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Abstract

Based on a general framework for conjoint measurement that al-
lows for intransitive preferences, this paper proposes a characterization
of “strict concordance relations”. This characterization shows that the
originality of such relations lies in their very crude way to distinguish
various levels of “preference differences” on each attribute.
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1 Introduction

A basic problem in the field of Multiple Criteria Decision Making (mcdm)
is to build a preference relation on a set of alternatives evaluated on several
attributes on the basis of preferences expressed on each attribute and inter-
attribute information such as weights or trade-offs.
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B. Roy proposed several outranking methods [Roy68, Roy96b, RB93,
Vin92, Vin99, Bou01] as alternatives to the dominant value function ap-
proach [Fis70, KR76, Wak89]. In outranking methods, the construction of
a preference relation is based on pairwise comparisons of the alternatives.
This preference relation may either be reflexive as in the electre methods
[Roy91] (it is then interpreted as an “at least as good” relation) or asym-
metric as in tactic [Van86] (it is then interpreted as a “strict preference”
relation). Most outranking methods, including electre and tactic, make
use of the so-called concordance-discordance principle which consists in ac-
cepting a preferential assertion linking an alternative a to an alternative b
if:

• Concordance Condition: a majority of the attributes supports this as-
sertion and if,

• Non-Discordance Condition: the opposition of the other attributes is
not “too strong”.

In this paper we restrict our attention to outranking methods such as
tactic aiming at building a crisp (i.e. nonfuzzy) asymmetric preference re-
lation. Based on a general framework for conjoint measurement that allows
for intransitive preferences [BP00], we propose a characterization of “strict
concordance relations”, i.e. asymmetric binary relations resulting from the
application of the concordance condition in such methods. This character-
ization shows that the essential distinctive feature of these relations lies in
their very crude way to distinguish various levels of “preference differences”
on each attribute.

This paper is organized as follows. In section 2, we briefly recall some
notions on outranking relations and define “strict concordance relations”.
Section 3 presents our general framework for conjoint measurement that al-
lows for intransitive preferences. This framework is used in section 4 to char-
acterize strict concordance relations. A final section discusses our findings
and indicates directions for future research. Throughout the paper, unless
otherwise mentioned, we follow the terminology of [Bou96] concerning binary
relations.
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2 Outranking methods leading to an asym-

metric relation

2.1 TACTIC [Van86]

Consider two alternatives x and y evaluated on a family N = {1, 2, . . . , n}
of attributes. A first step in the comparison of x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) is to know how they compare on each attribute. In
tactic, it is supposed that evaluations on an attribute can be compared
using an asymmetric binary relation Pi that is a strict semiorder (i.e. an
irreflexive, Ferrers and semi-transitive relation). The asymmetry of Pi implies
that one and only one of the following propositions is true: xiPiyi or yiPixi

or xiIiyi (i.e. Not[xiPiyi] and Not[yiPixi])
When comparing x to y, the following subsets of attributes play a vital

part in tactic:
P (x, y) = {i ∈ N : xiPiyi},

I(x, y) = I(y, x) = {i ∈ N : xiIiyi} and

P (y, x) = {i ∈ N : yiPixi}.
Since Pi is asymmetric, we have P (x, y)∩P (y, x) = ∅. Note that, by construc-
tion, I(x, y) = I(y, x), P (x, y)∩ I(x, y) = ∅ and P (x, y)∪ I(x, y)∪P (y, x) =
N .

In its concordance part, tactic declares that x is preferred to y (xPy)
if the attributes in P (x, y) are “strictly more important” than the attributes
in P (y, x). Since it appears impractical to completely assess an importance
relation between all disjoint subsets of attributes, tactic assigns a weight
to each attribute and supposes that the importance of a subset of attributes
is derived additively. More precisely, if wi > 0 is the weight assigned to
attribute i ∈ N , we have in the concordance part of tactic:

xPy ⇔
∑

i∈P (x,y)

wi > ρ
∑

j∈P (y,x)

wj (1)

where ρ ≥ 1 is a concordance threshold.
The preceding analysis based on concordance does not take into account

the magnitude of the preference differences between the evaluations of x and y
on each attribute besides the distinction between “positive”, “negative” and
“neutral” differences. This may be criticized since, if on some j ∈ P (y, x)
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the difference of preference in favor of y is “very large”, it may be risky to
conclude that xPy even if the attributes in P (x, y) are strictly more impor-
tant than the attributes in P (y, x). This leads to the discordance part of the
method. The idea of very large preference differences is captured through a
strict semiorder Vi ⊆ Pi on each attribute i ∈ N and the discordance part of
the method forbids to have xPy whenever yjVjxj, for some j ∈ P (y, x) . In
summary, we have in tactic:

xPy ⇔∑
i∈P (x,y) wi > ρ

∑
j∈P (y,x) wj

and (2)

Not[yjVjxj] for all j ∈ P (y, x)

where Pi and Vi are strict semiorders such that Vi ⊆ Pi, wi > 0 and ρ ≥ 1.
We refer to [Van86] for a thorough analysis of this method including possible
assessment techniques for Pi, Vi, wi and ρ.

Simple examples show that, in general, a relation P built using (1) or
(2) may not be transitive and may even contain circuits. The use of such
a relation P for decision-aid purposes therefore calls for the application of
specific techniques, see [Roy91, RB93, Van90].

2.2 Strict concordance relations

Relation (1) is only one among the many possible ways to implement the
concordance principle in order to build an asymmetric relation. The following
elements appear central in the analysis:

• an asymmetric relation Pi on each Xi allowing to partition N into
P (x, y), P (y, x) and I(x, y),

• an asymmetric importance relation ¤ between disjoint subsets of at-
tributes, allowing to compare P (x, y) and P (y, x), which is monotonic
(with respect to inclusion), i.e. such that:

[A ¤ B,C ⊇ A,B ⊇ D, C ∩D = ∅] ⇒ [C ¤ D].

