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1 Introduction

This volume is dedicated to concepts, results, procedures and software aiming
at helping one or several person in making a decision. It is then natural to
investigate how the various courses of action that are involved in this decision
compare in terms of preference. The aim of this paper is to propose a brief
survey of the main tools and results that can be useful to do so.

The literature on preference modelling is vast. This can fist be explained
by the fact that the question of modelling preferences occurs in several dis-
ciplines, for instance:

• in Economics where one tries to model the preferences of a “rational
consumer” (see, e.g, Debreu 1959),

• in Psychology in which the study of preference judgments collected
in experiments is quite common (see Kahneman and Tversky 1979,
Kahneman, Slovic, and Tversky 1981),

• in Political Science in which the question of defining a collective pref-
erence on the basis of the opinion of several voters is central (see Sen
1986),

• in Operational Research in which optimizing an objective function im-
plies the definition of a direction of preference (seer Roy 1985),

• in Artificial Intelligence in which the creation of autonomous agents
able to take decisions implies the modelling of their vision of what is
desirable and what is less so (see Doyle and Wellman 1992)

Moreover, the question of preference modelling can be studied from a variety
of perspectives (see Bell, Raiffa, and Tversky 1988), among which:

• a normative perspective one investigates preference models that are
likely to lead to a “rational behavior”,

• a descriptive perspective trying to find adequate models to capture
judgements obtained in experiments,

• a prescriptive perspective in which one tries to build a preference model
that is able to lead to an adequate recommendation.

Finally, the preferences that are to be modelled can be expressed on a variety
of objects depending on the underlying decision problem. For instance, one
may compare:
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• vectors in Rp indicating the consumption of p perfectly divisible goods,

• candidates in an election,

• probability distributions modelling the possible financial results of var-
ious investment prospects,

• alternatives evaluated on several criteria expressed in incommensurable
units when comparing sites for a new factory,

• projects evaluated on a monetary scale conditionally on the occurrence
of various events or on the actions of other players.

• etc.

It would be impossible within the scope of this introductory paper to exhaus-
tively summarize the immense literature on the subject. More realistically,
we will try here to present in a simple way the main concepts used in building
models of preference. This will give the reader the necessary background to
tackle the remaining chapters in this book. The reader willing to deepen his
understanding of the subject is referred to Aleskerov, Bouyssou, and Mon-
jardet (2006), Fishburn (1970, 1985) Krantz, Luce, Suppes, and Tversky
(1971), Pirlot and Vincke (1997), Roberts (1979), or Roubens and Vincke
(1985).

This paper is organized as follows. Section 2 is devoted to the concept
of binary relation since this is the central tool in most models of preference.
Section 3 defines a “preference structure”. Section 4 introduces two classical
preference structures: complete orders and weak orders. Sections 5 and 6
introduce several more general preference structures. Section 7 concludes
with the mention of several important questions that we could not tackle
here.

2 Binary relations

2.1 Definitions

A binary relation T on a set A is a subset of the Cartesian product A × A,
i.e., a set of ordered pairs (a, b) of elements of A. If the ordered pair (a, b)
belongs to the set T , we will often write a T b instead of (a, b) ∈ T . In
the opposite case, we write (a, b) 6∈ T or a ¬T b. Except when explicitly
mentioned otherwise, we will suppose in all what follows that the set A is
finite.
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Remark 1
Since binary relations are sets, we can apply to them the classical operations
of set theory. For instance, given any two binary relations T1 and T2 on A,
we will write:

T1 ⊂ T2 iff a T1 b ⇒ a T2 b, ∀a, b ∈ A,

a (T1 ∪ T2) b iff a T1 b or a T2 b,

a (T1 ∩ T2) b iff a T1 b and a T2 b.

Moreover the product T1 · T2 will be defined by:

a T1 · T2 b iff ∃c ∈ A : a T1 c and c T2 b.

We denote by T 2 the relation T · T , i.e., the product of the relation T with
itself. •

Given a binary relation T on A, we define:

• its inverse relation T− such that:

a T− b iff b T a,

• its complement, i.e., the binary relation T c such that:

a T c b iff a ¬T b,

• its dual relation T d such that:

a T d b iff b ¬T a,

• its symmetric part IT such that:

a IT b iff [a T b and b T a],

• its asymmetric part PT such that:

a PT b iff [a T b and b ¬T a],
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• its associated equivalence relation ET such that:

a ET b iff

{

a T c ⇔ b T c,
c T a ⇔ c T b,

}

, ∀c ∈ A.

Remark 2
It is easy to check that we have:

T d = T−c
= T c−,

IT = T ∩ T−,

PT = T ∩ T d. •

2.2 Properties of a binary relation

A binary relation T on A is said to be:

• reflexive if a T a,

• irreflexive if a ¬T a,

• symmetric if a T b ⇒ b T a,

• antisymmetric if a T b and b T a ⇒ a = b,

• asymmetric if a T b ⇒ b ¬T a,

• weakly complete if a 6= b ⇒ a T b or b T a,

• complete if a T b or b T a,

• transitive if a T b and b T c ⇒ a T c,

• negatively transitive if a ¬T b and b ¬T c ⇒ a ¬T c,

• de Ferrers if [a T b and c T d] ⇒ [a T d or c T d],

• semi-transitive if [a T b and b T c] ⇒ [a T d or d T c],

for all a, b, c, d ∈ A.

Remark 3
The above properties are not independent. For instance, it is easy to check
that:

• a relation is asymmetric iff it is irreflexive and antisymmetric,
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• a relation is complete iff it is weakly complete and reflexive,

• an asymmetric and negatively transitive relation is transitive,

• a complete and transitive relation is negatively transitive.

