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Abstract This paper offers a brief and nontechnical introduction to the use of con-
joint measurement in multiple criteria decision making. The emphasis is
on the, central, additive value function model. We outline its axiomatic
foundations and present various possible assessment techniques to im-
plement it. Some extensions of this model, e.g. nonadditive models or
models tolerating intransitive preferences are then briefly reviewed.
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1. Introduction and motivation

Conjoint measurement is a set of tools and results first developed in Eco-
nomics [44] and Psychology [141] in the beginning of the ‘60s. Its, ambi-

1



2

tious, aim is to provide measurement techniques that would be adapted
to the needs of the Social Sciences in which, most often, multiple dimen-
sions have to be taken into account.

Soon after its development, people working in decision analysis real-
ized that the techniques of conjoint measurement could also be used as
tools to structure preferences [51, 165]. This is the subject of this paper
which offers a brief and nontechnical introduction to conjoint measure-
ment models and their use in multiple criteria decision making. More
detailed treatments may be found in [63, 79, 121, 135, 209]. Advanced
references include [58, 129, 211].

1.1. Conjoint measurement models in decision
theory

The starting point of most works in decision theory is a binary relation
% on a set A of objects. This binary relation is usually interpreted as
an “at least as good as” relation between alternative courses of action
gathered in A.

Manipulating a binary relation can be quite cumbersome as soon as
the set of objects is large. Therefore, it is not surprising that many
works have looked for a numerical representation of the binary relation
%. The most obvious numerical representation amounts to associate a
real number V (a) to each object a ∈ A in such a way that the comparison
between these numbers faithfully reflects the original relation %. This
leads to defining a real-valued function V on A, such that:

a % b⇔ V (a) ≥ V (b), (1.1)

for all a, b ∈ A. When such a numerical representation is possible, one
can use V instead of % and, e.g. apply classical optimization techniques
to find the most preferred elements in A given %. We shall call such a
function V a value function.

It should be clear that not all binary relations % may be represented
by a value function. Condition (1.1) imposes that % is complete (i.e.
a % b or b % a, for all a, b ∈ A) and transitive (i.e. a % b and b % c
imply a % c, for all a, b, c ∈ A). When A is finite or countably infinite,
it is well-known [58, 129] that these two conditions are, in fact, not only
necessary but also sufficient to build a value function satisfying (1.1).

Remark 1
The general case is more complex since (1.1) implies, for instance, that
there must be “enough” real numbers to distinguish objects that have to
be distinguished. The necessary and sufficient conditions for (1.1) can be
found in [58, 129]. An advanced treatment is [13]. Sufficient conditions
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that are well-adapted to cases frequently encountered in Economics can
be found in [42, 45]; see [34] for a synthesis. •

It is vital to note that, when a value function satisfying (1.1) exists, it is
by no means unique. Taking any increasing function φ on R, it is clear
that φ◦V gives another acceptable value function. A moment of reflection
will convince the reader that only such transformations are acceptable
and that if V and U are two real-valued functions on A satisfying (1.1),
they must be related by an increasing transformation. In other words, a
value function in the sense of (1.1) defines an ordinal scale.

Ordinal scales, although useful, do not allow the use of sophisticated
assessment procedures, i.e. of procedures that allow an analyst to assess
the relation % through a structured dialogue with the decision-maker.
This is because the knowledge that V (a) ≥ V (b) is strictly equivalent to
the knowledge of a % b and no inference can be drawn from this assertion
besides the use of transitivity.

It is therefore not surprising that much attention has been devoted
to numerical representations leading to more constrained scales. Many
possible avenues have been explored to do so. Among the most well-
known, let us mention:

the possibility to compare probability distributions on the set A
[58, 207]. If it is required that, not only (1.1) holds but that the
numbers attached to the objects should be such that their expected
values reflect the comparison of probability distributions on the
set of objects, a much more constrained numerical representation
clearly obtains,

the introduction of “preference difference” comparisons of the type:
the difference between a and b is larger than the difference between
c and d, see [44, 81, 123, 129, 159, 180, 199]. If it is required that,
not only (1.1) holds, but that the differences between numbers
also reflect the comparisons of preference differences, a more con-
strained numerical representation obtains.

When objects are evaluated according to several dimensions, i.e. when
% is defined on a product set, new possibilities emerge to obtain numer-
ical representations that would specialize (1.1). The purpose of conjoint
measurement is to study such kinds of models.

There are many situations in decision theory which call for the study
of binary relations defined on product sets. Among them let us mention:

Multiple criteria decision making using a preference relation com-
paring alternatives evaluated on several attributes [16, 121, 162,
173, 209],
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Decision under uncertainty using a preference relation comparing
alternatives evaluated on several states of nature [68, 107, 177, 184,
210, 211],

Consumer theory manipulating preference relations for bundles of
several goods [43],

Intertemporal decision making using a preference relation between
alternatives evaluated at several moments in time [121, 125, 126],

Inequality measurement comparing distributions of wealth across
several individuals [5, 17, 18, 217].

The purpose of this paper is to give an introduction to the main models
of conjoint measurement useful in multiple criteria decision making. The
results and concepts that are presented may however be of interest in all
of the afore-mentioned areas of research.

Remark 2
Restricting ourselves to applications in multiple criteria decision making
will not allow us to cover every aspect of conjoint measurement. Among
the most important topics left aside, let us mention: the introduction of
statistical elements in conjoint measurement models [54, 108] and the
test of conjoint measurement models in experiments [135]. •

Given a binary relation % on a product set X = X1 ×X2 × · · · ×Xn,
the theory of conjoint measurement consists in finding conditions under
which it is possible to build a convenient numerical representation of %
and to study the uniqueness of this representation. The central model
is the additive value function model in which:

x % y ⇔
n
∑

i=1

vi(xi) ≥
n
∑

i=1

vi(yi) (1.2)

where vi are real-valued functions, called partial value functions, on
the sets Xi and it is understood that x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn). Clearly if % has a representation in model (1.2), taking
any common increasing transformation of the vi will not lead to another
representation in model (1.2).

Specializations of this model in the above-mentioned areas give several
central models in decision theory:

The Subjective Expected Utility model, in the case of decision-
making under uncertainty,

The discounted utility model for dynamic decision making,
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Inequality measures à la Atkinson/Sen in the area of social welfare.

The axiomatic analysis of this model is now quite firmly established
[44, 129, 211]; this model forms the basis of many decision analysis tech-
niques [79, 121, 209, 211]. This is studied in sections 3 and 4 after we
introduce our main notation and definitions in section 2.

Remark 3
One possible objection to the study of model (1.2) is that the choice of
an additive model seems arbitrary and restrictive. It should be observed
here that the functions vi will precisely be assessed so that additivity
holds. Furthermore, the use of a simple model may be seen as an advan-
tage in view of the limitations of the cognitive abilities of most human
beings.

It is also useful to notice that this model can be reformulated so as
to make addition disappear. Indeed if there are partial value functions
vi such that (1.2) holds, it is clear that V =

∑n
i=1 vi is a value function

satisfying (1.1). Since V defines an ordinal scale, taking the exponential
of V leads to another valid value function W . Clearly W has now a
multiplicative form:

x % y ⇔W (x) =
n
∏

i=1

wi(xi) ≥W (y) =
n
∏

i=1

wi(yi).

where wi(xi) = evi(xi).
The reader is referred to chapter XXX (Chapter 6, Dyer) for the

study of situations in which V defines a scale that is more constrained
than an ordinal scale, e.g. because it is supposed to reflect preference
differences or because it allows to compute expected utilities. In such
cases, the additive form (1.2) is no more equivalent to the multiplicative
form considered above. •

In section 5 we present a number of extensions of this model going from
nonadditive representations of transitive relations to model tolerating
intransitive indifference and, finally, nonadditive representations of non-
transitive relations.

Remark 4
In this paper, we shall restrict our attention to the case in which alter-
natives may be evaluated on the various attributes without risk or un-
certainty. Excellent overviews of these cases may be found in [121, 209];
recent references include [142, 150]. •

Before starting our study of conjoint measurement oriented towards
MCDM, it is worth recalling that conjoint measurement aims at estab-
lishing measurement models in the Social Sciences. To many, the very
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notion of “measurement in the Social Sciences” may appear contradic-
tory. It may therefore be useful to briefly consider how the notion of
measurement can be modelled in Physics, an area in which the notion
of “measurement” seems to arise quite naturally, and to explain how a
“measurement model” may indeed be useful in order to structure pref-
erences.

1.2. An aside: measuring length

Physicists usually take measurement for granted and are not particularly
concerned with the technical and philosophical issues it raises (at least
when they work within the realm of Newtonian Physics). However, for
a Social Scientist, these question are of utmost importance. It may thus
help to have an idea of how things appear to work in Physics before
tackling more delicate cases.

Suppose that you are on a desert island and that you want to “mea-
sure” the length of a collection of rigid straight rods. Note that we do not
discuss here the “pre-theoretical” intuition that “length” is a property
of these rods that can be measured, as opposed, say, to their softness or
their beauty.

r r′

r Â r′
s s′

s ∼ s′

Figure 1.1. Comparing the length of two rods.

A first simple step in the construction of a measure of length is to place
the two rods side by side in such a way that one of their extremities is
at the same level (see Figure 1.1). Two things may happen: either the
upper extremities of the two rods coincide or not. This seems to be
the simplest way to devise an experimental procedure leading to the
discovery of which rod “has more length” than the other. Technically,
this leads to defining two binary relations Â and ∼ on the set of rods in
the following way:

r Â r′ when the extremity of r is higher than the extremity of r′,

r ∼ r′ when the extremities of r and r′ are at the same level,
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Clearly, if length is a quality of the rods that can be measured, it is
expected that these pairwise comparisons are somehow consistent, e.g.,

if r Â r′ and r′ Â r′′, it should follow that r Â r′′,

if r ∼ r′ and r′ ∼ r′′, it should follow that r ∼ r′′,

if r ∼ r′ and r′ Â r′′, it should follow that r Â r′′.

Although quite obvious, these consistency requirements are stringent.
For instance, the second and the third conditions are likely to be violated
if the experimental procedure involves some imprecision, e.g if two rods
that slightly differ in length are nevertheless judged “equally long”. They
represent a form of idealization of what could be a perfect experimental
procedure.

With the binary relations Â and ∼ at hand, we are still rather far
from a full-blown measure of length. It is nevertheless possible to as-
sign numbers to each of the rods in such a way that the comparison
of these numbers reflects what has been obtained experimentally. When
the consistency requirements mentioned above are satisfied, it is indeed
generally possible to build a real-valued function Φ on the set of rods
that would satisfy:

r Â r′ ⇔ Φ(r) > Φ(r′) and

r ∼ r′ ⇔ Φ(r) = Φ(r′).

If the experiment is costly or difficult to perform, such a numerical as-
signment may indeed be useful because it summarizes, once for all, what
has been obtained in experiments. Clearly there are many possible ways
to assign numbers to rods in this way. Up to this point, they are equally
good for our purposes. The reader will easily check that defining % as
Â or ∼, the function Φ is noting else than a “value function” for length:
any increasing transformation may therefore be applied to Φ.

r and s r′ and s′

Figure 1.2. Comparing the length of composite rods.
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The next major step towards the construction of a measure of length
is the realization that it is possible to form new rods by simply placing
two or more rods “in a row”, i.e. you may concatenate rods. From the
point of view of length, it seems obvious to expect this concatenation
operation ◦ to be “commutative” (r ◦ s has the same length as s◦ r) and
associative ((r ◦ s) ◦ t has the same length as r ◦ (s ◦ t)).