This motivates the following, inspired by [FPng]:
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Definition 1 (Strict concordance relations)
Consider a set Y ⊆ X1 × X2 × · · · × Xn of alternatives evaluated on a set
N = {1, 2, . . . , n} of attributes. A binary relation P on Y is said to be a
strict concordance relation if there are:

• an asymmetric binary relation ¤ between disjoint subsets of N that is
monotonic and,

• an asymmetric binary relation Pi on each Xi (i = 1, 2, . . . , n),

such that, for all x, y ∈ Y :

xPy ⇔ P (x, y) ¤ P (y, x), (3)

where P (x, y) = {i ∈ N : xiPiyi}.
It should be clear that any binary relation built using (1) is a strict concor-
dance relation.

The above definition does only require the asymmetry of the relations Pi.
Although this it is at variance with what is done in most outranking methods
(Pi generally being strict semiorders), this additional generality will prove to
have little impact in what follows. We defer to section 5 the discussion of a
possible introduction of discordance in our analysis.

We already noticed with tactic that P may be a strict concordance re-
lation without being transitive or without circuit. This does not imply that,
for a given number of attributes and a given set of alternatives, any asym-
metric relation is a strict concordance relation. The purpose of this paper is
to provide a characterization of such relations when the set of alternatives is
rich, i.e. when Y = X = X1 ×X2 × · · · ×Xn ([Bou96] studies the, simpler,
case in which the number of attributes is not fixed).

3 A general framework for

nontransitive conjoint measurement

In the rest of this paper, we always consider a set X =
∏n

i=1 Xi with
n ≥ 2; elements of X will be interpreted as alternatives evaluated on a set
N = {1, 2, . . . , n} of attributes. Unless otherwise stated, in order to avoid
unnecessary complications, we suppose throughout that X is finite. When
J ⊆ N , we denote by XJ (resp. X−J) the set

∏
i∈J Xi (resp.

∏
i/∈J Xi). With
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customary abuse of notation, (xJ , y−J) will denote the element w ∈ X such
that wi = xi if i ∈ J and wi = yi otherwise (when J = {i} we simply write
X−i and (xi, y−i)).

Let Â be a binary relation on X interpreted as “strict preference”. The
absence of strict preference is denoted by ∼ (i.e. x ∼ y ⇔ Not[x Â y] and
Not[y Â x]) and we define % on X letting x % y ⇔ [x Â y or x ∼ y]. We
define the following binary relations on XJ with J ⊆ N :

xJ ÂJ yJ iff (xJ , z−J) Â (yJ , z−J), for all z−J ∈ X−J ,

xJ Â◦J yJ iff (xJ , z−J) Â (yJ , z−J), for some z−J ∈ X−J ,

where xJ , yJ ∈ XJ (when J = {i} we write Âi instead of Â{i}).
If, for all xJ , yJ ∈ XJ , xJ Â◦J yJ implies xJ ÂJ yJ , we say that Â is

independent for J . If Â is independent for all nonempty subsets of attributes
we say that Â is independent. It is not difficult to see that a binary relation
is independent if and only if it is independent for N \ {i}, for all i ∈ N , see
e.g. [Wak89].

We say that attribute i ∈ N is influent (for Â) if there are xi, yi, zi, wi ∈
Xi and x−i, y−i ∈ X−i such that (xi, x−i) Â (yi, y−i) and Not[(zi, x−i) Â
(wi, y−i)] and degenerate otherwise. It is clear that a degenerate attribute
has no influence whatsoever on the comparison of the elements of X and may
be suppressed from N .

We say that attribute i ∈ N is essential (for Â) if Âi is not empty. It
should be clear that any essential attribute is influent. The converse does not
hold however. It will not be supposed here that all attributes are essential.

We envisage in this section relations Â that can be represented as:

x Â y ⇔ F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) > 0 (M)

where pi are real-valued functions on X2
i that are skew symmetric (i.e. such

that pi(xi, yi) = −pi(yi, xi), for all xi, yi ∈ Xi) and F is a real-valued function
on

∏n
i=1 pi(X

2
i ) being nondecreasing in all its arguments and odd (i.e. such

that F (x) = −F (−x), abusing notations in an obvious way). We summarize
some useful properties of model (M) in the following:

Proposition 1 If Â satisfies model (M) then:

i. Â is asymmetric and independent,
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ii. [xi Âi yi for all i ∈ J ⊆ N ] ⇒ [xJ ÂJ yJ ].

Proof of proposition 1
i . The asymmetry of Â follows from the skew symmetry of all pi and the

oddness of F . Since pi(xi, xi) = 0, the independence of Â follows.
ii . Observe that xi Âi yi is equivalent to F (pi(xi, yi), 0) > 0 (using

obvious notations). Since F (0) = 0, the nondecreasingness of F leads to
pi(xi, yi) > 0. The desired property easily follows using the nondecreasingness
of F . 2

Two conditions, inspired by [BP00], will prove useful for the analysis of
model (M). Let Â be a binary relation on a set X =

∏n
i=1 Xi. This relation

is said to satisfy:

ARC1i if

(xi, a−i) Â (yi, b−i)
and

(zi, c−i) Â (wi, d−i)



 ⇒





(xi, c−i) Â (yi, d−i)
or
(zi, a−i) Â (wi, b−i),

ARC2i if

(xi, a−i) Â (yi, b−i)
and

(yi, c−i) Â (xi, d−i)



 ⇒





(zi, a−i) Â (wi, b−i)
or
(wi, c−i) Â (zi, d−i),

for all xi, yi, zi, wi ∈ Xi and all a−i, b−i, c−i, d−i ∈ X−i. We say that Â satisfies
ARC1 (resp. ARC2) if it satisfies ARC1i (resp. ARC2i) for all i ∈ N .