Whatever the properties of T , it is clear that:

• PT is always asymmetric,

• IT is always symmetric,

• ET is always reflexive, symmetric and transitive. •

Remark 4
It is possible to reformulate the above properties in a variety of ways. For
instance, observe that: que:

• T is complete ⇔ T ∪ T−= A × A,

• T is asymmetric ⇔ T ∩ T−= ∅,

• T is transitive ⇔ T 2 ⊂ T ,

• T is Ferrers ⇔ T · T d · T ⊂ T ,

• T is semi-transitive ⇔ T · T · T d ⊂ T . •

An equivalence is a reflexive, symmetric and transitive binary relation
(hence, the binary relation ET defined earlier is an equivalence whatever the
properties of T ). Let E be an equivalence on A. Given an element a ∈ A, the
equivalence class associated to a, denoted by [a]E , is the set {b ∈ A : a E b}.
It is always true that a ∈ [a]E . It is easy to show that ∀a, b ∈ A, either
[a]E = [b]E or [a]E ∩ [b]E = ∅. An equivalence therefore partitions A into
equivalence classes. The set of all these equivalence classes is called the
quotient A for E and is denoted A/E.

2.3 Graphical representation of a binary relation

A binary relation T on A can be represented as a directed graph (A, T )
where A is the set of vertices of the graph and T is the set of the arcs of
the graph. (i.e., ordered pair of vertices). The particular properties of a
binary relation can easily be interpreted using the sagittal representation of
the graph (A, T ). The reflexivity of T implies the presence of a loop on each
vertex. The symmetry of T means that when there is an arc going from a to
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b, there is also an arc going from b vers a. The transitivity of T means that
as soon as there is path of length 2 going from a to b, there is an arc from a
vers b. Taking the inverse relation is tantamount to inverting the orientation
of all arc in the graph. Taking the complement consists in adding all missing
arcs and deling all existing ones. Observe that a symmetric relation can
be more conveniently represented using a non-oriented graph, in which the
ordered pairs (a, b) and (b, a) of the relation are represented using a single
edge between the vertices a and b.

2.4 Matrix representation of a binary relation

Another way to represent a binary relation T on A is to associate to each
element of de A a row and a column of a square matrix MT of dimension |A|.
The element MT

ab of this matrix being at the intersection of the row associated
to a and to the column associated to b is 1 if a T b and 0 otherwise.

With such a representation, the reflexivity of T implies the presence of
1 on the diagonal of the matrix, provided that the elements of A have been
associated in the order to the row and columns of the matrix. Under this
hypothesis, the symmetry of T is equivalent to the fact that MT is equal to
its transpose. Taking the inverse relation consists in transposing the matrix
MT . The matrix associated to the product of two binary relations is the
boolean matrix product of the two corresponding matrices.

2.5 Example

Let A = {a, b, c, d, e}. Consider the binary relation T = {(a, b), (b, a),
(b, c), (d, b), (d, d)}. A matrix representation of T is the following:

	 a b c d e
a 0 1 0 0 0
b 1 0 1 0 0
c 0 0 0 0 0
d 0 1 0 1 0
e 0 0 0 0 0

A sagittal representation of the graph (A, T ) is:
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a

b c

d

e

3 Binary relations and preference structures

Consider an ordered pair (a, b) of objects. It is classically supposed that
there can only be two types of answer to the question “is object a at least
as good as object b?”: “yes” or “no”, these two answers being exclusive.
Asking such a question for all ordered pais of objects leads to defining a
binary relation S on the set A of all objects letting a S b if and only if the
answer to the question “is a at least as good as b?” is yes. In view of its
definition, it is natural to consider that S is reflexive; we will do so in all
what follows.

Definition 1
A preference structure on A is a reflexive binary relation S on A.

Remark 5
The preceding definition raises a question of observability. If the idea of
preference is to be based on observable behavior, the primitive may be taken
to be choices made on various subsets of objects. This change of primitive is
at the heart of “revealed preference” theory in which the relation S is inferred
from choice that are observable. Such an inference requires that choices are
essentially “binary”, i.e., that choices made on pairs of objects are sufficient
to infer choice made on larger sets of objects. The condition allowing such
a rationalization of a choice function through a binary relation are classical
(see, e.g., Sen 1970, 1977). They have recently been severely questioned (see
Malishevski 1993, Sen 1993, Sugden 1985). •

Remark 6
In some cases, one may envisage other answers that yes or no to the question
“is a at least as good as b?”, for instance:

• answers such that “I do not know”,

• answers including information on the intensity of the preference, e.g.,
“a is strongly — weakly, moderately — preferred to b”,
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• answers including information on the credibility of the proposition “a
is at least as good as b”, e.g., “the credibility of the ‘a is least as good
as b’ is greater than the credibility of the proposition ‘c is at least as
good as d’ ” or even “the credibility of the proposition ‘a is at least as
good as b’ is α ∈ [0; 1]”.

Admitting such answers implies using a language that is richer than that of
binary relations, for instance:

• the language of fuzzy relations (see Doignon, Monjardet, Roubens, and
Vincke 1986, Fodor and Roubens 1994, Perny and Roy 1992), each
assertion of the type a S b having a degree of credibility,

• languages tolerating hesitation (see, e.g.,, Roy and Vincke 1987)

• languages using the idea of intensity of preference (see Bana e Costa
and Vansnick 1994, Doignon 1987), an assertion such that a S b and
b ¬S a being further qualified (weak, strong or extreme preference, for
instance) or,

• languages making use of non-classical logics (see Tsoukiàs and Vincke
1992, 1995, 1997)) allowing to capture the absence of information or, on
the contrary, the existence of contradictory information; with such lan-
guages, the truth value of the assertion a S b can take values different
from just “true” or “false” and include “unknown” and “contradictory”.