You clearly want to be able to measure the length of these composite
objects and you can always include them in our experimental procedure
outlined above (see Figure 1.2). Ideally, you would like your numerical
assignment Φ to be somehow compatible with the concatenation oper-
ation: knowing the numbers assigned to two rods, you want to be able
to deduce the number assigned to their concatenation. The most ob-
vious way to achieve that is to require that the numerical assignment
of a composite object can be deduced by addition from the numerical
assignments of the objects composing it, i.e. that

Φ(r ◦ r′) = Φ(r) + Φ(r′).

This clearly places many additional constraints on the results of your
experiment. An obvious one is that Â and ∼ should be compatible with
the concatenation operation ◦, e.g.

r Â r′ and t ∼ t′ should lead to r ◦ t Â r′ ◦ t′.

These new constraints may or may not be satisfied. When they are,
the usefulness of the numerical assignment Φ is even more apparent: a
simple arithmetic operation will allow to infer the result of an experiment
involving composite objects.

Let us take a simple example. Suppose that you have 5 rods r1, r2, . . . , r5
and that, because space is limited, you can only concatenate at most two
rods and that not all concatenations are possible. Let us suppose, for the
moment, that you do not have much technology available so that you
may only experiment using different rods. You may well collect the fol-
lowing information, using obvious notation exploiting the transitivity of
Â which holds in this experiment,

r1 ◦ r5 Â r3 ◦ r4 Â r1 ◦ r2 Â r5 Â r4 Â r3 Â r2 Â r1.

Your problem is then to find a numerical assignment Φ to rods such that
using an addition operation, you can infer the numerical assignment of
composite objects consistently with your observations. Let us consider
the following three assignments:
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Φ Φ′ Φ′′

r1 14 10 14
r2 15 91 16
r3 20 92 17
r4 21 93 18
r5 28 100 29

These three assignments are equally valid to reflect the comparisons of
single rods. Only the first and the third allow to capture the comparisons
of composite objects that were performed. Note that, going from Φ to Φ′′

does not involve just changing the “unit of measurement”: since Φ(r1) =
Φ′′(r1) this would imply that Φ = Φ′′, which is clearly false.

Such numerical assignments have limited usefulness. Indeed, it is tempt-
ing to use them to predict the result of comparisons that we have not
been able to perform. But this turns out to be quite disappointing: using
Φ you would conclude that r2◦r3 ∼ r1◦r4 since Φ(r2)+Φ(r3) = 15+20 =
35 = Φ(r1)+Φ(r4), but, using Φ

′′, you would conclude that r2◦r3 Â r1◦r4
since Φ′′(r2)+Φ′′(r3) = 16+17 = 33 while Φ′′(r1)+Φ′′(r4) = 14+18 = 32.

Intuitively, “measuring” calls for some kind of a standard (e.g. the
“Mètre-étalon” that can be found in the Bureau International des Poids
et Mesures in Sèvres, near Paris). This implies choosing an appropriate
“standard” rod and being able to prepare perfect copies of this standard
rod (we say here “appropriate” because the choice of a standard should
be made in accordance with the lengths of the objects to be measured:
a tiny or a huge standard will not facilitate experiments). Let us call s0

the standard rod. Let us suppose that you have been able to prepare a
large number of perfect copies s1, s2, . . . of s0. We therefore have:

s0 ∼ s1, s0 ∼ s2, s0 ∼ s3, . . .

Let us also agree that the length of s0 is 1. This is your, arbitrary,
unit of length. How can you use s0 and its perfect copies so as to de-
termine unambiguously the length of any other (simple or composite)
object? Quite simply, you may prepare a “standard sequence of length
n”, S(n) = s1 ◦s2 ◦ . . .◦sn−1 ◦sn, i.e. a composite object that is made by
concatenating n perfect copies of our standard rod s0. The length of a
standard sequence of length n is exactly n since we have concatenated n
objects that are perfect copies of the standard rod of length 1. Take any
rod r and let us compare r with several standard sequences of increasing
length: S(1), S(2), . . .

Two cases may arise. There may be a standard sequence S(k) such
that r ∼ S(k). In that case, we know that the number Φ(r) assigned to r
must be exactly k. This is unlikely however. The most common situation
is that we will find two consecutive standard sequences S(k−1) and S(k)
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such that r Â S(k − 1) and S(k) Â r (see Figure 1.3). This means that
Φ(r) must be such that k−1 < Φ(r) < k. We seem to be in trouble here
since, as before, Φ(r) is not exactly determined. How can you proceed?
This depends on your technology for preparing perfect copies.

r S(k)

s1

s2

s3

s4

s5

s6

s7

s8

r Â S(7), S(8) Â r

7 < Φ(r) < 8

Figure 1.3. Using standard sequences.

Imagine that you are able to prepare perfect copies not only of the
standard rod but also of any object. You may then prepare several copies
(r1, r2, . . .) of the rod r. You can now compare a composite object made
out of two perfect copies of r with your standard sequences S(1), S(2), . . .
As before, you shall eventually arrive at locating Φ(r1 ◦ r2) = 2Φ(r)
within an interval of width 1. This means that the interval of impre-
cision surrounding Φ(r) has been divided by two. Continuing this pro-
cess, considering longer and longer sequences of perfect copies of r, you
will keep on reducing the width of the interval containing Φ(r). This
means that you can approximate Φ(r) with any given level of precision.
Mathematically, a unique value for Φ(r) will be obtained using a simple
argument.

Supposing that you are in position to prepare perfect copies of any
object is a strong technological requirement. When this is not possible,
there still exists a way out. Instead of preparing a perfect copy of r
you may also try to increase the granularity of your standard sequence.
This means building an object t that you would be able to replicate
perfectly and such that concatenating t with one of its perfect replicas
gives an object that has exactly the length of the standard object s0, i.e.
Φ(t) = 1/2. Considering standard sequences based on t, you will be able
to increase by a factor 2 the precision with which we measure the length
of r. Repeating the process, i.e. subdividing t, will lead, as before, to a
unique limiting value for Φ(r).
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The mathematical machinery underlying the measurement process in-
formally described above (called “extensive measurement”) rests on the
theory of ordered groups. It is beautifully described and illustrated in
[129]. Although the underlying principles are simple, we may expect com-
plications to occur e.g. when not all concatenations are feasible, when
there is some level (say the velocity of light if we were to measure speed)
that cannot be exceeded or when it comes to relate different measures.
See [129, 140, 168] for a detailed treatment.

Clearly, this was an overly detailed and unnecessary complicated de-
scription of how length could be measured. Since our aim is to eventually
deal with “measurement” in the Social Sciences, it may however be useful
to keep the above process in mind. Its basic ingredients are the following:

well-behaved relations Â and ∼ allowing to compare objects,

a concatenation operation ◦ allowing to consider composite ob-
jects,

consistency requirements linking Â, ∼ and ◦,

the ability to prepare perfect copies of some objects in order to
build standard sequences.

Basically, conjoint measurement is a quite ingenious way to perform
related measurement operations when no concatenation operation is
available. This will however require that objects can be evaluated along
several dimensions. Before explaining how this might work, it is worth
explaining the context in which such measurement might prove useful.

Remark 5
It is often asserted that “measurement is impossible in the Social Sci-
ences” precisely because the Social Scientist has no way to define a con-
catenation operation. Indeed, it would seem hazardous to try to con-
catenate the intelligence of two subjects or the pain of two patients (see
[56, 106]). Under certain conditions, the power of conjoint measurement
will precisely be to provide a means to bypass this absence of read-
ily available concatenation operation when the objects are evaluated on
several dimensions.

Let us remark that, even when there seems to be a concatenation op-
eration readily available, it does not always fit the purposes of extensive
measurement. Consider for instance an individual expressing preferences
for the quantity of the two goods he consumes. The objects therefore take
the well structured form of points in the positive orthant of R

2. There
seems to be an obvious concatenation operation here: (x, y)◦(z, w) might
simply be taken to be (x + y, z + w). However a fairly rational person,
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consuming pants and jackets, may indeed prefer (3, 0) (3 pants and no
jacket) to (0, 3) (no pants and 3 jackets) but at the same time prefer
(3, 3) to (6, 0). This implies that these preferences cannot be explained
by a measure that would be additive with respect to the concatena-
tion operation consisting in adding the quantities of the two goods con-
sumed. Indeed (3, 0) Â (0, 3) implies Φ(3, 0) > Φ(0, 3), which implies
Φ(3, 0) + Φ(3, 0) > Φ(0, 3) + Φ(3, 0). Additivity with respect to con-
catenation should then imply that (3, 0) ◦ (3, 0) Â (0, 3) ◦ (3, 0), that is
(6, 0) Â (3, 3).

1.3. An example: Even swaps

The even swaps technique described and advocated in [120, 121, 165] is
a simple way to deal with decision problems involving several attributes
that does not have recourse to a formal representation of preferences,
which will be the subject of conjoint measurement. Because this tech-
nique is simple and may be quite useful, we describe it below using the
same example as in [120]. This will also allow to illustrate the type of
problems that are dealt with in decision analysis applications of conjoint
measurement.

Example 6 (Even swaps technique)
A consultant considers renting a new office. Five different locations have
been identified after a careful consideration of many possibilities, reject-
ing all those that do not meet a number of requirements.

His feeling is that five distinct characteristics, we shall say five at-
tributes, of the possible locations should enter into his decision: his daily
commute time (expressed in minutes), the ease of access for his clients
(expressed as the percentage of his present clients living close to the of-
fice), the level of services offered by the new office (expressed on an ad
hoc scale with three levels: A (all facilities available), B (telephone and
fax), C (no facilities)), the size of the office expressed in square feet, and
the monthly cost expressed in dollars.

The evaluation of the five offices is given in Table 1.1. The consultant

a b c d e

Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

Table 1.1. Evaluation of the 5 offices on the 5 attributes.
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has well-defined preferences on each of these attributes, independently
of what is happening on the other attributes. His preference increases
with the level of access for his clients, the level of services of the office
and its size. It decreases with commute time and cost. This gives a first
easy way to compare alternatives through the use of dominance.

An alternative y is dominated by an alternative x if x is at least as
good as y on all attributes while being strictly better for at least one
attribute. Clearly dominated alternatives are not candidate for the final
choice and may, thus, be dropped from consideration. The reader will
easily check that, on this example, alternative b dominates alternative e:
e and b have similar size but b is less expensive, involves a shorter com-
mute time, an easier access to clients and a better level of services. We
may therefore forget about alternative e. This is the only case of “pure
dominance” in our table. It is however easy to see that d is “close” to
dominating a, the only difference in favor of a being on the cost attribute
(50 $ per month). This is felt more than compensated by the differences
in favor of d on all other attributes: commute time (20 minutes), client
access (35 %) and size (150 sq. feet).

Dropping all alternatives that are not candidate for choice, this initial
investigation allows to reduce the problem to:

b c d

Commute 25 20 25
Clients 80 70 85
Services B C A

Size 700 500 950
Cost 1700 1500 1900

A natural way to proceed is then to assess tradeoffs. Observe that all
alternatives but c have a common evaluation on commute time. We may
therefore ask the consultant, starting with office c, what gain on client
access would compensate a loss of 5 minutes on commute time. We are
looking for an alternative c′ that would be evaluated as follows:

c c′

Commute 20 25

Clients 70 70 + δ

Services C C

Size 500 500
Cost 1500 1500

and judged indifferent to c. Although this is not an easy question, it is
clearly crucial in order to structure preferences.