Condition ARC1i (Asymmetric inteR-attribute Cancellation) suggests
that Â induces on X2

i a relation that compares “preference differences” in
a well-behaved way: if (xi, yi) is a larger preference difference than (zi, wi)
and (zi, c−i) Â (wi, d−i) then we should have (xi, c−i) Â (yi, d−i) and vice
versa. The idea that the comparison of preference differences is central
to the analysis of conjoint measurement models was powerfully stressed by
[Wak88, Wak89].

Condition ARC2i suggests that the preference difference (xi, yi) is linked
to the “opposite” preference difference (yi, xi). It says that if the prefer-
ence difference between zi and wi is not larger than the preference difference
between xi and yi then the preference difference between wi and zi should

7



be larger than the preference difference between yi and xi. Taking xi = yi,
zi = wi, a−i = c−i and b−i = d−i shows that ARC2i implies that Â is
independent for N \ {i} and, hence, independent.

The following lemma shows that these two conditions are independent
and necessary for model (M).

Lemma 1

i. Model (M) implies ARC1 and ARC2,

ii. In the class of asymmetric relations, ARC1 and ARC2 are independent
conditions.

Proof of lemma 1
i . Suppose that (xi, a−i) Â (yi, b−i) and (zi, c−i) Â (wi, d−i). Using model

(M) we have:
F (pi(xi, yi), (pj(aj, bj))j 6=i) > 0

and
F (pi(zi, wi), (pj(cj, dj))j 6=i) > 0

abusing notations in an obvious way.
If pi(xi, yi) ≥ pi(zi, wi) then using the nondecreasingness of F , we have

F (pi(xi, yi), (pj(cj, dj))j 6=i) > 0 so that (xi, c−i) Â (yi, d−i). If pi(zi, wi) >
pi(xi, yi) we have F (pi(zi, wi), (pj(aj, bj))j 6=i) > 0 so that (zi, a−i) Â (wi, b−i).
Hence ARC1 holds.

Similarly, suppose that (xi, a−i) Â (yi, b−i) and (yi, c−i) Â (xi, d−i). We
thus have:

F (pi(xi, yi), (pj(aj, bj))j 6=i) > 0

and
F (pi(yi, xi), (pj(cj, dj))j 6=i) > 0.

If pi(xi, yi) ≥ pi(zi, wi), the skew symmetry of pi implies pi(wi, zi) ≥ pi(yi, xi).
Using the nondecreasingness of F we have F (pi(wi, zi), (pj(cj, dj))j 6=i) > 0 so
that (wi, c−i) Â (zi, d−i). Similarly, if pi(zi, wi) > pi(xi, yi) we have, using the
nondecreasingness of F , F (pi(zi, wi), (pj(aj, bj))j 6=i) > 0 so that (zi, a−i) Â
(wi, b−i). Hence ARC2 holds.

ii . It is easy to build asymmetric relations violating ARC1 and ARC2.
Using theorem 1 below, it is clear that there are asymmetric relations satis-
fying both ARC1 and ARC2. We provide here the remaining two examples.
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1. Let X = {a, b, c} × {x, y, z} and let Â on X be empty except that
(a, x) Â (b, y) and (a, x) Â (c, z). Relation Â is asymmetric. Since
Not[(a, x) Â (b, z)] and Not[(a, x) Â (c, y)], Â violates ARC1. Condi-
tion ARC2 is trivially satisfied.

2. Let X = {a, b} × {x, y} and Â on X be empty except that (a, x) Â
(a, y). It is clear that Â is asymmetric but not independent, so that
ARC2 is violated. Condition ARC1 is trivially satisfied. 2

In order to interpret conditions ARC1 and ARC2 in terms of preference
differences, we define the binary relations %∗

i and %∗∗
i on X2

i letting, for all
xi, yi, zi, wi ∈ Xi,

(xi, yi) %∗
i (zi, wi) ⇔

[for all a−i, b−i ∈ X−i, (zi, a−i) Â (wi, b−i) ⇒ (xi, a−i) Â (yi, b−i)]

and

(xi, yi) %∗∗
i (zi, wi) ⇔ [(xi, yi) %∗

i (zi, wi) and (wi, zi) %∗
i (yi, xi)].

It is easy to see that %∗
i (and, hence, %∗∗

i ) is transitive by construction
and that the symmetric parts of these relations (∼∗i and ∼∗∗i ) are equivalence
relations (the hypothesis that attribute i ∈ N is influent meaning that ∼∗i
has at least two distinct equivalence classes). Observe that, by construction,
%∗∗

i is reversible, i.e. (xi, yi) %∗∗
i (zi, wi) ⇔ (wi, zi) %∗∗

i (yi, xi).
The consequences of ARC1i and ARC2i on relations %∗

i and %∗∗
i are

noted in the following lemma; we omit its straightforward proof.

Lemma 2

i. ARC1i ⇔ [%∗
i is complete],

ii. ARC2i ⇔
[for all xi, yi, zi, wi ∈ Xi, Not[(xi, yi) %∗

i (zi, wi)] ⇒ (yi, xi) %∗
i (wi, zi)],

iii. [ARC1i and ARC2i] ⇔ [%∗∗
i is complete].

For the sake of easy reference, we note a few useful connections between
%∗

i , %∗∗
i and Â in the following lemma.
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Lemma 3 For all x, y ∈ X and all zi, wi ∈ Xi,

i. [x Â y and (zi, wi) %∗
i (xi, yi)] ⇒ (zi, x−i) Â (wi, y−i),

ii. [(zi, wi) ∼∗i (xi, yi) for all i ∈ N ] ⇒ [x Â y ⇔ z Â w]

iii. [x % y and (zi, wi) %∗∗
i (xi, yi) ⇒ (zi, x−i) % (wi, y−i)]

iv. [(zi, wi) ∼∗∗i (xi, yi) for all i ∈ N ] ⇒ [x Â y ⇔ z Â w] and [y Â x ⇔
w Â z].

Proof of lemma 3
i . is obvious from the definition of %∗

i and ii . is immediate from i .

iii . Suppose that x ∼ y, (zi, wi) %∗∗
i (xi, yi) and (wi, y−i) Â (zi, x−i).