We do not consider such extensions in this paper. •

Let us consider a preference S on a set A. For all pair of objects {a, b}, we
are in one of the following four situations (see Figure 1):

1. [a S b and b S a], denoted by a IS b, interpreted as “a is indifferent to
b”,

2. [a ¬S b and b ¬S a], denoted by a JS b, interpreted as “a is incompa-
rable to b”,

3. [a S b and b ¬S a], denoted by a PS b, interpreted as “a is strictly
preferred to b” and

4. [a ¬S b and b S a], denoted by b PS a, interpreted as “b is strictly
preferred to a”.
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b S a b ¬S a
a S b a I b a P b
a ¬S b b P a a J b

Figure 1: Four exhaustive and mutually exclusive situations

When there is no risk of ambiguity, we use I, J and P instead of IS, JS and
PS. By construction, I and J are symmetric and P is asymmetric. Since S
is reflexive, I is reflexive and J is irreflexive. The three relations P , I and I
are:

• mutually exclusive, i.e., P ∩ I = P ∩ J = I ∩ J = ∅ and

• exhaustive, i.e., P ∪ P− ∪ I ∪ J = A2.

Remark 7
Many works use % instead of S, ≻ instead of P and ∼ instead of I. •

Remark 8
Given a preference structure on S sur A, it may be useful to consider the
relation induced by S on the quotient set A/ES, where ES denotes the equiv-
alence associated to S. This allows to simplify many results. •

Remark 9
A preference structure being a reflexive binary relation, we can use the graph-
ical and matrix representations introduced earlier to represent it. In order
to simplify graphical representations, we will systematically omit reflexivity
loops and we will use the conventions introduced in Figure 2

a

b

a

b

a

b

a P b a I b a J b

Figure 2: Graphical conventions

Example 1
Let A = {a, b, c, d, e} and the preference structure S = { (a, a), (a, b), (a, c),
(a, e), (b, a), (b, b), (b, c), (c, b), (c, c), (d, a), (d, b), (d, c), (d, d), (e, a), (e, c),
(e, e), }. We have:
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• P = {(a, c), (d, a), (d, b), (d, c), (e, c)},

• I = {(a, a), (a, b), (a, e), (b, a), (b, b), (b, c), (c, b), (c, c), (d, d), (e, a),
(e, e)},

• J = {(b, e), (d, e), (e, b), (e, d)}.

Using the above conventions, we obtain the matrix representation (Figure 3)
and the graphical representation (Figure 4) of T . 3

	 a b c d e
a 1 1 1 0 1
b 1 1 1 0 0
c 0 1 1 0 0
d 1 1 1 1 0
e 1 0 1 0 1

Figure 3: Matrix representation

a

b c

d

e

Figure 4: Graphical representation

4 Classical preference structures

4.1 Total order

4.1.1 Definition

A preference structure S is a total order if:
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• S is complete,

• S is transitive,

• S is antisymmetric.

In a total order, the incomparability relation is empty (J = ∅) and the
indifference relation I is limited to pairs of identical objects (I = {(a, a) :
a ∈ A}). The strict preference is P is weakly complete and transitive. A
total order therefore consist in a ranking of the objects from A from best to
worst (using the relation P ) without the possibility of ex aequo.

Remark 10
It is easy to check that an equivalent definition of a total order consists in
saying that S is complete and the only circuits in this relation are loops.

It is clear that if S is a total order:

• P is weakly complete and transitive,

• I is transitive,

• I · P ⊂ P ,

• P · I ⊂ P . •

Remark 11
Checking if a preference structure is a total order is quite simple using the
matric representation of S. Indeed, labelling rows and columns of the matrix
according to P , we obtain a matrix that has only 0 below the diagonal and
1 elsewhere. The relation P corresponds to off-diagonal 1’s. In the graphical
representation if vertices are ranked according to P , all arcs are going from
left to right.

Example 2
Let A = {a, b, c, d, e}. Consider the preference structure S = {(a, a), (a, b),
(a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, d), (d, e),
(e, e)}.

It is easy to check that it is a total order using the matrix representation
shown on Figure 5 or its graphical representation shown on Figure 6. 3
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	 a b c d e
a 1 1 1 1 1
b 0 1 1 1 1
c 0 0 1 1 1
d 0 0 0 1 1
e 0 0 0 0 1

Figure 5: Matrix representation of a total order

a b c d e

Figure 6: Graphical representation of a total order

4.1.2 Numerical representation

Let S be a total order on A. One may associate to each object a rank in such
a way that this rank reflects the position of the object in the relation S. We
leave to the reader the easy proof of the following result.

Theorem 1
A preference structure S on a finite set A is a total order if and only if (iff)
there is a function g : A → R such that, ∀a, b ∈ A:

{

a S b ⇔ g(a) ≥ g(b),
g(a) = g(b) ⇒ a = b.

Remark 12
The numerical representation of a total order is not unique. It is easy to
show that given a numerical representation g satisfying the conditions of
Theorem 1, any increasing transformation applied to g leads to another ad-
missible representation. Conversely, if g and h are two numerical representa-
tions of the same total order in the sense of Theorem 1, there is an increasing
function φ such that g = φ ◦ h. The scale g is said to be an ordinal scale.

Let g be a function satisfying the condition of the above theorem. It
is possible to compare “differences” such as g(a) − g(b) and g(c) − g(d).
These comparisons are nevertheless clearly dependent upon the choice of the
particular function g: another legitimate choice can lead to other comparisons
of differences. Hence, in general, it is impossible to give a particular meaning
to these comparisons. •
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Remark 13
Theorem 1 remains true if A is countably infinite (g is defined by an easy
induction argument). It is clear that the result is no more true in the general
case. Let us illustrate this fact by two exemples.

1. It is well know that the cardinality of P(R) (i.e;, the set of subsets of
R) is strictly greater than that of R. Any total order on P(R) cannot
have a numerical representation in the sense of Theorem 1. A natural
question arises. Is Theorem 1 true when attention is restricted to sets
A having at most the cardinality of R. This is not so, as shown by the
following famous exemple.

2. Let A = R × {0; 1}. It is easy to show that there are one-to-one func-
tions between these two sets that have the same cardinality. Consider
the lexicographic order defined letting:

(x, y) P (z, w) ⇔

{

x > z or
x = z and y > w,

and

(x, y) I (z, w) ⇔ x = z and y = w.