Remark 7
In this paper, we do not consider the possibility of lexicographic pref-
erences, in which such tradeoffs do not occur, see [59, 60, 160]. Lexico-
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graphic preferences may also be combined with the possibility of “local”
tradeoffs, see [22, 64, 136]. •

Remark 8
Since tradeoffs questions may be difficult, it is wise to start with an
attribute requiring few assessments (in the example, all alternatives but
one have a common evaluation on commute time). Clearly this attribute
should be traded against one with an underlying “continuous” structure
(cost, in the example). •

Suppose that the answer is that for δ = 8, it is reasonable to assume
that c and c′ would be indifferent. This means that the decision table
can be reformulated as follows:

b c′ d

Commute 25 25 25
Clients 80 78 85
Services B C A

Size 700 500 950
Cost 1700 1500 1900

It is then apparent that all alternatives have a similar evaluation on
the first attribute which, therefore, is not useful to discriminate between
alternatives and may be forgotten. The reduced decision table is as fol-
lows:

b c′ d

Clients 80 78 85
Services B C A

Size 700 500 950
Cost 1700 1500 1900

There is no case of dominance in this reduced table. Therefore further
simplification calls for the assessment of new tradeoffs. Using cost as the
reference attribute, we then proceed to “neutralize” the service attribute.
Starting with office c′, this means asking for the increase in monthly cost
that the consultant would just be prepared to pay to go from level “C”
of service to level “B”. Suppose that this increase is roughly 250 $. This
defines alternative c′′. Similarly, starting with office d we ask for the
reduction of cost that would exactly compensate a reduction of services
from “A” to “B”. Suppose that the answer is 100 $ a month, which
defines alternative d′. The decision table is reshaped as:

b c′′ d′

Clients 80 78 85
Services B B B

Size 700 500 950
Cost 1700 1750 1800
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We may forget about the second attribute which does not discriminate
any more between alternatives. When this is done, it is apparent that c′′

is dominated by b and can be suppressed. Therefore, the decision table
at this stage looks like the following:

b d′

Clients 80 85
Size 700 950
Cost 1700 1800

Unfortunately, this table reveals no case of dominance. New tradeoffs
have to be assessed. We may now ask, starting with office b, what addi-
tional cost the consultant would be ready to incur to increase its size by
250 square feet. Suppose that the rough answer is 250 $ a month, which
defines b′. We are now facing the following table:

b′ d′

Clients 80 85
Size 950 950
Cost 1950 1800

Attribute size may now be dropped from consideration. But, when this
is done, it is clear that d′ dominates b′. Hence it seems obvious to rec-
ommend office d as the final choice. 3

The above process is simple and looks quite obvious. If this works,
why be interested at all in “measurement” if the idea is to help someone
to come up with a decision?

First observe that in the above example, the set of alternatives was
relatively small. In many practical situations, the set of objects to com-
pare is much larger than the set of alternatives in our example. Using
the even swaps technique could then require a considerable number of
difficult tradeoff questions. Furthermore, as the output of the technique
is not a preference model but just the recommendation of an alternative
in a given set, the appearance of new alternatives (e.g. because a new
office is for rent) would require starting a new round of questions. This is
likely to be highly frustrating. Finally, the informal even swaps technique
may not be well adapted to the, many, situations, in which the decision
under study takes place in a complex organizational environment. In
such situations, having a formal model to be able to communicate and
to convince is an invaluable asset. Such a model will furthermore allow
to conduct extensive sensitivity analysis and, hence, to deal with im-
precision both in the evaluations of the objects to compare and in the
answers to difficult questions concerning tradeoffs.

This clearly leaves room for a more formal approach to structure pref-
erences. But where can “measurement” be involved in the process? It
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should be observed that, beyond surface, there are many analogies be-
tween the even swaps process and the measurement of length considered
above.

First, note that, in both cases, objects are compared using binary
relations. In the measurement of length, the binary relation Â reads
“is longer than”. Here it reads “is preferred to”. Similarly, the relation
∼ reading before “has equal length” now reads “is indifferent to”. We
supposed in the measurement of length process that Â and ∼ would
nicely combine in experiments: if r Â r′ and r′ ∼ r′′ then we should
observe that r Â r′′. Implicitly, a similar hypothesis was made in the even
swaps technique. To realize that this is the case, it is worth summarizing
the main steps of the argument.

We started with Table 1.1. Our overall recommendation was to rent
office d. This means that we have reasons to believe that d is preferred
to all other potential locations, i.e. d Â a, d Â b, d Â c, and d Â e. How
did we arrive logically at such a conclusion?

Based on the initial table, using dominance and quasi-dominance, we
concluded that b was preferable to e and that d was preferable to a. Using
symbols, we have b Â e and d Â a. After assessing some tradeoffs, we
concluded, using dominance, that b Â c′′. But remember, c′′ was built so
as to be indifferent to c′ and, in turn, c′ was built so as to be indifferent
to c. That is, we have c′′ ∼ c′ and c′ ∼ c. Later, we built an alternative d′

that is indifferent to d (d ∼ d′) and an alternative b′ that is indifferent to
b (b ∼ b′). We then concluded, using dominance, that d′ was preferable
to b′ (d′ Â b′). Hence, we know that:

d Â a, b Â e,

c′′ ∼ c′, c′ ∼ c, b Â c′′,

d ∼ d′, b ∼ b′, d′ Â b′.

Using the consistency rules linking Â and ∼ that we considered for the
measurement of length, it is easy to see that the last line implies d Â b.
Since b Â e, this implies d Â e. It remains to show that d Â c. But the
second line leads to, combining Â and ∼, b Â c. Therefore d Â b leads
to d Â c and we are home. Hence, we have used the same properties
for preference and indifference as the properties of “is longer than” and
“has equal length” that we hypothesized in the measurement of length.

Second it should be observed that expressing tradeoffs leads, indi-
rectly, to equating the “length” of “preference intervals” on different
attributes. Indeed, remember how c′ was constructed above: saying that
c and c′ are indifferent more or less amounts to saying that the interval
[25, 20] on commute time has exactly the same “length” as the interval
[70, 78] on client access. Consider an alternative f that would be iden-
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tical to c except that it has a client access at 78%. We may again ask
which increase in client access would compensate a loss of 5 minutes on
commute time. In a tabular form we are now comparing the following
two alternatives:

f f ′

Commute 20 25
Clients 78 78 + δ

Services C C
Size 500 500
Cost 1500 1500

Suppose that the answer is that for δ = 10, f and f ′ would be indiffer-
ent. This means that the interval [25, 20] on commute time has exactly
the same length as the interval [78, 88] on client access. Now, we know
that the preference intervals [70, 78] and [78, 88] have the same “length”.
Hence, tradeoffs provide a means to equate two preference intervals on
the same attribute. This brings us quite close to the construction of
standard sequences. This, we shall shortly do.

How does this information about the “length” of preference intervals
relate to judgements of preference or indifference? Exactly as in the
even swaps technique. You can use this measure of “length” modifying
alternatives in such a way that they only differ on a single attribute and
then use a simple dominance argument.

Conjoint measurement techniques may roughly be seen as a formal-
ization of the even swaps technique that leads to building a numerical
model of preferences much in the same way that we built a numeri-
cal model for length. This will require assessment procedures that will
rest on the same principles as the standard sequence technique used for
length. This process of “measuring preferences” is not an easy one. It
will however lead to a numerical model of preference that will not only
allow us to make a choice within a limited number of alternatives but
that can serve as an input of computerized optimization algorithms that
will be able to deal with much more complex cases.

2. Definitions and notation

Before entering into the details of how conjoint measurement may work,
a few definitions and notation will be needed.

2.1. Binary relations

A binary relation % on a set A is a subset of A × A. We write a % b
instead of (a, b) ∈ %. A binary relation % on A is said to be:

reflexive if [a % a],
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complete if [a % b or b % a],

symmetric if [a % b]⇒ [b % a],

asymmetric if [a % b]⇒ [Not[b % a]],

transitive if [a % b and b % c]⇒ [a % c],

negatively transitive if [Not[ a % b ] and Not[ b % c ] ]⇒ Not[ a %
c ] ,

for all a, b, c ∈ A.
The asymmetric (resp. symmetric) part of % is the binary relation

Â (resp. ∼) on A defined letting, for all a, b ∈ A, a Â b ⇔ [a %
b and Not(b % a)] (resp. a ∼ b ⇔ [a % b and b % a]). A similar con-
vention will hold when % is subscripted and/or superscripted.

A weak order (resp. an equivalence relation) is a complete and tran-
sitive (resp. reflexive, symmetric and transitive) binary relation. For
a detailed analysis of the use of binary relation as tools for preference
modelling we refer to [4, 58, 66, 161, 167, 169]. The weak order model
underlies the examples that were presented in the introduction. Indeed,
the reader will easily prove the following.

Proposition 9
Let % be a weak order on A. Then:

Â is transitive,

Â is negatively transitive,

∼ is transitive,

[a Â b and b ∼ c] ⇒ a Â c,

[a ∼ b and b Â c] ⇒ a Â c,

for all a, b, c ∈ A.

2.2. Binary relations on product sets

In the sequel, we consider a set X =
∏n

i=1 Xi with n ≥ 2. Elements
x, y, z, . . . of X will be interpreted as alternatives evaluated on a set
N = {1, 2, . . . , n} of attributes. A typical binary relation on X is still
denoted as %, interpreted as an “at least as good as” preference relation
between multi-attributed alternatives with ∼ interpreted as indifference
and Â as strict preference.

For any nonempty subset J of the set of attributes N , we denote by
XJ (resp. X−J) the set

∏

i∈J Xi (resp.
∏

i/∈J Xi ). With customary abuse
of notation, (xJ , y−J) will denote the element w ∈ X such that wi = xi
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if i ∈ J and wi = yi otherwise. When J = {i} we shall simply write X−i

and (xi, y−i).

Remark 10
Throughout this paper, we shall work with a binary relation defined on
a product set. This setup conceals the important work that has to be
done in practice to make it useful:

the structuring of objectives [3, 15, 16, 117, 118, 119, 157, 163],

the definition of adequate attributes to measure the attainment of
objectives [80, 96, 116, 122, 173, 208, 216],

the definition of an adequate family of attributes [24, 121, 173,
174, 209],

the modelling of uncertainty, imprecision and inaccurate determi-
nation [23, 27, 121, 171].

The importance of this “preliminary” work should not be forgotten in
what follows. •

2.3. Independence and marginal preferences

In conjoint measurement, one starts with a preference relation % on
X. It is then of vital importance to investigate how this information
makes it possible to define preference relations on attributes or subsets
of attributes.

Let J ⊆ N be a nonempty set of attributes. We define the marginal
relation %J induced on XJ by % letting, for all xJ , yJ ∈ XJ :

xJ %J yJ ⇔ (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J ,

with asymmetric (resp. symmetric) part ÂJ (resp. ∼J). When J = {i},
we often abuse notation and write %i instead of %{i}. Note that if % is
reflexive (resp. transitive), the same will be true for %J . This is clearly
not true for completeness however.

Definition 11 (Independence)
Consider a binary relation % on a set X =

∏n
i=1 Xi and let J ⊆ N be

a nonempty subset of attributes. We say that % is independent for J if,
for all xJ , yJ ∈ XJ ,

[(xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ]⇒ xJ %J yJ .

If % is independent for all nonempty subsets of N , we say that % is inde-
pendent. If % is independent for all subsets containing a single attribute,
we say that % is weakly independent.
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In view of (1.2), it is clear that the additive value model will re-
quire that % is independent. This crucial condition says that common
evaluations on some attributes do not influence preference. Whereas in-
dependence implies weak independence, it is well-know that the converse
is not true [211].

Remark 12
Under certain conditions, e.g. when X is adequately “rich”, it is not
necessary to test that a weak order % is independent for J , for all J ⊆ N
in order to know that % is independent, see [21, 89, 121]. This is often
useful in practice. •

Remark 13
Weak independence is referred to as “weak separability” in [211]; in sec-
tion 5, we use “weak separability” (and “separability”) with a different
meaning. •

Remark 14
Independence, or at least weak independence, is an almost universally
accepted hypothesis in multiple criteria decision making. It cannot be
overemphasized that it is easy to find examples in which it is inadequate.