By hypothesis, we have Not[(yi, y−i) Â (xi, x−i)]. Since (wi, y−i) Â (zi, x−i),
this implies Not[(yi, xi) %∗

i (wi, zi)]. Since ARC1 and ARC2 hold, we know
that %∗∗

i is complete so that (wi, zi) Â∗∗i (yi, xi), a contradiction. Part iv . is
immediate from ii . and iii . 2

For finite or countably infinite sets X conditions ARC1, ARC2 combined
with asymmetry allow to characterize model (M). We have:

Theorem 1 Let Â be a binary relation on a finite or countably infinite set
X =

∏n
i=1 Xi. Then Â satisfies model (M) iff it is asymmetric and satisfies

ARC1 and ARC2.

Proof of theorem 1
Necessity results from lemma 1 and proposition 1. We establish sufficiency

below.
Since ARC1i and ARC2i hold, we know from lemma 2 that %∗∗

i is com-
plete so that it is a weak order. This implies that %∗

i is a weak order
and, since X is finite or countably infinite, there is a real-valued func-
tion qi on X2

i such that, for all xi, yi, zi, wi ∈ Xi, (xi, yi) %∗
i (zi, wi) ⇔

qi(xi, yi) ≥ qi(zi, wi). Given a particular numerical representation qi of %∗
i ,

let pi(xi, yi) = qi(xi, yi) − qi(yi, xi). It is obvious that pi is skew symmetric
and represents %∗∗

i .
Define F as follows:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) =



f(g(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))) if x Â y,
0 if x ∼ y,
−f(−g(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))) otherwise,
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where g is any function from Rn to R increasing in all its arguments and odd
(e.g. Σ) and f is any increasing function from R into (0, +∞) (e.g. exp(·) or
arctan(·) + π

2
).

The well-definedness of F follows from part iv . of lemma 3 and the defi-
nition of the pi’s. It is odd by construction.

To show that F is nondecreasing, suppose that pi(zi, wi) > pi(xi, yi), i.e.
that (zi, wi) Â∗∗i (xi, yi). If x Â y, we know from part i . of lemma 3 that
(zi, x−i) Â (wi, y−i) and the conclusion follows from the definition of F . If
x ∼ y, we know from part iii . of lemma 3 that Not[(wi, y−i) Â (zi, x−i)]
and the conclusion follows from the definition of F . If y Â x we have either
(wi, y−i) Â (zi, x−i) or (zi, x−i) % (wi, y−i). In either case, the conclusion
follows from the definition of F . 2

Following [BP00], it is not difficult to extend this result to sets of arbi-
trary cardinality adding a, necessary, condition implying that the weak or-
ders %∗∗

i have a numerical representation. It should be observed that model
(M) seems sufficiently general to contain as particular cases most conjoint
measurement models including: additive utilities [KLST71, Wak89], additive
differences [Tve69, Fis92] and additive nontransitive models [Bou86, Fis90b,
Fis90a, Fis91, Vin91]. We show in the next section that it also contains strict
concordance relations.

It should be observed that in model (M), the function pi does not neces-
sarily represent %∗∗

i . It is however easy to see that we always have:

(xi, yi) Â∗∗i (zi, wi) ⇒ pi(xi, yi) > pi(zi, wi). (4)

Hence |pi(X
2
i )| is an upper bound for the number of equivalence classes of

%∗∗
i .

4 A characterization of

strict concordance relations

Our main result in this section says that all strict concordance relations
(definition 1) can be represented in model (M) with relations %∗∗

i having at
most three equivalence classes and vice versa.

Theorem 2 The following are equivalent:
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i. Â has a representation in model (M) with all relations %∗∗
i having at

most three distinct equivalence classes,

ii. Â is a strict concordance relation.

Proof of theorem 2
ii ⇒ i . Given equation (4), the claim will be proven if we build a rep-

resentation of Â in model (M) with functions pi taking only three distinct
values. Define pi as:

pi(xi, yi) =





1 if xiPiyi,
0 if xiIiyi,
−1 if yiPixi.

Since Pi is asymmetric, the function pi is well-defined and skew-symmetric.
Define F letting:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) =





1 if x Â y,
−1 if y Â x,
0 otherwise.

Since, by hypothesis, [P (x, y) = P (z, w) and P (y, x) = P (w, z)] ⇒ [x Â
y ⇔ z Â w], it is easy to see that F is well-defined. It is clearly odd. The
monotonicity of ¤ implies that F is nondecreasing in all its arguments.

i ⇒ ii . Define Pi letting, for all xi, yi ∈ Xi, xiPiyi ⇔ (xi, yi) Â∗∗i (yi, yi).
Suppose that xiPiyi and yiPixi so that (xi, yi) Â∗∗i (yi, yi) and (yi, xi) Â∗∗i

(xi, xi). SinceÂ is independent, we have (yi, yi) ∼∗∗i (xi, xi) so that (yi, xi) Â∗∗i
(yi, yi). The reversibility of %∗∗

i leads to (yi, yi) Â∗∗i (xi, yi), a contradiction.
Hence, Pi is asymmetric.

Two cases arise:

• If attribute i ∈ N is degenerate then Â∗i = ∅. Hence %∗∗
i has only

equivalence class and Pi is empty. We clearly have [xiIiyi and ziIiwi]
⇒ (xi, yi) ∼∗∗i (zi, wi).

• If attribute i ∈ N is influent, we claim that Pi is non empty and that %∗∗
i

has exactly three equivalence class. Indeed, %∗
i being complete, there

are zi, wi,xi, yi ∈ Xi such that (xi, yi) Â∗i (zi, wi). Since %∗∗
i is complete,

this implies (xi, yi) Â∗∗i (zi, wi). If (xi, yi) Â∗∗i (yi, yi) then xiPiyi. If
not, then (yi, yi) %∗∗

i (xi, yi) and º∗∗i being a weak order, we obtain
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(yi, yi) Â∗∗i (zi, wi). Using the definition of %∗∗
i , this clearly implies

(wi, zi) Â∗∗i (yi, yi). Since Â is independent, we have (yi, yi) ∼∗∗i (zi, zi).
Thus (wi, zi) Â∗∗i (zi, zi) so that wiPizi. Therefore Pi is not empty.