It is easy to show that the structure S = P ∪ I is a total order.
It does not have a numerical representation in the sense of Theo-
rem refth:rep:num:ordre:total. Indeed, suppose that g is such a rep-
resentation. We would have, ∀x ∈ R, (x, 1) P (x, 0) so that g(x, 1) >
g(x, 0). There exists a rational number µ(x) such that g(x, 1) > µ(x) >
g(x, 0). We have (y, 1) P (y, 0) P (x, 1) P (x, 0) iff y > x. Hence, y > x
implies µ(y) > µ(x). The function µ built above is therefore a bijection
between R and Q, a contradiction.

Beardon, Candeal, Herden, Induráin, and Mehta (2002) propose a detailed
analysis of the various situations in which a total order does not have a
numerical representation. The necessary and sufficient conditions ensuring
that a total order has a numerical representation are known. (Bridges and
Mehta 1995, Debreu 1954, Fishburn 1970, Krantz et al. 1971). They amount
to supposing that S on A has a behavior that is “close” from that of ≥ in
R. •

4.2 Weak orders

4.2.1 Definition

A preference structure S is a weak order if:
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• S is complete,

• S is transitive.

Weak orders generalize total orders since they do not have to antisymmetric.
Hence, indifference between distinct elements is allowed in weak orders.

Remark 14
An equivalent definition of a weak order is that S is complete and any circuit
of S has no P arc.

It is clear that if S is a weak order:

• P is transitive,

• P is negatively transitive,

• I is transitive (I is therefore an equivalence),

• I · P ⊂ P ,

• P · I ⊂ P ,

• the relation S indices a total order on the quotient set A/I. •

Remark 15
Let T be an asymmetric and negatively transitive binary relation on A. Let
S = T ∪ (T− ∩ T d). It is easy to show that S is a weak order. •

Remark 16
If the rows and columns of the matrix representation of a weak order are
ordered according to a relation that is compatible with P (the ordering of
the rows and columns for indifferent elements being unimportant), we obtain
a matric in which the 1’s are separated from the 0’s by a stepped frontier
that is below the diagonal and touches the diagonal. In a similar way, the
graphical representation of a weak order generalizes that of a total order.

Example 3
Let A = {a, b, c, d, e}. Consider the preference structure S = (a, a), (a, b),
(a, c), (a, d), (a, e), (b, a), (b, b), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e), (d, c),
(d, d), (d, e), (e, e)}. It is easy to check that this is a weak order considering
the matrix representation shown on Figure 7 or the graphical representation
depicted on Figure 8. 3
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	 a b c d e
a 1 1 1 1 1
b 1 1 1 1 1
c 0 0 1 1 1
d 0 0 1 1 1
e 0 0 0 0 1

Figure 7: Matrix representation of a weak order

a

b

c

d

e

Figure 8: Graphical representation of a weak order

4.2.2 Numerical representation

Remembering that weak order induces a total order on the quotient set A/I,
it is easy to prove the following result.

Theorem 2
A preference structure S on a finite set A is a weak order iff there is a
function g : A → R such that, ∀a, b ∈ A:

a S b ⇔ g(a) ≥ g(b).

Remark 17
As above, the numerical representation of a weak order is defined up to an
increasing transformation. The function g is an ordinal scale and most of the
assertions that can be obtained using arithmetic operations on the values of
g have a truth value that depends on the function g that was chosen: they
are not meaningful in the sense of Roberts (1979). •

Remark 18
It is clear that the above result remain true when A is countably infinite (since
in this case a total order structure always has a numerical representation) As
was the case with total orders, extending this result to arbitrary sets implies
the introduction of additional conditions. •
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4.3 Classical problems

In most studies involving preferences, the weak order model is used: the
function g representing the weak order is the function that should be max-
imized and that is called depending on the context: the value function, the
objective function, the criterion, the value function, etc. It is striking that
decision problem have been dealt with so often in this way without much
investigation on the adequateness of g as a model of preference.

We discuss here a few classical question that has been dealt with using
the weak order model.

4.3.1 Choosing on the basis of binary relation

Suppose that we have a weak order S on a set A and consider the situation
(common in Economics) in which a choice must be made in a subset B ⊆ A.
How to use the information contained in S to guide such a choice? A natural
way to define the set C(B, S) of chosen objects (remark that since we do not
require C(B, S) to be a singleton, it would be more adequate to speak of
objects that are susceptible to be chosen) in B on the basis of S is to let:

C(B, S) = {b ∈ B : Not[ a P b ] for all a ∈ B},

An object a belongs to the choice set as soon as there is no other object that
is strictly preferred to a. It is not difficult to show that C(B, S) is always
nonempty as soon as B is finite (the general case raises difficult question,
see Bergstrom 1975) and S is a weak order. Let us observe that, when B is
finite, imposing that S is a weak order is only a sufficient condition for the
nonemptyness of C(B, S).

A classic result (see Sen 1970)) says that, when B is finite, C(B, S)
is nonempty as soon as P is acyclic. in B (it is never true that, for all
a1, a2, . . . , ak in B, a1 P a2, a2 P a3, . . . , ak−1 P ak and ak P a1). The use of
structures that are more general than the weak order also allows to give a
simple answer to the problem deal with here.

Let us mention that there are situations (e.g., a competitive exam) in
which it is desirable to rank order all elements in a subset B ⊆ A and not
only to define the choice set C(B, S). The weak order model allows to give
a trivial answer to this problem since the restriction of a weak order on A to
a subset B ⊆ A is a weak order on B.
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4.3.2 Aggregating preferences