If a meal is described by the two attributes, main course and wine, it
is highly likely that most gourmets will violate independence, preferring
red wine with beef and white wine with fish. Similarly, in a dynamic
decision problem, a preference for variety will often lead to violating
independence: you may prefer Pizza to Steak, but your preference for
meals today (first attribute) and tomorrow (second attribute) may well
be such that (Pizza, Steak) preferred to (Pizza, Pizza), while (Steak,
Pizza) is preferred to (Steak, Steak).

Many authors [119, 173, 209] have argued that such failures of in-
dependence were almost always due to a poor structuring of attributes
(e.g. in our choice of meal example above, preference for variety should
be explicitly modelled). •

When % is a weakly independent weak order, marginal preferences are
well-behaved and combine so as to give meaning to the idea of dominance
that we already encountered. The proof of the following is left to the
reader as an easy exercise.

Proposition 15
Let % be a weakly independent weak order on X =

∏n
i=1 Xi. Then:

%i is a weak order on Xi,

[xi %i yi, for all i ∈ N ] ⇒ x % y,
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[xi %i yi, for all i ∈ N and xj Âj yj for some j ∈ N ] ⇒ x Â y,

for all x, y ∈ X.

3. The additive value model in the “rich” case

The purpose of this section and the following is to present the conditions
under which a preference relation on a product set may be represented
by the additive value function model (1.2) and how such a model can be
assessed. We begin here with the case that most closely resembles the
measurement of length described in section 1.2.

3.1. Outline of theory

When the structure of X is supposed to be “adequately rich”, conjoint
measurement is a quite clever adaptation of the process that we described
in section 1.2 for the measurement of length. What will be measured here
are the “length” of preference intervals on an attribute using a preference
interval on another attribute as a standard.

3.1.1 The case of two attributes. Consider first the two at-
tribute case. Hence the relation % is defined on a set X = X1 × X2.
Clearly, in view of (1.2), we need to suppose that % is an independent
weak order. Consider two levels x0

1, x
1
1 ∈ X1 on the first attribute such

that x1
1 Â1 x

0
1, i.e. x

1
1 is preferable to x0

1. This makes sense because, we
supposed that % is independent. Note also that we shall have to exclude
the case in which all levels on the first attribute would be indifferent in
order to be able to find such levels.

Choose any x0
2 ∈ X2. The, arbitrarily chosen, element (x0

1, x
0
2) ∈ X

will be our “reference point”. The basic idea is to use this reference point
and the “unit” on the first attribute given by the reference preference
interval [x0

1, x
1
1] to build a standard sequence on the preference intervals

on the second attribute. Hence, we are looking for an element x1
2 ∈ X2

that would be such that:

(x0
1, x

1
2) ∼ (x1

1, x
0
2). (1.3)

Clearly this will require the structure of X2 to be adequately “rich” so
as to find the level x1

2 ∈ X2 such that the reference preference interval on
the first attribute [x0

1, x
1
1] is exactly matched by a preference interval of

the same “length” on the second attribute [x0
2, x

1
2]. Technically, this calls

for a solvability assumption or, more restrictively, for the supposition
that X2 has a (topological) structure that is close to that of an interval
of R and that % is “somehow” continuous.
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If such a level x1
2 can be found, model (1.2) implies:

v1(x
0
1) + v2(x

1
2) = v1(x

1
1) + v2(x

0
2) so that

v2(x
1
2)− v2(x

0
2) = v1(x

1
1)− v1(x

0
1).

(1.4)

Let us fix the origin of measurement letting:

v1(x
0
1) = v2(x

0
2) = 0,

and our unit of measurement letting:

v1(x
1
1) = 1 so that v1(x

1
1)− v1(x

0
1) = 1.

Using (1.4), we therefore obtain v2(x
1
2) = 1. We have therefore found

an interval between levels on the second attribute ([x0
2, x

1
2]) that exactly

matches our reference interval on the first attribute ([x0
1, x

1
1]). We may

proceed to build our standard sequence on the second attribute (see
Figure 1.4) asking for levels x2

2, x
3
2, . . . such that:

(x0
1, x

2
2) ∼ (x1

1, x
1
2),

(x0
1, x

3
2) ∼ (x1

1, x
2
2),

. . .

(x0
1, x

k
2) ∼ (x1

1, x
k−1
2 ).

As above, using (1.2) leads to:

v2(x
2
2)− v2(x

1
2) = v1(x

1
1)− v1(x

0
1),

v2(x
3
2)− v2(x

2
2) = v1(x

1
1)− v1(x

0
1),

. . .

v2(x
k
2)− v2(x

k−1
2 ) = v1(x

1
1)− v1(x

0
1),

so that:
v2(x

2
2) = 2, v2(x

3
2) = 3, . . . , v2(x

k
2) = k.

This process of building a standard sequence of the second attribute
therefore leads to defining v2 on a number of, carefully, selected elements
of X2.

Remember the standard sequence that we built for length in section
1.2. An implicit hypothesis was that the length of any rod could be
exceeded by the length of a composite object obtained by concatenating a
sufficient number of perfect copies of a standard rod. Such an hypothesis
is called “Archimedean” since it mimics the property of the real numbers
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x0
1

x0
2

X1

X2

x1
1

x1
2

x2
2

x3
2

x4
2

••

• •

••

••

•

Figure 1.4. Building a standard sequence on X2.

saying that for any positive real numbers x, y it is true that nx > y for
some integer n, i.e. y, no matter how large, may always be exceeded
by taking any x, no matter how small, and adding it with itself and
repeating the operation a sufficient number of times. Clearly, we will need
a similar hypothesis here. Failing it, there might exist a level y2 ∈ X2 that
will never be “reached” by our standard sequence, i.e. such that y2 Â2 x

k
2,

for k = 1, 2, . . .. For measurement models in which this Archimedean
condition is omitted, see [155, 193].

Remark 16
At this point a good exercise for the reader is to figure out how we may
extend the standard sequence to cover levels of X2 that are “below” the
reference level x0

2. This should not be difficult. •

Now that a standard sequence is built on the second attribute, we may
use any part of it to build a standard sequence on the first attribute.
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x0
1

x0
2

X1

X2

x1
1 x2

1 x3
1 x3

1

x1
2 ••

•

•

•

•

• •

Figure 1.5. Building a standard sequence on X1.

This will require finding levels x2
1, x

3
1, . . . ∈ X1 such that (see Figure 1.5):

(x2
1, x

0
2) ∼ (x1

1, x
1
2),

(x3
1, x

0
2) ∼ (x2

1, x
1
2),

. . .

(xk1, x
0
2) ∼ (xk−1

1 , x1
2).

Using (1.2) leads to:

v1(x
2
1)− v1(x

1
1) = v2(x

1
2)− v2(x

0
2),

v1(x
3
1)− v1(x

2
1) = v2(x

1
2)− v2(x

0
2),

. . .

v1(x
k
1)− v1(x

k−1
1 ) = v2(x

1
2)− v2(x

0
2),

so that:
v1(x

2
1) = 2, v1(x

3
1) = 3, . . . , v1(x

k
1) = k.

As was the case for the second attribute, the construction of such a
sequence will require the structure of X1 to be adequately rich, which
calls for a solvability assumption. An Archimedean condition will also
be needed in order to be sure that all levels of X1 can be reached by the
sequence.

We have defined a “grid” inX (see Figure 1.6) and we have v1(x
k
1) = k

and v2(x
k
2) = k for all elements of this grid. Intuitively such numerical

assignments seem to define an adequate additive value function on the
grid. We have to prove that this intuition is correct. Let us first verify
that, for all integers α, β, γ, δ:

α+ β = γ + δ = ε⇒ (xα
1 , x

β
2 ) ∼ (xγ1 , x

δ
2). (1.5)
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x0
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x0
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X1
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x1
1 x2

1 x3
1

x1
2

x2
2

x3
2

••

•

••

••

•

•

•

•

• •

?

Figure 1.6. The grid.

When ε = 1, (1.5) holds by construction because we have: (x0
1, x

1
2) ∼

(x1
1, x

0
2). When ε = 2, we know that (x0

1, x
2
2) ∼ (x1

1, x
1
2) and (x2

1, x
0
2) ∼

(x1
1, x

1
2) and the claim is proved using the transitivity of ∼.

Consider the ε = 3 case. We have (x0
1, x

3
2) ∼ (x1

1, x
2
2) and (x0

1, x
3
2) ∼

(x1
1, x

2
2). It remains to be shown that (x2

1, x
1
2) ∼ (x1

1, x
2
2) (see the dotted

arc in Figure 1.6). This does not seem to follow from the previous con-
ditions that we more or less explicitly used: transitivity, independence,
“richness”, Archimedean. Indeed, it does not. Hence, we have to suppose
that: (x2

1, x
0
2) ∼ (x0

1, x
2
2) and (x0

1, x
1
2) ∼ (x1

1, x
0
2) imply (x2

1, x
1
2) ∼ (x1

1, x
2
2).

This condition, called the Thomsen condition, is clearly necessary for
(1.2). The above reasoning easily extends to all points on the grid, using
weak ordering, independence and the Thomsen condition. Hence, (1.5)
holds on the grid.

It remains to show that:

ε = α+ β > ε′ = γ + δ ⇒ (xα1 , x
β
2 ) Â (xγ1 , x

δ
2). (1.6)

Using transitivity, it is sufficient to show that (1.6) holds when ε =
ε′+1. By construction, we know that (x1

1, x
0
2) Â (x0

1, x
0
2). Using indepen-

dence this implies that (x1
1, x

k
2) Â (x0

1, x
k
2). Using (1.5) we have (x1

1, x
k
2) ∼

(xk+1
1 , x0

2) and (x0
1, x

k
2) ∼ (xk1, x

0
2). Therefore we have (x

k+1
1 , x0

2) Â (xk1, x
0
2),

the desired conclusion.
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Figure 1.7. The entire grid.

Hence, we have built an additive value function of a suitably chosen
grid (see Figure 1.7). The logic of the assessment procedure is then to
assess more and more points somehow considering more finely grained
standard sequences. The two techniques evoked for length may be used
here depending on the underlying structure of X. Going to the limit then
unambiguously defines the functions v1 and v2. Clearly such v1 and v2

are intimately related. Once we have chosen an arbitrary reference point
(x0

1, x
0
2) and a level x1

1 defining the unit of measurement, the process just
described entirely defines v1 and v2. It follows that the only possible
transformations that can be applied to v1 and v2 is to multiply both
by the same positive number α and to add to both a, possibly different,
constant. This is usually summarized saying that v1 and v2 define interval
scales with a common unit.

The above reasoning is a rough sketch of the proof of the existence
of an additive value function when n = 2, as well as a sketch of how it
could be assessed. Careful readers will want to refer to [58, 129, 211].

Remark 17
The measurement of length through standard sequences described above
leads to a scale that is unique once the unit of measurement is chosen.
At this point, a good exercise for the reader is to find an intuitive ex-
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planation to the fact that, when measuring the “length” of preference
intervals, the origin of measurement becomes arbitrary. The analogy with
the the measurement of duration on the one hand and dates, as given in
a calendar, on the other hand should help. •

Remark 18
As was already the case with the even swaps technique, it is worth
emphasizing that this assessment technique makes no use of the vague
notion of the “importance” of the various attributes. The “importance”
is captured here in the lengths of the preference intervals on the various
attributes.