Since %∗∗
i has at most three distinct equivalence classes and xiPiyi ⇔

(xi, yi) Â∗∗i (yi, yi) ⇔ (yi, yi) Â∗∗i (yi, xi), we conclude that %∗∗
i has

exactly three distinct equivalence classes. Therefore, xiPiyi implies
that (xi, yi) belongs to the first equivalence class of %∗∗

i . This implies
[xiPiyi and ziPiwi] ⇒ (xi, yi) ∼∗∗i (zi, wi). Similarly, it is easy to prove
that [xiIiyi and ziIiwi] ⇒ (xi, yi) ∼∗∗i (zi, wi).

Therefore, [P (x, y) = P (z, w) and P (y, x) = P (w, z)] implies [(zi, wi) ∼∗∗i
(xi, yi), for all i ∈ N ]. From part iv . of lemma 3 we obtain:

[P (x, y) = P (z, w) and P (y, x) = P (w, z)] ⇒ [x Â y ⇔ z Â w]. (5)

Using the nondecreasingness of F it is easy to prove that:

[P (x, y) ⊆ P (z, w) and P (y, x) ⊇ P (w, z)] ⇒ [x Â y ⇒ z Â w]. (6)

Consider any two disjoint subsets A,B ⊂ N and let:

A ¤ B ⇔
[x Â y, for some x, y ∈ X such that P (x, y) = A and P (y, x) = B]

Equations (5) and (6) show that ¤ is asymmetric and monotonic. In view
of (5), it is clear that:

x Â y ⇔ P (x, y) ¤ P (y, x) 2

The binary relation Â is said to be coarse on attribute i ∈ N (Ci) if,

(xi, yi) Â∗i (yi, yi)
or

(yi, yi) Â∗i (yi, xi)



 ⇒





Not[(zi, wi) Â∗i (xi, yi)]
and
Not[(yi, xi) Â∗i (wi, zi)]

for all xi, yi, zi, wi ∈ Xi.
Intuitively, a relation is coarse on attribute i ∈ N if as soon as a given

preference difference is larger than a null preference difference then it cannot
be beaten and its “opposite” cannot beat any preference difference. Similarly,
if a preference difference is smaller than a null preference difference, then it
cannot beat any preference difference and its “opposite” cannot be beaten.
It is not difficult to find relations Â satisfying Ci but not Cj for j 6= i. We
say that Â is coarse (C) if it is coarse on all i ∈ N .
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Proposition 2 We have:

i. C, ARC1 and ARC2 are independent conditions,

ii. if Â satisfies ARC1 and ARC2 then [C holds] ⇔ [%∗∗
i has at most three

equivalence classes, for all i ∈ N ].

Proof of proposition 2
i . Using a nontrivial additive utility model, it is easy to build examples

of relations satisfying ARC1 and ARC2 and violating C. The two examples
used in the proof of part ii . of lemma 1 show that there are asymmetric
relations Â satisfying C and ARC1 (resp. ARC2) but violating ARC2 (resp.
ARC1).

ii . Suppose that ARC1 and ARC2 hold. Let us show that [%∗∗
i has

at most three equivalence classes, for all i ∈ N ] ⇒ C. Suppose that C
is violated with (xi, yi) Â∗i (yi, yi). We have either (zi, wi) Â∗i (xi, yi) or
(yi, xi) Â∗i (wi, zi), for some zi, wi ∈ Xi. Since Â∗i ⊆ Â∗∗i and %∗∗

i is a
reversible weak order, it is easy to see that either case implies that %∗∗

i has
at least five equivalence classes. The case (yi, yi) Â∗i (yi, xi) is similar.

Let us now show that C ⇒ [%∗∗
i has at most three equivalence classes,

for all i ∈ N ]. Suppose that (xi, yi) Â∗∗i (yi, yi) so that either (xi, yi) Â∗i
(yi, yi) or (yi, yi) Â∗i (yi, xi). In either case, C implies, for all zi, wi ∈ Xi,
(xi, yi) %∗

i (zi, wi) and (wi, zi) %∗
i (yi, xi) so that (xi, yi) %∗∗

i (zi, wi). There-
fore if (xi, yi) Â∗∗i (yi, yi) then (xi, yi) %∗∗

i (zi, wi) for all zi, wi ∈ Xi. Similarly,
it is easy to prove that (yi, yi) Â∗∗i (xi, yi) implies (zi, wi) %∗∗

i (xi, yi) for all
zi, wi ∈ Xi. This implies that %∗∗

i has at most three equivalence classes. 2

Combining theorem 2 with proposition 2 therefore leads to a characteri-
zation of strict concordance relations. We have:

Theorem 3 Let Â be a binary relation on a finite set X =
∏n

i=1 Xi. The
following are equivalent:

i. Â is asymmetric and satisfies ARC1, ARC2 and C,

ii. Â is a strict concordance relation.

It is interesting to observe that this characterization uses two conditions
(ARC1 and ARC2) that are far from being specific to concordance methods.
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In fact, as shown in [BP00], these conditions can be considered as the build-
ing blocks of most conjoint measurement models. The specificity of strict
concordance relations lies in condition C which imposes that only a very
rough differentiation of preference differences is possible on each attribute.
Clearly, C should not be viewed as a condition with normative content. In
line with [BPP+93], it is simply used here as a means to point out the speci-
ficities of strict concordance relations. It is easy, but not very informative,
to reformulate C in terms of Â. We leave to the reader the easy proof of the
following:

Proposition 3 If Â satisfies ARC1 and ARC2 then C holds if and only if,
for all i ∈ N , all xi, yi ∈ Xi, all x−i, y−i ∈ X−i and all z, w ∈ X,

(xi, x−i) Â (yi, y−i) and Not[(yi, x−i) Â (yi, y−i)]
or

Not[(yi, x−i) Â (xi, y−i)] and (yi, x−i) Â (yi, y−i)



 ⇒





z Â w ⇒ (xi, z−i) Â (yi, w−i)
and

(yi, w−i) Â (xi, z−i) ⇒ w Â z

5 Discussion and remarks

5.1 Strict concordance relations and
noncompensatory preferences

It has long been thought [Bou86, BV86] that the notion of noncompensatory
preferences, as defined in [Fis76], provided the adequate framework for the
characterization of strict concordance relations. We think that the framework
provided by model (M) is more general and adequate for doing so.