Suppose that you have collected n ≥ 2 preference structures on A, for in-
stance because the objects are evaluated according to various points of views
(voters, criteria or experts). In such a situation, it is natural to try to build a
“collective” preference structure S that aggregates the information contained
in (S1, S2, . . . , Sn). In general, one looks for a mechanism (e.g., an electoral
system or an aggregation method) that is able to aggregate any n-tuple of
preference structures on A into a collective preference structure. When the
weak order model is used, defining such a mechanism amounts to defining an
aggregation function F from WO(A)n dans WO(A), where WO(A) is the
set of all weak orders on A. The work of Arrow (1963) has clearly shown
the difficulty of such a problem. Imposing a small number of apparently rea-
sonable conditions on F (unanimity, independence with respect to irrelevant
alternatives, absence of dictator) leads to a logical impossibility: it is impos-
sible to simultaneously satisfy all these principles (for a rich synthesis of such
results, see Campbell and Kelly 2002 and Sen 1986). The simple majority
method can be used to illustrate the problem uncovered by Arrow(s result.
This method consist in declaring that “a is collectively at least as good as b”
if there are more weak orders in which “a is at least as good as b” than weak
orders for which “b is at least as good as a”. Such a method seems highly
reasonable and in line with our intuitive conception of democracy. It does
not always lead to to a collective weak order; it may even lead to a collective
relation having cycle in its asymmetric part. This is the famous “Condorcet
paradox”; A = {a, b, c}, n = 3, a P1 b P1 c, c P2 a P2 b and b P3 c P3 a
gives the simplest example of such a situation. Using a collective preference
structure in which strict preference may be cyclic in order to choose and/or
to rank order is far from being an easy task. Many works have investigated
the question (see Laslier 1997, Moulin 1986, Schwartz 1986).

4.3.3 Particular structure of the set of objects

In many situations, it is natural to suppose that the set of objects A has a
particular structure. This will be the case in:

• decision with multiple criteria in which the elements of A are vectors
of evaluations on several dimensions, attributes or criteria. In this
case, we have A ⊆ A1 × A2 × · · · × An where Ai is the set of possible
evaluations of the objects on the ith dimension,

• décision under risk in which the elements on A are viewed as probability
distribution on a set of consequences. In this case we have A ⊆ P(C)
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where P(C) is a set of probability distributions on a set of consequences
C,

• décision under uncertainty in which the elements of A are character-
ized by consequences occurring contingently upon the occurrence of
“several states of nature”. In this case, we have A ⊆ Cn where C is
a set of consequences, supposing that n distinct states of nature are
distinguished.

In all these cases it is tempting to add to the weak order model additional
conditions that will allow to take advantage of the particular structure of the
set A. Among these condition, let us mention:

• preference independence (Keeney and Raiffa 1976, Krantz et al. 1971,
Wakker 1989) in the case of decision-making with multiple criteria,
implying that the comparison of two objects only differing on a subset
of criteria is independent from the their common evaluations:

(aI , c−I) S (bI , c−I) ⇔ (aI , d−I) S (bI , d−I)

where I is a subset of criteria {1, 2, . . . , n} and where (aI , c−I) denotes
the object e ∈ A such that ei = ai if i ∈ I and ei = ci otherwise.

• independence with respect to probabilistic mixing (Fishburn 1970, 1988)
in the case of decision-making under risk, implying that the preference
relation between two probability distribution is not altered when they
are both mixed with a common probability distribution:

a S b ⇔ (aαc) S (bαc)

where (aαb) denotes the convex combination of the probability distri-
butions a and b with the coefficient α ∈ (0; 1),

• the sure thing principle (Fishburn 1970, Savage 1954, Wakker 1989)
in the case of decision-making under uncertainty implying that the
preference between two acts does not depend on common consequences
obtained in some states of nature:

(aI , c−I) S (bI , c−I) ⇔ (aI , d−I) S (bI , d−I)

where I is a subset of states of nature and (aI , c−I) denotes the act
e ∈ A such that ei = ai if i ∈ I and ei = ci otherwise.
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When these conditions are applied to sets of objects that are sufficiently
“rich” (and when it is required that S behaves coherently with this richness,
see Fishburn (1970), Wakker (1989)) we obtain famous model particularizing
the one of the classical theory:

• the model of additive value functions in the case of decision with mul-
tiple criteria:

a S b ⇔

n
∑

i=1

ui(ai) ≥

n
∑

i=1

ui(bi)

where ui is a real-valued fonction on Ai, denoting by ai the evaluation
of object a on the ith criterion,

• the expected utility model in the case of decision-making under risk:

a S b ⇔
∑

c∈C

pa(c)u(c) ≥
∑

c∈C

pb(c)u(c)

where u is a real-valued function on C and pa(c) is the probability to
obtain consequence c ∈ C with object a,

• the subjective expected utility model in the case of decision-making un-
der uncertainty:

a S b ⇔
n

∑

i=1

piu(ai) ≥
n

∑

i=1

piu(bi)

where u is a real-valued function on C and the pi’s are non-negative
numbers adding up to 1 that cas be interpreted as the subjective prob-
abilities of the various states of nature.

On the major interest of these models is to allow a numerical representation
g of S that is much more specific that given by Theorem 2. The additional
conditions mentioned above imply that, when A is adequately rich (e.g.,that
A = A1 ×A2 × · · ·×An in the case of decision-making with multiple criteria
and that each Ai has a rich structure, see Wakker (1989)), imply that g
can be additively decomposed. The numerical representation obtained is an
interval scale (unique up to the choice of origin and unit) It is then possible to
use sophisticated elicitation techniques to assess g and, therefore, structure
a preference model (see Keeney and Raiffa 1976, Krantz et al. 1971, Wakker
1989).

These additional conditions were subjected to many empirical tests. In
the fields of decision-making under risk and uncertainty, it was show that
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the conditions at the heart of the expected utility model (independence ax-
iome and sure thing principle) were falsified in a predictable and reproducible
way (see Allais 1953, Ellsberg 1961, Kahneman and Tversky 1979, McCrim-
mon and Larsson 1979). This has generated numerous studies investigating
models only using weakening of these additional conditions (see Fishburn
1988, Machina 1982, Quiggin 1982, 1993, Yaari 1987 for decision under risk
and Dubois, Prade, and Sabbadin 2001, Gilboa 1987, Gilboa and Schmeidler
1989, Schmeidler 1989, Wakker 1989 for decision under uncertainty).

Dutch book-like arguments (adhering to these generalized models may
transform an individual into a “money pump”) have often been used to crit-
icize these models (see Raiffa 1970). The validity of such arguments never-
theless raises difficult questions (see Machina 1989, McClennen 1990, for a
criticisl of such arguments for decision-making under risk).