A common but critical mistake is to confuse the additive value func-
tion model (1.2) with a weighted average and to try to assess weights
asking whether an attribute is “more important” than another. This
makes no sense. •

3.1.2 The case of more than two attributes. The good
news is that the process is exactly the same when there are more than
two attributes. With one surprise: the Thomsen condition is no more
needed to prove that the standard sequences defined on each attribute
lead to an adequate value function on the grid. A heuristic explanation
of this strange result is that, when n = 2, there is no difference between
independence and weak independence. This is no more true when n ≥ 3
and assuming independence is much stronger than just assuming weak
independence.

3.2. Statement of results

We use below the “algebraic approach” [127, 129, 141]. A more restrictive
approach using a topological structure on X is given in [44, 58, 211]. We
formalize below the conditions informally introduced in the preceding
section. The reader not interested in the precise statement of the results
or, better, having already written down his own statement, may skip
this section.
Definition 19 (Thomsen condition)
Let % be a binary relation on a set X = X1 × X2. It is said to satisfy
the Thomsen condition if

(x1, x2) ∼ (y1, y2) and (y1, z2) ∼ (z1, x2)⇒ (x1, z2) ∼ (z1, y2),

for all x1, y1, z1 ∈ X1 and all x2, y2, z2 ∈ X2.

Figure 1.8 shows how the Thomsen condition uses two “indifference
curves” (i.e. curves linking points that are indifferent) to place a con-
straint on a third one. This was needed above to prove that an additive
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value function existed on our grid. Remember that the Thomsen condi-
tion is only needed when n = 2; hence, we only stated it in this case.

X2

X1

y1 x1 z1

x2

y2

z2

A

B

C

D

E

F

A ∼ B
E ∼ F

}

⇒ C ∼ D

Figure 1.8. The Thomsen condition.

Definition 20 (Standard sequences)
A standard sequence on attribute i ∈ N is a set {aki : aki ∈ Xi, k ∈ K}
where K is a set of consecutive integers (positive or negative, finite or
infinite) such that there are x−i, y−i ∈ X−i satisfying Not[x−i ∼−i y−i ]
and (aki , x−i) ∼ (ak+1

i , y−i), for all k ∈ K.

A standard sequence on attribute i ∈ N is said to be strictly bounded
if there are bi, ci ∈ Xi such that bi Âi a

k
i Âi ci, for all k ∈ K. It is

then clear that, when model (1.2) holds, any strictly bounded standard
sequence must be finite.

Definition 21 (Archimedean)
For all i ∈ N , any strictly bounded standard sequence on i ∈ N is finite.

The following condition rules out the case in which a standard se-
quence cannot be built because all levels are indifferent.

Definition 22 (Essentiality)
Let % be a binary relation on a set X = X1 ×X2 × · · · ×Xn. Attribute
i ∈ N is said to be essential if (xi, a−i) Â (yi, a−i), for some xi, yi ∈ Xi

and some a−i ∈ X−i.

Definition 23 (Restricted Solvability)
Let % be a binary relation on a set X = X1 ×X2 × · · · ×Xn. Restricted
solvability is said to hold with respect to attribute i ∈ N if, for all x ∈



An introduction to conjoint measurement 29

X, all z−i ∈ X−i and all ai, bi ∈ Xi, [(ai, z−i) % x % (bi, z−i)] ⇒
[x ∼ (ci, z−i), for some ci ∈ Xi].

Remark 24
Restricted solvability is illustrated in Figure 1.9 in the case where n = 2.
It says that, given any x ∈ X, if it is possible find two levels ai, bi ∈ Xi

such that when combined with a certain level z−i ∈ X−i on the other
attributes, (ai, z−i) is preferred to x and x is preferred to (bi, z−i), it
should be possible to find a level ci, “in between” ai and bi, such that
(ci, z−i) is exactly indifferent to x.

A much stronger hypothesis is unrestricted solvability asserting that
for all x ∈ X and all z−i ∈ X−i, x ∼ (ci, z−i), for some ci ∈ Xi. Its use
leads however to much simpler proofs [58, 86].

It is easy to imagine situations in which restricted solvability might
hold while unrestricted solvability would fail. Suppose, e.g. that a firm
has to choose between several investment projects, two attributes being
the Net Present Value (NPV) of the projects and their impact on the
image of the firm in the public. Consider a project consisting in invest-
ing in the software market. It has a reasonable NPV and no adverse
consequences on the image of the firm. Consider another project that
could have dramatic consequences on the image of the firm, because it
leads to investing the market of cocaine. Unrestricted solvability would
require that by sufficiently increasing the NPV of the second project it
would become indifferent to the more standard project of investing in
the software market. This is not required by restricted solvability. •

We are now in position to state the central results concerning model
(1.2). Proofs may be found in [129, 213].

Theorem 25 (Additive value function when n = 2)
Let % be a binary relation on a set X = X1×X2. If restricted solvability
holds on all attributes and each attribute is essential then % has a rep-
resentation in model (1.2) if and only if % is an independent weak order
satisfying the Thomsen and the Archimedean conditions

Furthermore in this representation, v1 and v2 are interval scales with a
common unit, i.e. if v1, v2 and w1, w2 are two pairs of functions satisfying
(1.2), there are real numbers α, β1, β2 with α > 0 such that, for all x1 ∈
X1 and all x2 ∈ X2

v1(x1) = αw1(x1) + β1 and v2(x2) = αw2(x2) + β2.

When n ≥ 3 and at least three attributes are essential, the above
result simplifies in that the Thomsen condition can now be omitted.
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z2
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•
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•

z Â x
x Â y

}

⇒ there is a w such that x ∼ w

Figure 1.9. Restricted Solvability on X1.

Theorem 26 (Additive value function when n ≥ 3)
Let % be a binary relation on a set X = X1×X2× . . .×Xn with n ≥ 3.
If restricted solvability holds on all attributes and at least 3 attributes
are essential then % has a representation in model (1.2) if and only if
% is an independent weak order satisfying the Archimedean condition.

Furthermore in this this representation v1, v2, . . . , vn are interval scales
with a common unit.

Remark 27
As mentioned in introduction, the additive value model is central to
several fields in decision theory. It is therefore not surprising that much
energy has been devoted to analyze variants and refinements of the above
results. Among the most significant ones, let us mention:

the study of cases in which solvability holds only on some or none
of the attributes [75, 85, 86, 87, 88, 112, 113, 154],

the study of the relation between the “algebraic approach” intro-
duced above and the topological one used in [44], see e.g. [115, 124,
211, 213].

The above results are only valid when X is the entire Cartesian prod-
uct of the sets Xi. Results in which X is a subset of the whole Cartesian
product X1 × X2 × . . . × Xn are not easy to obtain, see [37, 181] (the
situation is “easier” in the special case of homogeneous product sets, see
[214, 215]). •
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3.3. Implementation: Standard sequences and
beyond

We have already shown above how additive value functions can be as-
sessed using the standard sequence technique. It is worth recalling here
some of the characteristics of this assessment procedure:

It requires the set Xi to be rich so that it is possible to find a
preference interval on Xi that will exactly match a preference in-
terval on another attribute. This excludes using such an assessment
procedure when some of the sets Xi are discrete.

It relies on indifference judgements which, a priori, are less firmly
established than preference judgements.

It relies on judgements concerning fictitious alternatives which,
a priori, are harder to conceive than judgements concerning real
alternatives.

The various assessments are thoroughly intertwined and, e.g., an
imprecision on the assessment of x1

2, i.e. the endpoint of the first
interval in the standard sequence on X2 (see Figure 1.4) will prop-
agate to many assessed values,

The assessment of tradeoffs may be plagued with cognitive biases,
see [46, 197].

The assessment procedure based on standard sequences is therefore
rather demanding; this should be no surprise given the proximity be-
tween this form of measurement and extensive measurement illustrated
above on the case of length. Hence, the assessment procedure based on
standard sequences seems to be seldom used in the practice of deci-
sion analysis [121, 209]. The literature on the experimental assessment
of additive value functions, see e.g. [197, 208, 216], suggests that this
assessment is a difficult task that may be affected by several cognitive
biases.

Many other simplified assessment procedures have been proposed that
are less firmly grounded in theory. In many of them, the assessment of
the partial value functions vi relies on direct comparison of preference
differences without recourse to an interval on another attribute used as
a “meter stick”. We refer to [50] for a theoretical analysis of these tech-
niques. They are also studied in detail in Chapter XXX of this volume
(Chapter 6, Dyer).

These procedures include:

direct rating techniques in which values of vi are directly assessed
with reference to two arbitrarily chosen points [52, 53],



32

procedures based on bisection, the decision-maker being asked to
assess a point that is “half way” in terms of preference two refer-
ence points [209],

procedures trying to build standard sequences on each attribute in
terms of “preference differences” [129, ch. 4].

An excellent overview of these techniques may be found in [209].

4. The additive value model in the “finite” case

4.1. Outline of theory

In this section, we suppose that % is a binary relation on a finite set
X ⊆ X1 × X2 × · · · × Xn (contrary to the preceding section, dealing
with subsets of product sets will raise no difficulty here). The finiteness
hypothesis clearly invalidates the standard sequence mechanism used till
now. On each attribute there will only be finitely many “preference inter-
vals” and exact matches between preference intervals will only happen
exceptionally, see [212].

Clearly, independence remains a necessary condition for model (1.2)
as before. Given the absence of structure of the set X, it is unlikely that
this condition is sufficient to ensure (1.2). The following example shows
that this intuition is indeed correct.
Example 28
Let X = X1 ×X2 with X1 = {a, b, c} and X2 = {d, e, f}. Consider the
weak order on X such that, abusing notation in an obvious way,

ad Â bd Â ae Â af Â be Â cd Â ce Â bf Â cf.

It is easy to check that % is independent. Indeed, we may for instance
check that:

ad Â bd and ae Â be and af Â bf,

ad Â ae and bd Â be and cd Â ce.

This relation cannot however be represented in model (1.2) since:

af Â be⇒ v1(a) + v2(f) > v1(b) + v2(e),

be Â cd⇒ v1(b) + v2(e) > v1(c) + v2(d),

ce Â bf ⇒ v1(c) + v2(e) > v1(b) + v2(f),

bd Â ae⇒ v1(b) + v2(d) > v1(a) + v2(e).

Summing the first two inequalities leads to:

v1(a) + v2(f) > v1(c) + v2(d).
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Summing the last two inequalities leads to:

v1(c) + v2(d) > v1(a) + v2(f),

a contradiction.
Note that, since no indifference is involved, the Thomsen condition is

trivially satisfied. Although it is clearly necessary for model (1.2), adding
it to independence will therefore not solve the problem. 3

The conditions allowing to build an additive value model in the finite
case were investigated in [1, 2, 179]. Although the resulting conditions
turn out to be complex, the underlying idea is quite simple. It amounts
to finding conditions under which a system of linear inequalities has a
solution.

Suppose that x Â y. If model (1.2) holds, this implies that:

n
∑

i=1

vi(xi) >
n
∑

i=1

vi(yi). (1.7)

Similarly if x ∼ y, we obtain:

n
∑

i=1

vi(xi) =

n
∑

i=1

vi(yi). (1.8)

The problem is then to find conditions on % such that the system of
finitely many equalities and inequalities (1.7-1.8) has a solution. This is
a classical problem in Linear Algebra [83].

Definition 29 (Relation E
m)

Let m be an integer ≥ 2. Let x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X. We say
that

(x1, x2, . . . , xm)Em(y1, y2, . . . , ym)

if, for all i ∈ N , (x1
i , x

2
i , . . . , x

m
i ) is a permutation of (y1

i , y
2
i , . . . , y

m
i ).