P.C. Fishburn’s definition of noncompensatory preferences [Fis76] starts
with an asymmetric binary relation Â on X =

∏n
i=1 Xi. Let Â (x, y) = {i :

xi Âi yi} and ∼ (x, y) = {i : xi ∼i yi}. It is clear that, for all x, y ∈ X,
Â (x, y) ∩ Â (y, x) = ∅, ∼ (x, y) = ∼ (y, x) and Â (x, y) ∩ ∼ (x, y) = ∅.
Note that, in general, it is not true that Â (x, y) ∪ ∼ (x, y) ∪ Â (y, x) = N
since the relations %i might be incomplete.
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Definition 2 ([Fis76])
The binary relation Â is said to be noncompensatory (in the asymmetric
sense) if:

Â(x, y) = Â(z, w)
Â(y, x) = Â(w, z)

}
⇒ [x Â y ⇔ z Â w] , (NC)

for all x, y, z, w ∈ X.

Hence, when Â is noncompensatory, the preference between x and y only
depends on the subsets of attributes favoring x or y. It does not depend on
preference differences between the various levels on each attribute besides the
distinction between “positive”, “negative” and “neutral” attributes. Some
useful properties of noncompensatory preferences are summarized in the fol-
lowing:

Proposition 4 If an asymmetric relation Â is noncompensatory, then:

i. Â is independent,

ii. xi ∼i yi for all i ∈ N ⇒ x ∼ y,

iii. xj Âj yj for some j ∈ N and xi ∼i yi for all i ∈ N \ {j} ⇒ x Â y,

iv. all influent attributes are essential.

Proof of proposition 4
i . Since ∼i is reflexive by construction, the definition of noncompensation

implies that Â is independent for N \ {i}. Hence, Â is independent.

ii . Suppose that xi ∼i yi for all i ∈ N and x Â y. Since Â is noncom-
pensatory and ∼i is reflexive, this would lead to x Â x, contradicting the
asymmetry of Â.

iii . By definition, x Âi y ⇔ [(xi, z−i) Â (yi, z−i) for all z−i ∈ X−i].
Since ∼i is reflexive, the desired conclusion follows from the definition of
noncompensation.

iv . Attribute i ∈ N being influent, there are xi, yi,zi, wi ∈ Xi and x−i, y−i

∈ X−i such that (xi, x−i) Â (yi, y−i) and Not[(zi, x−i) Â (wi, y−i)]. In view of
NC, it is impossible that xi ∼i yi and zi ∼i wi. Hence attribute i is essential.

2
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It is not difficult to see that there are strict concordance relations violat-
ing all conditions in proposition 4 except independence. Examples of such
situations are easily built using a strict concordance relation defined by:

xPy ⇔
∑

i∈P (x,y)

wi >
∑

j∈P (y,x)

wj + ε (7)

where ε > 0, wi > 0 for all i ∈ N . Letting wj < ε on some attributes easily
leads to the desired conclusions (e.g. an attribute such that wj < ε is not
essential but may well be influent).

Hence basing the analysis of concordance relations on condition NC leads
to a somewhat narrow view of concordance relations. Noncompensation im-
plies that all influent attributes are essential, whereas this is not the case for
strict concordance relations.

When Â is noncompensatory, it is entirely defined by the partial pref-
erence relations on each attribute and an asymmetric importance relation
between disjoint subsets of attributes. We formalize this idea below using a
strengthening of NC including an idea of monotonicity (see also [FPng]).

Definition 3
The binary relation Â is said to be monotonically noncompensatory (in the
asymmetric sense) if:

Â(x, y) ⊆ Â(z, w)
Â(y, x) ⊇ Â(w, z)

}
⇒ [x Â y ⇒ z Â w] , (MNC)

for all x, y, z, w ∈ X.

It is clear that MNC ⇒ NC. We have:

Proposition 5 The following are equivalent:

i. Â is a strict concordance relation in which all attributes are essential,

ii. Â is an asymmetric binary relation satisfying MNC.

Proof of proposition 5
i . ⇒ ii . Since each attribute is essential, it is easy to see that {i}¤ ∅ so

that Pi = Âi. The conclusion therefore follows.
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ii . ⇒ i . Letting Pi = Âi and defining ¤ by:

[A ¤ B] ⇔
[x Â y, for some x, y ∈ X such that Â (x, y) = A and Â (y, x) = B].

easily leads to the desired conclusion. 2

Therefore, all asymmetric relations satisfying MNC are strict concordance
relations and the converse is true as soon as all attributes are supposed
to be essential. In our nontransitive setting, assuming that all attributes
are essential is far from being an innocuous hypothesis. It implies that the
relations Pi used to show that Â is a strict concordance relation must coincide
with the relations Âi deduced from Â by independence. Equation (7) shows
that this is indeed restrictive.

Therefore, it seems that the use of NC or MNC for the analysis of strict
concordance relations:

i. leads to a somewhat narrow view of strict concordance relations ex-
cluding all relations in which attributes may be influent without being
essential,

ii. does not allow to point out the specific features of strict concordance
relations within a general framework of conjoint measurement (condi-
tions NC and MNC are indeed quite different from the classical can-
cellation conditions used in most conjoint measurement models, and
most importantly, the additive utility model [KLST71, Deb60, Fis70,
Wak89]),

iii. amounts to using very strong conditions (see the simple proof of propo-
sition 5).

