this “situation” leads to T .

[T ∈ GCA ⇒ T is representable in SOA].
To prove that T is representable in SOA, it is sufficient to prove that the

relations defined by Ti(a, b) = ti(gi(a), gi(b)), ∀a, b ∈ A, are representable
in SOA, since T is a convex mixture of the relations Ti. From lemma 1, we
know that the relations Ti are lower diagonal stepped and the use of lemma 3
completes the proof. 2
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Example 1
Let A = {a, b, c, d}. Let T be the valued relation such that:

a b c d
a 1.0 1.0 1.0 0.6
b 1.0 1.0 0.6 1.0
c 0.6 0.6 1.0 1.0
d 0.6 1.0 0.6 1.0

Let us show that this valued relation does not belong to GCA.
Suppose that T ∈ GCA and let us show that this leads to a contradiction.
Let K ⊆ SOA be the set of semiorders allowing to represent T . If Si ∈ K,

we denote by Pi (resp. Ii) the asymmetric (resp. symmetric) part of Si.
Because T (a, b) = T (b, a) = 1, we must have a Si b and b Si a, for all

Si ∈ K. Similarly, T (b, d) = T (d, b) = 1 implies that b Si d and d Si b, for all
Si ∈ K.

Because T (c, d) = 1 and T (d, c) = 0.6, all semiorders in K are such that
c Si d. The sum of the weights of the semiorders such that c Pi d must be
0.4. The sum of the weights of the remaining semiorders (for which c Ii d)
must be 0.6. Similarly, because T (a, c) = 1 and T (c, a) = 0.6, all semiorders
in K are such that a Si c. The sum of the weights of the semiorders such
that a Pi c must be 0.4. The sum of the weights of the remaining semiorders
(for which a Ii c) must be 0.6.

We have T (b, c) = 0.6 and T (c, b) = 0.6. Hence, the sum of the weights
of the semiorders such that b Pi c must be 0.4. The sum of the weights of
the semiorders such that c Pi b must be 0.4. The remaining semiorders are
such that b Ii c and total weight of 0.2. Similarly, because T (a, d) = 0.6 and
T (d, a) = 0.6, the sum of the weights of the semiorders such that a Pi d must
be 0.4, the sum of the weights of the semiorders such that d Pi a must be 0.4
and the remaining semiorders are such that b Ii c and a total weight of 0.2.

Any semiorder such that b Pi c cannot have c Pi d since this would imply
b Pi d, using the transitivity of Pi. Hence all the semiorders such that b Pi c
must have c Ii d. For these semiorders, it is impossible to have d Pi a since
this would imply, using PiIiPi ⊆ Pi, b Pi a. These semiorders have a total
weight of 0.4

Any semiorder such that c Pi b cannot have a Pi c since this would imply
a Pi b, using the transitivity of Pi. Hence the semiorders such that c Pi b
must have a Ii c. For these semiorders, it is impossible to have d Pi a since
this would imply, using PiIiPi ⊆ Pi, d Pi b. These semiorders have a total
weight of 0.4.

Hence, it is impossible that the total weight of the semiorders such that
d Pi a is 0.4, as required. 3
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4 Application to bipolar concordance relations

4.1 Definitions

We consider a finite set A of alternatives. Each alternative a ∈ A is supposed
to be evaluated on a set of n criteria. Each criterion uses two thresholds.

A criterion gi is a real-valued function on A. To the criterion gi, we
associate two numbers iti ≥ 0 and pti ≥ iti ≥ 0 in such a way that:

x Pi y ⇔ gi(x) > gi(y) + pti,

x Qi y ⇔ gi(y) + pti ≥ gi(x) > gi(y) + iti,

x Ii y ⇔ |gi(x)− gi(y)| ≤ iti.

Remark 4
In the above equations, the position of the strict and non-strict inequalities is
purely conventional. Since we are dealing here with finite sets, their position
could be changed without affecting the analysis below. •
Remark 5
Here we consider constant thresholds. The analysis below is unaffected by
the consideration of variable thresholds, provided, they satisfy the usual con-
sistency condition, i.e., for all a, b ∈ A,

gi(a) > gi(b)⇒
{
gi(a) + iti(gi(a)) ≥ gi(b) + iti(gi(b)),
gi(a) + pti(gi(a)) ≥ gi(b) + pti(gi(b)).

•

To each criterion, we associate a valued preference relation, i.e., a real
valued function Ti on A2 such that, for all a, b ∈ A,

Ti(a, b) = 0⇔ gi(b) > gi(a) + pti,

Ti(a, b) = 1/2⇔ gi(a) + pti ≥ gi(b) > gi(a) + iti,

Ti(a, b) = 1⇔ gi(b) ≤ gi(a) + iti.

(1)

On this basis, a valued relation (the bipolar concordance relation) is built
letting, for all a, b ∈ A

T (a, b) =
n∑

i=1

πi Ti(a, b), (2)

where πi ∈ [0, 1] is the weight associated to criterion gi, these weights being
normalized so that

∑n
i=1 πi = 1.