Suppose that (x1, x2, . . . , xm)Em(y1, y2, . . . , ym) then model (1.2) im-
plies that

m
∑

j=1

n
∑

i=1

vi(x
j
i ) =

m
∑

j=1

n
∑

i=1

vi(y
j
i ).

Therefore if xj % yj for j = 1, 2, . . . ,m − 1, it cannot be true that
xm Â ym. This condition must hold for all m = 2, 3, . . ..
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Definition 30 (Condition C
m)

Let m be an integer ≥ 2. We say that condition Cm holds if

[xj % yj for j = 1, 2, . . . ,m− 1]⇒ Not[xm Â ym ]

for all x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X such that

(x1, x2, . . . , xm)Em(y1, y2, . . . , ym).

Remark 31
It is not difficult to check that:

Cm+1 ⇒ Cm,

C2 ⇒ % is independent,

C3 ⇒ % is transitive. •

We already observed that Cm was implied by the existence of an
additive representation. The main result for the finite case states that
requiring that % is complete and that Cm holds for m = 2, 3, . . . is also
sufficient. Proofs can be found in [58, 129].

Theorem 32
Let % be a binary relation on a finite set X ⊆ X1×X2×· · ·×Xn. There
are real-valued functions vi on Xi such that (1.2) holds if and only if %
is complete and satisfies Cm for m = 2, 3, . . ..

Remark 33
Contrary to the “rich” case considered in the preceding section, we have
here necessary and sufficient conditions for the additive value model
(1.2). However, it is important to notice that the above result uses a
denumerable scheme of conditions. It is shown in [180] that this denu-
merable scheme cannot be truncated: for all m ≥ 2, there is a relation %
on a finite set X such that Cm holds but violating Cm+1. This is studied
in more detail in [139, 201, 218]. Therefore, no finite scheme of axioms
is sufficient to characterize model (1.2) for all finite sets X.

Given a finite set X of given cardinality, it is well-known that the
denumerable scheme of condition can be truncated. The precise relation
between the cardinality of X and the number of conditions needed raises
difficult combinatorial questions that are studied in [77, 78]. •

Remark 34
It is clear that, if a relation % has a representation in model (1.2) with
functions vi, it also has a representation using functions v′i = αvi + βi
with α > 0. Contrary to the rich case, the uniqueness of the functions
vi is more complex as shown by the following example.
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Example 35
Let X = X1 × X2 with X1 = {a, b, c} and X2 = {d, e}. Consider the
weak order on X such that, abusing notation in an obvious way,

ad Â bd Â ae Â cd Â be Â ce.

This relation has a representation in model (1.2) with

v1(a) = 3, v1(b) = 1, v1(c) = 0, v2(d) = 3, v2(e) = 0.5.

An equally valid representation would be given taking v1(b) = 2. Clearly
this new representation cannot be deduced from the original one apply-
ing a positive affine transformation. 3

Remark 36
Theorem 32 has been extended to the case of an arbitrary set X in
[113, 112], see also [75, 81]. The resulting conditions are however quite
complex. This explains why we spent time on this “rich” case in the
preceding section. •

Remark 37
The use of a denumerable scheme of conditions in theorem 32 does not
facilitate the interpretation and the test of conditions. However it should
be noticed that, on a given set X, the test of the Cm conditions amounts
to finding if a system of finitely many linear inequalities has a solution.
It is well-known that Linear Programming techniques are quite efficient
for such a task. •

4.2. Implementation: LP-based assessment

We show how to use LP techniques in order to assess an additive value
model (1.2), without supposing that the sets Xi are rich. For practical
purposes, it is not restrictive to assume that we are only interested in
assessing a model for a limited range on each Xi. We therefore assume
that the sets Xi are bounded so that, using independence, there is a
worst value xi∗ and a most preferable value x∗i . Using the uniqueness
properties of model (1.2), we may always suppose, after an appropriate
normalization, that:

v1(x1∗) = v2(x2∗) = . . . = vn(xn∗) = 0 and (1.9)
n
∑

i=1

vi(x
∗
i ) = 1. (1.10)

Two main cases arise (see Figures 1.10 and 1.11):
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vi(xi)

xi
xi∗ x1

i x2
i x∗i

vi(xi∗)

vi(x
1
i )

vi(x
2
i )

vi(x
∗
i )

Figure 1.10. Value function when Xi is discrete.

attribute i ∈ N is discrete so that the evaluation of any conceivable
alternative on this attribute belongs to a finite set. We suppose that
Xi = {xi∗, x

1
i , x

2
i , . . . , x

ri

i , x
∗
i }. We therefore have to assess ri + 1

values of vi,

the attribute i ∈ N has an underlying continuous structure. It is
hardly restrictive in practice to suppose that Xi ⊂ R, so that the
evaluation of an alternative on this attribute may take any value
between xi∗ and x∗i . In this case, we may opt for the assessment
of a piecewise linear approximation of vi partitioning the set Xi

in ri + 1 intervals and supposing that vi is linear on each of these
intervals. Note that the approximation of vi can be made more
precise simply by increasing the number of these intervals.

With these conventions, the assessment of the model (1.2) amounts to
giving a value to

∑n
i=1(ri +1) unknowns. Clearly any judgment of pref-

erence linking x and y translate into a linear inequality between these
unknowns. Similarly any judgment of indifference linking x and y trans-
late into a linear equality. Linear Programming (LP) offers a powerful
tool for testing whether such a system has solutions. Therefore, an as-
sessment procedure can be conceived on the following basis:

obtain judgments in terms of preference or indifference linking sev-
eral alternatives in X,

convert these judgments into linear (in)equalities,

test, using LP, whether this system has a solution.
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Figure 1.11. Value function when Xi is continuous.

If the system has no solution then one may either propose a solution that
will be “as close as possible” from the information obtained, e.g. violating
the minimum number of (in)equalities or suggest the reconsideration of
certain judgements. If the system has a solution, one may explore the
set of all solutions to this system since they are all candidates for the
establishment of model (1.2). These various techniques depend on:

the choice of the alternatives in X that are compared: they may
be real or fictitious, they may differ on a different number of at-
tributes,

the way to deal with the inconsistency of the system and to even-
tually propose some judgments to be reconsidered,

the way to explore the set of solutions of the system and to use
this set as the basis for deriving a prescription.

Linear programming offers of simple and versatile technique to assess
additive value functions. All restrictions generating linear constraints of
the coefficient of the value function can easily be accommodated. This
idea has been often exploited, see [16]. We present below two techniques
using it. It should be noticed that rather different techniques have been
proposed in the literature on Marketing [35, 103, 104, 114, 132].

4.2.1 UTA [111]. UTA (“UTilité Additive”, i.e. additive util-
ity in French) is one of the oldest techniques belonging to this family.
It is supposed in UTA that there is a subset Ref ⊂ X of reference al-
ternatives that the decision-maker knows well either because he/she has
experienced them or because they have received particular attention.
The technique amounts to asking the DM to provide a weak order on
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Ref . Each preference or indifference relation contained in this weak order
is then translated into a linear constraint:

x ∼ y gives an equality v(x)− v(y) = 0 and

x Â y gives an inequality v(x)− v(y) > 0,

where v(x) and v(y) can be expressed as a linear combination of the
unknowns as remarked earlier. Strict inequalities are then translated into
large inequalities as is usual in Linear Programming, i.e. v(x)−v(y) > 0
becomes v(x) − v(y) ≥ ε where ε > 0 is a very small positive number
that should be chosen according to the precision of the arithmetics used
by the LP package.

The test of the existence of a solution to the system of linear con-
straints is done via standard Goal Programming techniques [36] adding
appropriate deviation variables. In UTA, each equation v(x)− v(y) = 0
is translated into an equation v(x)−v(y)+σ+

x −σ
−
x +σ+

y −σ
−
y = 0, where

σ+
x , σ

−
x , σ

+
y and σ−y are nonnegative deviation variables. Similarly each

inequality v(x)−v(y) ≥ ε is written as v(x)−v(y)+σ+
x −σ

−
x +σ

+
y −σ

−
y ≥ ε.

It is clear that there will exist a solution to the original system of linear
constraints if there is a solution of the LP in which all deviation variables
are zero. This can easily be tested using the objective function

Minimize Z =
∑

x∈Ref

σ+
x + σ−x (1.11)

Two cases arise. If the optimal value of Z is 0, there is an additive
value function that represents the preference information. It should be
observed that, except in exceptional cases (e.g. if the preference infor-
mation collected is identical to the preference information collected with
the standard sequence technique), there are infinitely many such additive
value functions (that are not related via a simple change of origin and of
unit, since we already fixed them through normalization (1.9-1.10)). The
one given as the “optimal” one by the LP does not have a special status
since it is highly dependent upon the arbitrary choice of the objective
function; instead of minimizing the sum of the deviation variables, we
could have as well, and still preserving linearity, minimized the largest of
these variables. The whole polyhedron of feasible solutions of the original
(in)equalities corresponds to adequate additive value functions: we have
a whole set V of additive value functions representing the information
collected on the set of reference alternatives Ref .

The size of V is clearly dependent upon the choice of the alternatives
in Ref . Using standard techniques in LP, several functions in V may
be obtained, e.g. the ones maximizing or minimizing, within V, vi(x

∗
i )
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for each attribute [111]. It is often interesting to present them to the
decision-maker in the pictorial form of Figures 1.10 and 1.11.

If the optimal value of Z is strictly greater than 0, there is no additive
value function representing the preference information available. The so-
lution given as optimal (note that it is not guaranteed that this solution
leads to the minimum possible number of violations w.r.t. the informa-
tion provided—this would require solving an integer linear programme)
is, in general, highly dependent upon the choice of the objective function.

This absence of solution to the system might be due to several factors:

the piecewise linear approximation of the vi for the “continuous”
attributes may be too rough. It is easy to test whether an increase
in the number of linear pieces on some of these attributes may lead
to a nonempty set of additive value functions.

the information provided by the decision-maker may be of poor
quality. It might then be interesting to present to the decision-
maker one additive value function (e.g. one may present an average
function after some post-optimality analysis) in the pictorial form
of Figures 1.10 and 1.11 and to let him react to this information
either by modifying his/her initial judgments or even by letting
him/her react directly on the shape of the value functions. This is
the solution implemented in the well-known PREFCALC system
[109].

the preference provided by the decision-maker might be inconsis-
tent with the conditions implied by an additive value function. The
system should then help locate these inconsistencies and allow the
DM to think about them. Alternatively, since many alternative
attribute descriptions are possible, it may be worth investigating
whether a different definition of the various attributes may lead to
a preference model consistent with model (1.2). Several examples
of such analysis may be found in [119, 121, 209]

When the above techniques fail, the optimal solution of the LP, even if
not compatible with the information provided, may still be considered
as an adequate model. Again, since the objective function introduced
above is somewhat arbitrary and it is recommended in [111] to perform
a post-optimality analysis, e.g. considering additive value functions that
are “close” to the optimal solution through the introduction of a linear
constraint:

Z ≤ Z∗ + δ,

where Z∗ is the optimal value of the objective function of the original LP
and δ is a “small” positive number. As above, the result of the analysis is



40

a set V of additive value functions defined by a set of linear constraints.
A representative sample of additive value functions within V may be
obtained as above.

It should be noted that many possible variants of UTA can be con-
ceived building on the following comments. They include:

the addition of monotonicity properties of the vi with respect to
the underlying continuous attributes,

the addition of constraints on the shape of the marginal value
functions vi, e.g. requiring them to be concave, convex or S-shaped,

the addition of constraints linked to a possible indication of pref-
erence intensity for the elements of Ref given by the DM, e.g. the
difference between x and y is larger than the difference between z
and w.