5.2 Transitivity of partial preferences

Our definition of strict concordance relations (3) does not require the rela-
tions Pi to possess any remarkable property besides asymmetry. This is at
variance with what is done in most outranking methods which use relations
Pi being strict semiorders. It might be thought that this additional condition
might lead to an improved characterization of strict concordance relations.
However, it is shown in [BP01] that the various conditions that can be used
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to decompose the functions pi in model (M) so as to consider preference dif-
ferences which are governed by an underlying weak order (as in the case of
semiorders) are independent from ARC1 and ARC2. These additional con-
ditions are furthermore independent from C. Therefore there is little hope
to arrive at a more powerful characterization adding the hypothesis that Pi

are strict semiorders.

5.3 Transitivity of concordance relations and Arrow’s
theorem

One advantage of the use of conditions NC and MNC is that they allow to
clearly understand the conditions under which Â may possess “nice transi-
tivity properties”. This is not surprising since NC (resp. MNC) is very much
like a “single profile” analogue of Arrow’s Independence of Irrelevant Alter-
natives [Arr63] (resp. the NIM condition used in [Sen86]). Therefore, as soon
as the structure of X is sufficiently rich, imposing nice transitivity proper-
ties on a noncompensatory relation Â leads to a very uneven distribution of
“power” between the various attributes [Fis76, Bou92].

It is not difficult to see that similar results hold with strict concordance
relations. We briefly present below one such result as an example, extending
to our case a single profile result due to [Wey83]. Other results in [Fis76,
Bou92, PF99] can be reformulated in a similar way.

Proposition 6 Let Â be a nonempty strict concordance relation on a finite
set X =

∏n
i=1 Xi. Suppose that Â has been obtained using, on each i ∈ N ,

a relation Pi for which there are ai, bi, ci ∈ Xi such that aiPibi, biPici and
aiPici. Then, if Â is transitive, it has an oligarchy, i.e. there is a unique
nonempty O ⊆ N such that, for all x, y ∈ X:

• xiPiyi for all i ∈ O ⇒ x Â y,

• xiPiyi for some i ∈ O ⇒ Not[y Â x].

Proof of proposition 6
We say that a nonempty set J ⊆ N is:

• decisive if, for all x, y ∈ X, [xiPiyi for all i ∈ J ] ⇒ x Â y,

• semi-decisive if, for all x, y ∈ X, [xiPiyi for all i ∈ J ] ⇒ Not[y Â x],
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Hence, an oligarchy O is a decisive set such that all {i} ⊆ O are semi-decisive.
Since Â is a strict concordance relation, it is easy to prove that:

[P (x, y) = J, P (y, x) = N \ J and x Â y, for some x, y ∈ X]

⇒ J is decisive,

and

[P (x, y) = J, P (y, x) = N \ J and Not[y Â x], for some x, y ∈ X]

⇒ J is semi-decisive.

Since Â is nonempty, we have, for all x, y ∈ X:

xiPiyi for all i ∈ N ⇒ x Â y,

so that N is decisive.
Since N is finite, there exists (at least) one decisive set of minimal car-

dinality. Let J be one of them. We have [xiPiyi for all i ∈ J ] ⇒ x Â y. If
|J | = 1, then the conclusion follows. If not, consider i ∈ J and use the ele-
ments ai, bi, ci ∈ Xi such that aiPibi, biPici and aiPici to build the following
alternatives in X:

{i} J \ {i} N \ J
a ci aj b`

b ai bj c`

c bi cj a`

J being decisive, we have b Â c. If a Â c, then J \ {i} is decisive,
violating the fact that J is a decisive set of minimal cardinality. We thus
have Not[a Â c] and the transitivity of Â leads to Not[a Â b]. This shows
that {i} is semi-decisive. Therefore all singletons in J are semi-decisive.

The proof is completed observing that J is necessarily unique. In fact
suppose that there are two sets J and J ′ with J 6= J ′ satisfying the desired
conclusion. We use the elements ai, bi ∈ Xi such that aiPibi to build the
following alternatives in X:

J J ′ \ J N \ [J ∪ J ′]
d aj bk a`

e bj ak a`

We have, by construction, e Â d and Not[e Â d], a contradiction. 2
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5.4 A possible definition of the degree of compensation
of a binary relation

Within the general framework of model (M), our results show that rela-
tions %∗∗

i seem central to understand the possibility of trade-offs between
attributes.

We therefore tentatively suggest that the “degree of compensation” of
an asymmetric binary relation Â on a finite set X = X1 × X2 × · · · × Xn

satisfying ARC1 and ARC2 should be linked to the number c∗∗i of distinct
equivalence classes of %∗∗

i on each attribute. We have c∗∗i ≤ 3, for all i ∈ N
if and only if Â is a strict concordance relation (see theorem 2). Letting
|Xi| = ni, c∗∗i can be as large as ni × (ni − 1) + 1 when Â is representable in
an additive utility model or an additive difference model.

A reasonable way of obtaining an overall measure of the degree of com-
pensation of Â consists in taking:

c∗∗ = max
i=1,2,...,n

c∗∗i .

This leads to c∗∗ ≤ 3 iff Â is a strict concordance relation.
An aggregation technique can produce a whole set of binary relations on

a finite set X = X1 × X2 × · · · × Xn depending on the choice of various
parameters. We suggest to measure the degree of compensation of an aggre-
gation technique (always producing asymmetric binary relations satisfying
ARC1 and ARC2) as the maximum value of c∗∗ taken over the set of binary
relations on X that can be obtained with this technique.