A valued relation T on A that is build using (1) and (2) is called a bipolar
concordance relation.
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4.2 Results

Bipolar concordance relations are particular cases of relations that can be
obtained with the GC method that uses t-g relations. Indeed, using (1), is
equivalent to using a function ti operating on the criterion gi that is such
that, for all x, y ∈ gi(A),

ti(x, y) =


1 if x− y ≥ −iti,

1/2 if x− y ∈ [−pti,−iti),
0 if x− y < −pti.

Such a function ti satisfies ti(x, x) = 1 and is nondecreasing (resp. nonin-
creasing) in its first (resp. second) argument.

Therefore, bipolar concordance relations are a particular case of relations
build using the GC method and Proposition 1 implies that such relations
are representable in SOA. Conversely, it is easy to see that if a relation
is representable in SOA it can be obtained using (1). Indeed, it suffices
to consider as many criterion as there are relations in T ∈ SOA such that
φ(T ) > 0, taking for each of these criteria iti = pti.

The above argument has proved the following corollary of proposition 1.

Corollary 1
Let A be a finite set.

1. A valued relation T is a bipolar concordance relation iff it belongs to
GCA iff it belongs to SOA,

2. The set of bipolar concordance relations is identical to the set of bipolar
concordance relations obtained with the additional constraint that, for
all criteria, iti = pti.

Remark 6
The above gives a complete characterization of the bipolar concordance rela-
tions. The analysis in Bouyssou (1996) shows that the hope of improving this
characterization is quite limited. The relations lying in SOA are a convex
polytope in a space of very high dimension. An improved characterization
should describe the facets of this polytope. As shown in Bouyssou (1996)
this direction of research is quite likely to be hopeless. •

Remark 7
For practical disaggregation purposes, we can always suppose that we are
working with criteria such that iti = pti. Such criteria are simply semiorders
and semiorders are easily characterized using boolean variables. We already
observed that in Luxembourg, following Roubens and Vincke (1985). Indeed,
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a semiorder on a finite set A with |A| = m can always be described by a set
of m2 binary variables xij, i, j = 1, 2, . . . ,m such that, for all i, j, k, ` ∈
{1, 2, . . . ,m}

xij + xji ≥ 1,

xik + xj` ≥ xi` + xjk − 1,

xik + xkj ≥ xi` + x`k − 1,

as already observed in Roubens and Vincke (1985, page 37) •

Remark 8
Imposing that iti = pti does not restrict the set of bipolar concordance
relations. However, it is likely that this constraint will increase the number
of criteria needed to recover a given valued relation. Unfortunately, there
does not seem to be an easy characterization of homogeneous families of two
semiorders, i.e., the structure that is obtained with two thresholds (admitting
variable thresholds). Indeed, what would be needed here is a set of variables
xij that can only take three distinct values, e.g., 0, 1/2, 1, and satisfying the
following constraint:

xik > xjk
or

xki < xkj

⇒


xi` ≥ xj`
and

x`i ≤ x`j

that captures the linearity of the relation (besides an obvious completeness
requirement stating that xij = 0 or xij = 1/2 then xji = 1).

I have tried to look for an efficient formulation of this constraint as a
linear constraint in an integer program but I have failed to find anything
satisfactory. This is a problem. •

5 What about discordance?

As explained in Luxembourg, the above analysis does not easily generalize
to include discordance. Indeed, veto effects does not only affect a pair of
alternatives but, in general, have a more global effect.

The general problem is likely to be difficult. Nevertheless, it is possible
to show the following.

Let T be a valued relation on A and T ′ be a bipolar concordance relation
on A. We say that T is below T ′ in the sense of bipolar outranking if, for all
a, b ∈ A

• T (a, b) ≤ T ′(a, b),
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• if T (a, b) 6= T ′(a, b) then either T (a, b) = 0 or T (a, b) = 1/2 (discor-
dance effects either bring to 0 or the midpoint 1/2).

Clearly bipolar outranking relations are relations that are below a bipolar
concordance relation in the above sense. I do not know how to character-
ize the set of bipolar outranking relations (we know that it includes SOA).
Nevertheless an approximate result is easily achieved. Let T be a valued
relation that is below a bipolar concordance relation T ′. Then there is a
bipolar outranking relation that is “close” to T .

The proof goes as follows. It is always possible to build a bipolar concor-
dance relation T ∗ that is “close” to T ′ and that give a positive weight to all
relations in SOA. This is obvious. Now every linear order in SOA receives
a positive weight. With the bipolar concordance relation T ∗, discordance
effects can be used “at will” since for all a, b ∈ A there is a criterion such
that a is on top and b is at bottom. Hence, it is always possible the two veto
thresholds (one bringing at 1/2 and the other bringing at 0) so that it only
affects the ordered pair (a, b). This proves the following.

Proposition 2
Let T be a valued relation on A that is below a bipolar concordance relation
T ′. For all ε > 0, there is a bipolar outranking relation T ′′ that is such that

|T (a, b)− T ′′(a, b)| ≤ ε,

for all a, b ∈ A.

The above result shows that, in an approximate manner, everything that is
below a bipolar concordance relation can be seen as a bipolar outranking
relation.
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