For applications of UTA-like techniques, we refer to [38, 47, 48, 105,
110, 148, 185, 186, 187, 188, 189, 190, 192, 195, 196, 219, 221, 220,
223, 222]. Variants of the method are considered in [19, 20, 191]. This
method is also studied in detail in chapter XXX of this volume (Chapter
9, Siskos, UTA).

4.2.2 MACBETH [12]. It is easy to see that (1.9) and (1.10)
may equivalently be written as:

x % y ⇔
n
∑

i=1

kiui(xi) ≥
n
∑

i=1

kiui(yi), (1.12)

where

u1(x1∗) = u2(x2∗) = . . . un(xn∗) = 0, (1.13)

u1(x
∗
1) = u2(x

∗
2) = . . . un(x

∗
n) = 1 and (1.14)

n
∑

i=1

ki = 1. (1.15)

With such an expression of an additive value function, it is tempting to
break down the assessment into two distinct parts: a value function ui

is assessed on each attribute and, then, scaling constants ki are assessed
taking the shape of the value functions ui as given. This is the path
followed in MACBETH.

Remark 38
Again, note that we are speaking here of ki as scaling constants and not
as weights. As already mentioned weights that would reflect the “impor-
tance” of attributes are irrelevant to assess the additive value function
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model. Notice that, under (1.12-1.15) the ordering of the scaling constant
ki is dependent upon the choice of xi∗ and x

∗
i . Increasing the width of the

interval [xi∗, x
∗
i ] will lead to increasing the value of the scaling constant

ki. The value ki has, therefore, nothing to do with the “importance” of
attribute i. This point is unfortunately too often forgotten when using
a weighted average of some numerical attributes. In the latter model,
changing the units in which the attributes are measured should imply
changing the “weights” accordingly. •

The assessment procedure of the ui is conceived in such a way as to
avoid comparing alternatives differing on more than one attribute. In
view of what was said before concerning the standard sequence tech-
nique, this is clearly an advantage of the technique. But can it be done?
The trick here is that MACBETH asks for judgments related to the dif-
ference between the desirability of alternatives and not only judgments
in terms of preference or indifference. Partial value functions ui are ap-
proximated in a similar way than in UTA: for discrete attributes, each
point on the function is assessed, for continuous ones, a piecewise linear
approximation is used.

MACBETH asks the DM to compare pairs of levels on each attribute.
If no difference is felt between these levels, they receive an identical par-
tial value level. If a difference is felt between xk

i and xri , MACBETH asks
for a judgment qualifying the strength of this difference. The method and
the associated software propose three different semantical categories:

Categories Description

C1 weak
C2 strong
C3 extreme

with the possibility of using intermediate categories, i.e. between null and
weak, weak and strong, strong and extreme (giving a total of six distinct
categories). This information is then converted into linear inequations
using the natural interpretation that if the “difference” between the lev-
els xki and xri has been judged larger than the “difference” between xk′

i

and xr
′

i then it should follow that ui(x
k
i ) − ui(x

r
i ) > ui(x

k′

i ) − ui(x
r′

i ).
Technically the six distinct categories are delimited by thresholds that
are used in the establishment of the constraints of the LP. The software
associated to MACBETH offers the possibility to compare all pairs of
levels on each attribute for a total of (ri + 1)ri/2 comparisons. Using
standard Goal Programming techniques, as in UTA, the test of the com-
patibility of a partial value function with this information is performed
via the solution of a LP. If there is a partial value function compatible
with the information, a “central” function is proposed to the DM who
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has the possibility to modify it. If not, the results of the LP are exploited
in such a way to propose modifications of the information that would
make it consistent.

The assessment of the scaling constant ki is done using similar princi-
ples. The DM is asked to compare the following (n+ 2) alternatives by
pairs:

(x1∗, x2∗, . . . , xn∗),

(x∗1, x2∗, . . . , xn∗),

(x1∗, x
∗
2, . . . , xn∗),

. . .

(x1∗, x2∗, . . . , x
∗
n) and

(x∗1, x
∗
2, . . . , x

∗
n),

placing each pair in a category of difference. This information imme-
diately translates into a set of linear constraints on the ki. These con-
straints are processed as before. It should be noticed that, once the
partial value functions ui are assessed, it is not necessary to use the lev-
els xi∗ and x∗i to assess the ki since they may well lead to alternatives
that are too unrealistic. The authors of MACBETH suggest to replace
xi∗ by a “neutral” level which appears neither desirable nor undesirable
and x∗i by a “desirable” level that is judged satisfactory. Although this
clearly impacts the quality of the dialogue with the DM, this has no
consequence on the underlying technique used to process information.

We refer to [6, 7, 8, 9, 10, 11] for applications of the MACBETH
technique. This method is also studied in detail in chapter XXX of this
volume (Chapter 10, Bana, MACBETH).

5. Extensions

The additive value model (1.2) is the central model for the application
of conjoint measurement techniques to decision analysis. In this section,
we consider various extensions to this model.

5.1. Transitive Decomposable models

The transitive decomposable model has been introduced in [129] as a
natural generalization of model (1.2). It amounts to replacing the ad-
dition operation by a general function that is increasing in each of its
arguments.

Definition 39 (Transitive decomposable model)
Let % be a binary relation on a set X =

∏n
i=1 Xi. The transitive decom-

posable model holds if, for all i ∈ N , there is a real-valued function vi
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on Xi and a real-valued function g on
∏n

i=1 vi(Xi) that is increasing in
all its arguments such that:

x % y ⇔ g(v1(x1), . . . , vn(xn)) ≥ g(v1(y1), . . . , vn(yn)), (1.16)

for all x, y ∈ X.

An interesting point with this model is that it admits an intuitively
appealing simple characterization. The basic axiom for characterizing
the above transitive decomposable model is weak independence, which
is clearly implied by (1.16). The following theorem is proved in [129, ch.
7].

Theorem 40
A preference relation % on a finite or countably infinite set X has a
representation in the transitive decomposable model iff % is a weakly
independent weak order.

Remark 41
This result can be extended to sets of arbitrary cardinality adding a,
necessary, condition implying that the weak order % has a numerical
representation, see [42, 45]. •

The weak point of such a model is that the function g is left unspecified
so that the model will be difficult to assess. Furthermore, the uniqueness
results for vi and g are clearly much less powerful than what we obtained
with model (1.2), see [129, ch. 7]. Therefore, practical applications of
this model generally imply specifying the type of function g, possibly
by verifying further conditions on the preference relation that impose
that g belongs to some parameterized family of functions, e.g. some
polynomial function of the vi. This is studied in detail in [129, ch. 7] and
[14, 82, 139, 138, 156, 166, 202]. Since such models have, to the best of
our knowledge, never been used in decision analysis, we do not analyze
them further.

The structure of the decomposable model however suggests that as-
sessment techniques for this model could well come from Artificial Intelli-
gence with its “rule induction” machinery. Indeed the function g in model
(1.16) may also be seen as a set of “rules”. We refer to [97, 98, 100, 101]
for a thorough study of the potentiality of such an approach.

Remark 42
A simple extension of the decomposable model consists in simply asking
for a function g that would be nondecreasing in each of its arguments.
The following result is proved in [30] (see also [100]) (it can easily be
extended to cover the case of an arbitrary set X, adding a, necessary,
condition implying that % has a numerical representation).
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We say that % is weakly separable if, for all i ∈ N and all xi, yi ∈ Xi, it
is never true that (xi, z−i) Â (yi, z−i) and (yi, w−i) Â (xi, w−i), for some
z−i, w−i ∈ X−i. Clearly this is a weakening of weak independence since
it tolerates to have at the same time (xi, z−i) Â (yi, z−i) and (xi, w−i) ∼
(yi, w−i).

Theorem 43
A preference relation % on a finite or countably infinite set X has a
representation in the weak decomposable model:

x % y ⇔ g(u1(x1), . . . , un(xn)) ≥ g(u1(y1), . . . , un(yn))

with g nondecreasing in all its arguments iff % is a weakly separable weak
order.

A recent trend of research has tried to characterize special functional
forms for g in the weakly decomposable model, such as max, min or
some more complex forms. The main references include [26, 100, 102,
182, 194]. •

Remark 44
The use of “fuzzy integrals” as tools for aggregating criteria has recently
attracted much attention [49, 90, 91, 93, 94, 95, 143, 145, 144, 146], the
Choquet Integral and the Sugeno integral being among the most popu-
lar. It should be strongly emphasized that the very definition of these
integrals requires to have at hand a weak order on ∪n

i=1Xi, supposing
w.l.o.g. that the sets Xi are disjoint. This is usually called a “commen-
surability hypothesis”. Whereas this hypothesis is quite natural when
dealing with an homogeneous Cartesian product, as in decision under
uncertainty (see e.g. [211]), it is far less so in the area of multiple cri-
teria decision making. A neat conjoint measurement analysis of such
models and their associated assessment procedures is an open research
question, see [92]. •

5.2. Intransitive indifference

Decomposable models form a large family of preferences though not
large enough to encompass all cases that may be encountered when ask-
ing subjects to express preferences. A major restriction is that not all
preferences may be assumed to be weak orders. The example of the
sequence of cups of coffee, each differing from the previous one by an
imperceptible quantity of sugar added [133], is famous; it leads to the
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notions of semiorder and interval order [4, 57, 66, 133, 161], in which
indifference is not transitive, while strict preference is.

Ideally, taking intransitive indifference into account, we would want
to arrive at a generalization of (1.2) in which:

x ∼ y ⇔ |V (x)− V (y)| ≤ ε,

x Â y ⇔ V (x) > V (y) + ε,

where ε ≥ 0 and V (x) =
∑n

i=1 vi(xi).
In the finite case, it is not difficult to extend the conditions presented

in section 4 to cover such a case. Indeed, we are still looking here for
the solution to a system of linear constraints. Although this seems to
have never been done, it would not be difficult to adapt the LP-based
assessment techniques to this case.

On the contrary, extending the standard sequence technique of sec-
tion 3 is a formidable challenge. Indeed, remember that these techniques
crucially rest on indifference judgments which lead to the determination
of “perfect copies” of a given preference interval. As soon as indifference
is not supposed to be transitive, “perfect copies” are not so perfect and
much trouble is expected. We refer to [84, 128, 134, 161, 198] for a study
of these models.

Remark 45
Even if the analysis of such models proves difficult, it should be noted
that the semi-ordered version of the additive value model may be inter-
preted as having a “built-in” sensitivity analysis via the introduction of
the threshold ε. Therefore, in practice, we may usefully view ε not as a
parameter to be assessed but as a simple trick to avoid undue discrimi-
nation, because of the imprecision inevitably involved in our assessment
procedures, between close alternatives •

Remark 46
Clearly the above model can be generalized to cope with a possibly
non-constant threshold. The literature on the subject remains minimal
however, see [161]. •

5.3. Nontransitive preferences

Many authors [147, 203] have argued that the reasonableness of suppos-
ing that strict preference is transitive is not so strong when it comes to
comparing objects evaluated on several attributes. As soon as it is sup-
posed that subjects may use an “ordinal” strategy for comparing objects,
examples inspired from the well-known Condorcet paradox [176, 183]
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show that intransitivities will be difficult to avoid. Indeed it is possi-
ble to observe predictable intransitivities of strict preference in carefully
controlled experiments [203]. There may therefore be a descriptive in-
terest to studying such models. When it comes to decision analysis,
intransitive preferences are often dismissed on two grounds:

on a practical level, it is not easy to build a recommendation on the
basis of a binary relation in which Â would not be transitive. In-
deed, social choice theorists, facing a similar problem, have devoted
much effort to devising what could be called reasonable procedures
to deal with such preferences [41, 62, 130, 131, 149, 158, 178]. This
literature does not lead, as was expected, to the emergence of a
single suitable procedure in all situations.

on a more conceptual level, many others have questioned the very
rationality of such preferences using some version of the famous
“money pump” argument [137, 164].