Let us finally mention that other structures for A can be usefully studied.
For instance, when A is endowed with a topological structure, it is natural to
investigate numerical representation having nice continuity properties (see,
e.g., Bosi and Mehta 2002, Bridges and Mehta 1995, Jaffray 1975). Similarly,
if A is endowed with a binary operation allowing to combine its elements (this
is the case in decision under risk using “probabilistic mixing” of two objects)
a numerical representation is sought that is somehow compatible (most often
through addition) with this operation (see Krantz et al. 1971).

5 Semi-orders and Interval orders

In weak orders, the indifference relation I is transitive. This hypothesis is
sometimes inadequate since it amounts to supposing a perfect discrimination
between close but distinct objects. Luce (1956) was the first to suggest a
preference structure in which indifference may be intransitive (see Pirlot and
Vincke 1997, for earlier references). He suggested the following example.

Example 4
Consider a set A consisting in 101 cups of coffee numbered from 0 à 100
and identical except that there are i grains of sugar in the ith cup. It is
likely that an individual comparing these cups will not be able to detect a
difference between two consecutive cups. Hence, it is likely that we obtain:

a0 I a1, a1 I a2, . . . , a99 I a100.

If the relation I is supposed to be transitive, we should have a0 I a100,
which seems unlikely as soon as the individual is supposed to prefer sugared
coffee. 3
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The two preference structures introduced in this section aim at modelling
situations in which indifference is not transitive while maintaining our other
hypotheses (transitivity of P , no incomparability) made so far.

5.1 Semi-order

5.1.1 Definition

A preference structure S is a semi-order if:

• S is complete,

• S is Ferrers,

• S is semi-transitive.

Remark 19
It is easy to check that an equivalent definition of a semi-order is to suppose
that S is complete and all circuits of S have more I arcs than P arcs.

Moreover, it is easy to prove that if S is a semi-order:

• P is transitive,

• P is Ferrers,

• P is semi-transitive,

• P · I · P ⊂ P ,

• P · P · I ⊂ P ,

• I · P · P ⊂ P ,

• P 2 ∩ I2 = ∅. •

As will become apparent later, semi-orders arise when an indifference thresh-
old is introduced when comparing objects evaluated on a numerical scale. As
an easy exercise, the reader may wish to check that any weak order is a semi-
order.

Remark 20
The graphical representation of a semiorder is characterized by the fact that
the four configurations depicted in Figure 9 are forbidden (whatever appears
on the diagonal and with the possibility that two indifferent elements may
be identical). •
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a d

b c

a d

b c

a d

b c

a d

b c

Figure 9: Forbidden configurations in a semi-order

5.1.2 Weak order associated with a semi-order

Let S is be a binary relation on A. The binary relation S± on A defined by

a S± b ⇔

{

b S c ⇒ a S c,
c S a ⇒ c S b,

}

∀c ∈ A

is called the “trace” of S. It is clear that the trace of a relation is always
reflexive and transitive. We leave to the reader the easy proof of the following
result.

Theorem 3
Let S be a reflexive binary relation on A. S is a semi-order if and only if its
trace S± is complete.

Remark 21
When S is a semi-order, the weak order S± is obtained ranking the elements
of A according to their degree in S (i.e., number of arcs leaving a vertex
minus the number of arcs entering it). One can check that a weak order is
always identical to its trace. •

5.1.3 Matrix representation(Jacquet-Lagrèze 1978)

Ordering the row and columns of the matrix representation of a semi-order
using an order that is compatible with the trace of the relation, we obtain a
matrix in which the 1 are separated from the 0 by a frontiers that is stepped
and located below the diagonal. This follows immediately from the definition
of the trace. In contrast with what happens with weak orders, the frontier
separating the 1 and the 0 does not necessarily touch the diagonal.

Example 5
Let A = {a, b, c, d, e, f}. Consider the preference structure S = {(a, a), (a, b),
(a, c), (a, d), (a, e), (a, f) (b, a), (b, b), (b, c), (b, d), (b, e), (b, f), (c, b), (c, c),
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(c, d), (c, e), (c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e), (e, f), (f, e),
(f, f) }. We obtain the matric representation shown on Figure 10. This
relation is not a weak order: we have, e.g., e S c and c S b but e ¬S b. 3

	 a b c d e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 0 1 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 1 1 1
f 0 0 0 0 1 1

Figure 10: Matrix representation of a semi-order

5.1.4 Numerical representation

Theorem 4
Lett A be a finite set. The following proposition are equivalent:

1. S is a semi-order on A,

2. there is a function g : A → R and a constant q ≥ 0 such that, ∀a, b ∈ A:

a S b ⇔ g(a) ≥ g(b) − q,

3. there is function g : A → R and a function q : R → R+ such that,
∀a, b ∈ A:

g(a) > g(b) ⇒ g(a) + q(g(a)) ≥ g(b) + q(g(b)),

and
a S b ⇔ g(a) ≥ g(b) − q(g(b)).

Proof

See Fishburn (1985), Pirlot and Vincke (1997, Theorème 3.1), Scott and
Suppes (1958) or Suppes, Krantz, Luce, and Tversky (1989, Chapitre 16) 2

This result shows that semi-orders naturally arise when objects evaluated on
a numerical scale are compared on the basis of the scale but differences that
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are less than a constant threshold are not perceived or are not considered
to be significant. The threshold is not necessarily constant provided that we
never have g(a) > g(b) and g(b) + q(g(b)) > g(a) + q(g(a)). Let us observe
that the generalization of this result to arbitrary sets raises delicate problems
(see Beja and Gilboa 1992, Candeal, Induráin, and Zudaire 2002, Fishburn
1973, 1985).