Since an additive utility model can be used to represent lexicographic
preferences on finite sets, the choice of the operator “max” should be no
surprise: using “min” would have led to a similar measure for methods based
on concordance and methods using additive utilities and it is difficult to
conceive an “averaging” operator that would be satisfactory. Using such
a definition, aggregation methods based on concordance have the minimal
possible measure (i.e., 3), whereas the additive utility model has a much
higher value (the precise value depends on ni and n). It should finally be
noted that our proposals are at variance with [Roy96a] who uses a more
topological approach to the idea of compensation.

The validation of our proposals and their extension to sets of arbitrary
cardinality clearly call for future research.
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5.5 Discordance

An immediate generalization of definition 1 is the following:

Definition 4 (Strict concordance-discordance relations)
A binary relation P on X is said to be a strict concordance-discordance
relation if there are:

• an asymmetric binary relation ¤ between disjoint subsets of N that is
monotonic and,

• asymmetric binary relations Pi and Vi such that Vi ⊆ Pi on each Xi

(i = 1, 2, . . . , n),

such that, for all x, y ∈ Y :

xPy ⇔ [P (x, y) ¤ P (y, x) and (Not[yjVjxj], for all j ∈ P (y, x))], (8)

where P (x, y) = {i ∈ N : xiPiyi}.
The only attempt at a characterization of discordance effects in outrank-

ing methods we are aware of is [BV86]. It is based on an extension of NC
allowing to have x Â y and Not[z Â w] when Â (x, y) = Â (z, w) and
Â (y, x) = Â (w, z). This analysis, based on NC, is therefore subject to
the criticisms made in section 5.1 (let us also mention that such an analysis
cannot be easily extended to outranking methods producing binary relations
that are not necessarily asymmetric, e.g. electre i; in that case, discor-
dance effects may well create situations in which x Â y and w Â z while
P (x, y) = P (z, w) and P (y, x) = P (w, z), through destroying what would
have otherwise been indifference situations x ∼ y and z ∼ w). Furthermore,
the above-mentioned extension of NC is far from capturing the essence of
discordance effects, i.e. the fact that they occur attribute by attribute, leav-
ing no room for possible interactions between negative preference differences.
The prevention of such interactions has led to the introduction of rather ad
hoc axioms in [BV86].

It is not difficult to see that strict concordance-discordance relations al-
ways satisfy ARC1 and ARC2 with relations %∗∗

i having at most 5 distinct
equivalence classes (compared to strict concordance relations, the two new
classes correspond to “very large” positive and negative preference differ-
ences). However, model (M) is clearly not well adapted to prevent the pos-
sibility of interactions between very large negative preference differences, as
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is the case for discordance effects. Simple examples show that if the class of
relations Â satisfying ARC1 and ARC2 with relations %∗∗

i having at most
5 equivalence classes contains all strict concordance-discordance relations, it
contains many more relations. This clearly calls for future research. We
nevertheless summarize our observations in the following:

Proposition 7

i. If Â is a strict concordance-discordance relation then Â satisfies model
(M) with all relations %∗∗

i having at most 5 distinct equivalence classes.

ii. There are relations % satisfying model (M) with all relations %∗∗
i hav-

ing at most 5 equivalence classes which are not strict concordance-
discordance relations.

Proof of proposition 7
i . Given the properties of model (M), the claim will be proven if we build

a representation of Â in model (M) with functions pi taking only five distinct
values. Define pi as:

pi(xi, yi) =





2 if xiViyi,
1 if xiPiyi and Not[xiViyi],
0 if xiIiyi,
−1 if yiPixi and Not[yiVixi],
−2 if yiVixi.

Since Vi and Pi are asymmetric and Vi ⊆ Pi, the function pi is well-defined
and skew-symmetric.

Define F letting:

F (p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) =





1 if x Â y,
−1 if y Â x,
0 otherwise.

Using the definition of a strict concordance-discordance relation, it is
routine to show that F is well-defined, odd and nondecreasing.

ii . Using an additive utility model, it is easy to build examples of relations
having a representation in model (M) with all relations %∗∗

i having at most
5 equivalence classes which are not strict concordance-discordance relations.

2
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5.6 Discussion

The main contribution of this paper was to propose a characterization of
strict concordance relations within the framework of a general model for
nontransitive conjoint measurement. This characterization allows to show
the common features between various conjoint measurement models and to
isolate the specific feature of strict concordance relations, i.e. the option not
to distinguish a rich preference difference relation on each attribute. It was
shown to be more general than previous ones based on NC or MNC.

Although we restricted our attention to asymmetric relations, it is not
difficult to extend our analysis, using the results in [BP00], to cover the
reflexive case studied in [FPng] in which:

xSy ⇔ [S(x, y) D S(y, x)]

where S is a reflexive binary relation on X, Si is a complete binary relation
on Xi, D is a reflexive binary relation on 2N and S(x, y) = {i ∈ N : xiSiyi}.

Further research on the topics discussed in this paper could involve:

• the extension of our results to cover the case of an homogeneous Carte-
sian product, which includes the important case of decision under un-
certainty. “Ordinal” models for decision under uncertainty (e.g. lift-
ing rules) have been characterized in [PF99] using variants of NC and
MNC. It appears that our analysis can be easily extended to cover that
case, see [BPP00].

• a deeper study of discordance effects within model (M). Such a work
could possibly allow for a characterization of strict concordance-discor-
dance relations in our conjoint measurement framework.

• a study of various variants of model (M) following the approach in
[BP00, BP01].
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1989.

[Vin99] Ph. Vincke. Outranking approach. In T. Gal, T. Stewart, and
T. Hanne, editors, Multicriteria decision making, Advances in
mcdm models, algorithms, theory and applications, pages 11.1–
11.29. Kluwer, 1999.

[Wak88] P.P. Wakker. Derived strength of preference relations on coordi-
nates. Economic Letters, 28:301–306, 1988.

27



[Wak89] P.P. Wakker. Additive representations of preferences – A new
foundation of decision analysis. Kluwer, Dordrecht, 1989.

[Wey83] J.A. Weymark. Arrow’s theorem with quasi-orderings. Public
Choice, 42:235–246, 1983.

28