P. C. Fishburn has forcefully argued [73] that these arguments might not
be as decisive as they appear at first sight. Furthermore some MCDM
techniques make use of such intransitive models, most notably the so-
called outranking methods [25, 172, 204, 205] and chapters XXX in this
volume. Besides the intellectual challenge, there might therefore be a
real interest in studying such models.

A. Tversky [203] was one of the first to propose such a model gener-
alizing (1.2), known as the additive difference model, in which:

x % y ⇔
n
∑

i=1

Φi(ui(xi)− ui(yi)) ≥ 0 (1.17)

where Φi are increasing and odd functions.
It is clear that (1.17) allows for intransitive % but implies its com-

pleteness. Clearly, (1.17) implies that % is independent. This allows to
unambiguously define marginal preferences %i. Although model (1.17)
can accommodate intransitive %, a consequence of the increasingness
of the Φi is that the marginal preference relations %i are weak orders.
This, in particular, excludes the possibility of any perception threshold
on each attribute which would lead to an intransitive indifference rela-
tion on each attribute. Imposing that Φi are nondecreasing instead of
being increasing allows for such a possibility. This gives rise to what is
called the “weak additive difference model” in [22].

As suggested in [22, 70, 69, 72, 206], the subtractivity requirement
in (1.17) can be relaxed. This leads to nontransitive additive conjoint
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measurement models in which:

x % y ⇔
n
∑

i=1

pi(xi, yi) ≥ 0 (1.18)

where the pi are real-valued functions on X2
i and may have several ad-

ditional properties (e.g. pi(xi, xi) = 0, for all i ∈ {1, 2, . . . , n} and all
xi ∈ Xi).

This model is an obvious generalization of the (weak) additive differ-
ence model. It allows for intransitive and incomplete preference relations
% as well as for intransitive and incomplete marginal preferences %i. An
interesting specialization of (1.18) obtains when pi are required to be
skew symmetric i.e. such that pi(xi, yi) = −pi(yi, xi). This skew sym-
metric nontransitive additive conjoint measurement model implies that
% is complete and independent.

An excellent overview of these nontransitive models is [73]. Several
axiom systems have been proposed to characterize them. P. C. Fishburn
gave [70, 69, 72] axioms for the skew symmetric version of (1.18) both
in the finite and the infinite case. Necessary and sufficient conditions
for a nonstandard version of (1.18) are presented in [76]. [206] gives
axioms for (1.18) with pi(xi, xi) = 0 when n ≥ 4. [22] gives necessary
and sufficient conditions for (1.18) with and without skew symmetry in
the denumerable case when n = 2.

The additive difference model (1.17) was axiomatized in [74] in the
infinite case when n ≥ 3 and [22] gives necessary and sufficient conditions
for the weak additive difference model in the finite case when n = 2.
Related studies of nontransitive models include [39, 64, 136, 153]. The
implications of these models for decision-making under uncertainty were
explored in [71] (for a different path to nontransitive models for decision
making under risk and/or uncertainty, see [65, 67]).

It should be noticed that even the weakest form of these models, i.e.
(1.18) without skew symmetry, involves an addition operation. There-
fore it is unsurprising that the axiomatic analysis of these models share
some common features with the additive value function model (1.2). In-
deed, except in the special case in which n = 2, this case relating more
to ordinal than to conjoint measurement (see [72]), the various axiom
systems that have been proposed involve either:

a denumerable set of cancellation conditions in the finite case or,

a finite number of cancellation conditions together with unneces-
sary structural assumptions in the general case (these structural
assumptions generally allow us to obtain nice uniqueness results
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for (1.18): the functions pi are unique up to the multiplication by
a common positive constant).

A different path to the analysis of nontransitive conjoint measurement
models has recently been proposed in [30, 29, 31]. In order to get a feeling
for these various models, it is useful to consider the various strategies
that are likely to be implemented when comparing objects differing on
several dimensions [40, 151, 152, 175, 200, 203].

Consider two alternatives x and y evaluated on a family of n attributes
so that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

A first strategy that can be used in order to decide whether or not
it can be said that “x is at least as good as y” consists in trying to
measure the “worth” of each alternative on each attribute and then to
combine these evaluations adequately. Giving up all idea of transitivity
and completeness, this suggests a model in which:

x % y ⇔ F (u1(x1), . . . , un(xn), u1(y1), . . . , un(yn)) ≥ 0 (1.19)

where ui are real-valued functions on the Xi and F is a real-valued func-
tion on

∏n
i=1 ui(Xi)

2. Additional properties on F , e.g. its nondecreasing-
ness (resp. nonincreasingness) in its first (resp. last) n arguments, will
give rise to a variety of models implementing this first strategy.

A second strategy relies on the idea of measuring “preference differ-
ences” separately on each attribute and then combining these (positive
or negative) differences in order to know whether the aggregation of
these differences leads to an advantage for x over y. More formally, this
suggests a model in which:

x % y ⇔ G(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)) ≥ 0 (1.20)

where pi are real-valued functions on X2
i and G is a real-valued function

on
∏n

i=1 pi(X
2
i ). Additional properties on G (e.g. its oddness or its non-

decreasingness in each of its arguments) or on pi (e.g. pi(xi, xi) = 0 or
pi(xi, yi) = −pi(yi, xi)) will give rise to a variety of models in line with
the above strategy.

Of course these two strategies are not incompatible and one may well
consider using the “worth” of each alternative on each attribute to mea-
sure “preference differences”. This suggests a model in which:

x % y ⇔ H(φ1(u1(x1), u1(y1)), . . . , φn(un(xn), un(yn))) ≥ 0 (1.21)

where ui are real-valued functions on Xi, φi are real-valued functions on
ui(Xi)

2 and H is a real-valued function on
∏n

i=1 φi(ui(Xi)
2).

The use of general functional forms, instead of additive ones, greatly
facilitate the axiomatic analysis of these models. It mainly relies on the



Acknowledgements 49

study of various kinds of traces induced by the preference relation on
coordinates and does not require a detailed analysis of tradeoffs between
attributes.

The price to pay for such an extension of the scope of conjoint mea-
surement is that the number of parameters that would be needed to
assess such models is quite high. Furthermore, none of them is likely
to possess any remarkable uniqueness properties. Therefore, although
proofs are constructive, these results will not give direct hints on how to
devise assessment procedures. The general idea here is to use numerical
representations as guidelines to understand the consequences of a limited
number of cancellation conditions, without imposing any transitivity or
completeness requirement on the preference relation and any structural
assumptions on the set of objects. Such models have proved useful to:

understand the ordinal character of some aggregation models pro-
posed in the literature [170, 172], known as the “outranking meth-
ods” (see Chapters XXX of this Volume) as shown in [28],

understand the links between aggregation models aiming at en-
riching a dominance relation and more traditional conjoint mea-
surement approaches [30],

to include in a classical conjoint measurement framework, noncom-
pensatory preferences in the sense of [22, 33, 55, 60, 61] as shown
in [28, 32, 99].
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Aide Multicritère à la Décision/Multiple Criteria Decision Aid, pages 99–115.
European Commission, Joint Research Centre, 2001.

[56] Final report of the British Association for the Advancement of Science. 2:331–
349, 1940.

[57] P. C. Fishburn. Intransitive indifference in preference theory: A survey. Oper-
ations Research, 18(2):207–228, 1970.

[58] P. C. Fishburn. Utility theory for decision-making. Wiley, New York, 1970.

[59] P. C. Fishburn. Lexicographic orders, utilities and decision rules: A survey.
Management Science, 20(11):1442–1471, 1974.

[60] P. C. Fishburn. Axioms for lexicographic preferences. Review of Economic
Studies, 42:415–419, 1975.

[61] P. C. Fishburn. Noncompensatory preferences. Synthese, 33:393–403, 1976.

[62] P. C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied
Mathematics, 33:469–489, 1977.



References 55

[63] P. C. Fishburn. A survey of multiattribute/multicriteria evaluation theories.
In S. Zionts, editor, Multicriteria problem solving, pages 181–224. Springer
Verlag, Berlin, 1978.

[64] P. C. Fishburn. Lexicographic additive differences. Journal of Mathematical
Psychology, 21:191–218, 1980.

[65] P. C. Fishburn. Nontransitive measurable utility. Journal of Mathematical
Psychology, 26:31–67, 1982.

[66] P. C. Fishburn. Interval orders and intervals graphs. Wiley, New York, 1985.

[67] P. C. Fishburn. Nonlinear preference and utility theory. Johns Hopkins Uni-
versity Press, Baltimore, 1988.

[68] P. C. Fishburn. Normative theories of decision making under risk and under
uncertainty. In Nonconventional preference relations in decision making, pages
1–21. Springer, Berlin, 1988.

[69] P. C. Fishburn. Additive non-transitive preferences. Economic Letters, 34:317–
321, 1990.

[70] P. C. Fishburn. Continuous nontransitive additive conjoint measurement.
Mathematical Social Sciences, 20:165–193, 1990.

[71] P. C. Fishburn. Skew symmetric additive utility with finite states. Mathemat-
ical Social Sciences, 19:103–115, 1990.

[72] P. C. Fishburn. Nontransitive additive conjoint measurement. Journal of
Mathematical Psychology, 35:1–40, 1991.

[73] P. C. Fishburn. Nontransitive preferences in decision theory. Journal of Risk
and Uncertainty, 4:113–134, 1991.

[74] P. C. Fishburn. Additive differences and simple preference comparisons. Jour-
nal of Mathematical Psychology, 36:21–31, 1992.

[75] P. C. Fishburn. A general axiomatization of additive measurement with appli-
cations. Naval Research Logistics, 39(6):741–755, 1992.

[76] P. C. Fishburn. On nonstandard nontransitive additive utility. Journal of
Economic Theory, 56:426–433, 1992.

[77] P. C. Fishburn. Finite linear qualitative probability. Journal of Mathematical
Psychology, 40:21–31, 1996.

[78] P. C. Fishburn. Cancellation conditions for multiattribute preferences on finite
sets. In M. H. Karwan, J. Spronk, and J. Wallenius, editors, Essays in Decision
Making, pages 157–167, Berlin, 1997. Springer Verlag.

[79] S. French. Decision theory – An introduction to the mathematics of rationality.
Ellis Horwood, London, 1993.

[80] D. G. Fryback and R. L. Keeney. Constructing a complex judgmental model:
An index of trauma severity. Management Science, 29:869–883., 1983.

[81] G. Furkhen and M. K. Richter. Additive utility. Economic Theory, 1:83–105,
1991.



56

[82] G. Furkhen and M. K. Richter. Polynomial utility. Economic Theory, 1:231–
249, 1991.

[83] D. Gale. The theory of linear economic models. McGraw-Hill, New York, 1960.

[84] I. Gilboa and R. Lapson. Aggregation of semiorders: Intransitive indifference
makes a difference. Economic Theory, 5:109–126, 1995.

[85] Ch. Gonzales. Additive utilities when some components are solvable and others
not. Journal of Mathematical Psychology, 40:141–151, 1996.

[86] Ch. Gonzales. Utilités additives : Existence et construction. Thèse de doctorat,
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[98] S. Greco, B. Matarazzo, and R. SÃlowiński. The use of rough sets and fuzzy sets
in MCDM. In T. Gal, T. Hanne, and T. Stewart, editors, Multicriteria decision
making, Advances in mcdm models, algorithms, theory and applications, pages
14.1–14.59, Dordrecht, 1999. Kluwer.



References 57

[99] S. Greco, B. Matarazzo, and R. SÃlowiński. Axiomatic basis of noncompensatoty
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