Remark 22
Let us build the numerical representation of the semi-order for which we gave
the matrix representation earlier. Having chosen an arbitrary positive value
for q, e.g., q = 1, the function g is built associating increasing values to the
elements f, e, d, c, b, a (i.e., considering the lower elements in the weak order
S± first) while satisfying the desired numerical representation. In such a way,
we obtain: g(f) = 0, g(e) = 0, 5, g(d) = 1, 1, g(c) = 1, 2, g(b) = 2, 15 and
g(a) = 3. •

Remark 23
The numerical representation of a semi-order is not unique. All increasing
transformation applied to g gives another acceptable representation provided
that the same transformation is applied to q. However all representations of a
semi-order cannot be obtained in this way as shown by the following example.
The scale that is built is more complex than an ordinal scale.

Example 6
Let A = {a, b, c, d}. Consider the preference structure S = {(a, d), (a, a), (b, b),
(c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (b, d), (d, b), (c, d), (d, c)}. It is easy to
check, e.g., using a matrix representation, that this structure is a semi-order.
The following table give two numerical representation of S that cannot be
obtained from one another by an increasing transformation.

a b c d threshold
g 2 1,1 1 0 1.5
g′ 2 1 1 0 1.5

3

•

5.2 Interval order

5.2.1 Definition

A preference structure S is an interval order if:

• S is complete,
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• S is Ferrers.

This structure generalized all structures introduced so far. As we will later
see, it arises naturally when one wishes to compare interval on an ordinal
scale.

Remark 24
It is easy to check that an equivalent definition of an interval order consists
in saying that S is complete and that all circuits in S have at least two
consecutive I arcs.

It is easily checked that if S is an interval order:

• P is transitive,

• P is Ferrers,

• P · I · P ⊂ P . •

Remark 25
The graphical representation of an interval order is characterized by the fact
that the three configurations depicted on Figure 11 are forbidden (whatever
appears on the diagonal and with the possibility that two indifferent elements
may be identical). •

a d

b c

a d

b c

a d

b c

Figure 11: Forbidden configurations in an interval order

5.2.2 Weak orders associated to an interval order

Let S be a binary relation on A. Let us define a relation S+ on A letting:

a S+ b ⇔ [b S c ⇒ a S c, ∀c ∈ A].
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Similarly, we define the relation S− letting:

a S− b ⇔ [c S a ⇒ c S b, ∀c ∈ A].

The relation S+ (resp. S−) is called the right trace (resp. left trace) of S. It
is clear that S+ and S− are always reflexives and transitives.

The proof of the following result is easy and left to the reader.

Theorem 5
Let S be a reflexive binary relation on A. The following three propositions
are equivalent:

1. S is an interval order,

2. S+ is complete,

3. S− is complete.

Remark 26
When S is an interval order, the weak order S+ (resp. S−) can be obtained
ranking the elements of A according to their out-degree (resp. in-degree) in
S. •

5.2.3 Matrix representation

Let us rank the rows of the matric representation in a way that is compatible
with S+ taking care of ranking indifferent element according to S+ using an
order that is compatible with S−. Let us perform a similar operation on
the columns of the matrix, permuting the roles of S+ and S−. We obtain a
matrix in which the 1 are separated from the 0 by a stepped frontier that is
below the diagonal.

Example 7
Let A = {a, b, c, d, e, f}. Consider the following structure: S = { (a, a),
(a, b), (a, c), (a, d), (a, e), (a, f), (b, a), (b, b), (b, c), (b, d), (b, e), (b, f), (c, b),
(c, c), (c, d), (c, e), (c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e), (e, f),
(f, e), (f, f) }.

We obtain the following matrix representation:

	 a b d c e f
a 1 1 1 1 1 1
b 1 1 1 1 1 1
c 0 1 1 1 1 1
d 0 0 1 1 1 1
e 0 0 1 1 1 1
f 0 0 0 1 1 1
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This structure is an interval order. It is not a semi-order since f S c and c S b
but f ¬S d and d ¬S b. It is therefore impossible to represent this structure
using a stepped matrix with a similar order on rows and columns. 3

5.2.4 Numerical representation

The proof of the following result can be found in Pirlot and Vincke (1997,
Theorème 3.11) or Fishburn (1985).

Theorem 6
Let A be a finite set. The following propositions are equivalent:

1. S is an interval order on A,

2. there are two functions g : A → R and q : R → R+ such that, ∀a, b ∈ A:

a S b ⇔ g(a) + q(g(a)) ≥ g(b).

We refer to Bridges and Mehta (1995), Chateauneuf (1987), Fishburn (1973,
1985), Nakamura (2002), Oloriz, Candeal, and Induráin (1998) for the prob-
lems involved in generalizing this result to arbitrary sets.

Remark 27
For instance, it is possible to build the numerical representation of the interval
order presented earlier as follows. The values of g are arbitrarily chosen
provided they increase from the first to the last row of the matrix. The values
of g+q are then defined in such a way that they increase from the first to the
last column of the matrix and they satisfy the desired representation. For
instance, we successively obtain:

g(f) = 0, g(e) = 5, g(c) = 10, g(d) = 15, g(b) = 20, g(a) = 25,

(g + q)(f) = 12, (g + q)(e) = 17, (g + q)(d) = 19,

(g + q)(c) = 23, (g + q)(b) = 28, (g + q)(a) = 30.

Letting g = g and g = (g + q), it is clear that the numerical representation
of an interval order amounts to associating with each a ∈ A an interval [g, g]
such that:















a P b ⇔ g(a) > g(b),

a I b ⇔

{

g(a) ≤ g(b),

g(b) ≤ g(a),

which leads to the following representation:
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f d b

e a
c

•

5.3 Remarks
Remark 28
Interval orders may be generalized using a threshold depending on both ob-
jects compared. One then obtain a threshold representation of all relations
for which the asymmetric part is acyclic (Abbas 1995, Abbas and Vincke
1993, Agaev and Aleskerov 1993, Aleskerov et al. 2006, Diaye 1999, Subiza
1994). We do not tackle such models here. •

Remark 29
In an interval order, the relation P is transitive and, hence, is acyclic. For all
nonempty finite subset B ⊂ A, C(B, S) is therefore always nonempty. Using
one of the structure introduced in the section does not raise major problems
when it comes to linking preferences and choices. •

Remark 30
We saw that when A has a particular structure and that S is a weak order,
it is interesting to use such a structure to try to arrive at a numerical rep-
resentation that is more constrained than an ordinal scale. These extensions
make central use of the transitivity of indifference in order to build these more
structures representations. It is therefore not simple to do similar things on
the basis of a semi-order or an interval order. (see Domotor and Stelzer 1971,
Krantz 1967, Luce 1973, Suppes et al. 1989). •

Remark 31
Imposing to build a collective preference that is a semi-order or an interval
order does not significantly contribute to solve the aggregation problem of
weak orders uncovered by Arrow’s theorem (see Sen 1986): as soon as |A| ≥ 4,
the theorem still holds if the collective preference is required to be complete
and Ferrers (or complete and semi-transitive). •

6 Preference structures with incomparability

In all the structure envisaged so far, we supposed that S was complete. This
hypothesis may seem innocuous, in particular when preferences are inferred
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from observed choices. It is not without problem however. Indeed, it may
well happen that:

• information is poor concerning one or several of the elements of A,

• comparing elements of A implies synthesizing on several conflicting
pints of view,

• the objects are not familiar to the individual.

In such cases, it may prove useful for preference modelling to use structures
that explicitly include incomparability (Flament 1983, Roy 1985).

6.1 Partial order

A preference structure S is a partial if:

• S is reflexive,

• S is antisymmetric,

• S is transitive.

Intuitively, a partial order is a structure in which given two distinct objects,
either one is strictly preferred to the other or the two objects are incompa-
rable, with strict preference being transitive.

Remark 32
It is easy to check that if S is a partial order:

• P is transitive,

• I is limited to loops. •

A fundamental result (see Dushnik and Miller 1941, Fishburn 1985) show
that all partial orders on a finite set can be obtained intersecting a finite
number of total orders on this set. The minimal number of total orders that
are needed for this is called the dimension of the partial order. This easily
implies the following result.

Theorem 7
Let A be a finite set. The following propositions are equivalent:

1. S is a partial order on A,
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2. there is a function g : A → R such that, ∀a, b ∈ A:
{

a S b ⇒ g(a) ≥ g(b),
g(a) = g(b) ⇒ a = b.

Example 8
Lett A = {a, b, c, d, e}. Consider the preference structure: S = { (a, a), (a, b),
(a, c), (a, d), (b, b), (b, d), (b, e), (c, c), (c, e), (d, d), (d, e), (e, e) }. A graphical
representation of this structure is shown on Figure 12. It is easy to check

a b d e

c

Figure 12: Graphical representation of a partial order

that the structure is partial order having dimension 2 that can be obtained
intersecting the two total order (using obvious notation):

a > b > d > c > e and

a > c > b > d > e.

Let us note that the detection of a partial order of dimension 2 can be done
in polynomial time. On the contrary, the determination of the dimension
of a partial order is NP -difficult (Doignon, Ducamp, and Falmagne 1984,
Fishburn 1985). 3

6.2 Quasi-order

A preference structure S is a quasi-order if:

• S is reflexive,

• S is transitive.

Quasi-orders generalize partial orders by allowing to have indifference be-
tween distinct elements, this indifference relation being transitive.

Remark 33
It is easy to check that if S is a quasi-order:

• P is transitive,

• I is transitive,
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• P · I ⊂ P ,

• I · P ⊂ P . •

As with partial orders, it is easy to show that any quasi-order on a finite
set can be obtained intersecting a finite number of weak orders (see Bossert,
Sprumont, and Suzumura 2002, Donaldson and Weymark 1998). This implies
the following result.

Theorem 8
Let A be a finite set. The following propositions are equivalent:

1. S is a quasi-order on A,

2. there is a function g : A → R such that, ∀a, b ∈ A:

a S b ⇒ g(a) ≥ g(b),

Remark 34
Alternatively, one can build a numerical representation of a quasi order con-
sidering a set of numerical representations of weak orders (see Ok 2002). •

Example 9
Let A = {a, b, c, d, e, f}. Consider the preference structure S= {(a, a), (a, b),
(a, c), (a, d), (a, e), (a, f) (b, b), (b, d), (b, e), (b, f), (c, c), (c, e), (c, f), (d, b),
(d, d), (d, e), (d, f), (e, e), (e, f), (f, e), (f, f)}. It is easy to check that this
is a quasi-order. Its graphical representation is given on Figure 13. 3

a c
e

f

b

d

Figure 13: Graphical representation of a quasi-order

Remark 35
It is possible to extend classical models of decision under risk to deal with
quasi-orders (Aumann 1962, Fishburn 1970). The multi-attribute case was
only studied in the finite case (Fishburn 1970, Scott 1964). Let us also
mention that allowing for incomparability in the collective preference does
not significantly contribute to solve the problem uncovered by Arrow’theorem
(see Weymark 1984). •
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Remark 36
Roubens and Vincke (1985) propose definitions of partial semi-orders and
interval orders. They allow to have at the same time an intransitive indiffer-
ence relation together with incomparability situations. We do not detail this
point here. •

6.3 Synthesis

We summarize on Figure 14 the properties of preference structures that have
been introduced so far.

Structures Definition

Total order total
S complete

S antisymmetric
S transitive

Weak order
S complete
S transitive

Semi-order
S complete
S Ferrers

S semi-transitive

Interval order
S complete
S Ferrers

Partial order
S reflexive

S antisymmetric
S transitive

Quasi-order
S reflexive
S transitive

Figure 14: Common preference structures

7 Conclusion

7.1 Other preference structures

In all the structures introduced so far, the relation P was transitive and,
hence, was acyclic. This seems a natural hypothesis. Abandoning it implies
reconsidering the links existing between “preference” and “choice” as we
already saw. Nevertheless, it is possible to obtain such preferences in exper-
iments (see May 1954, Tversky 1969) when subjects are asked to compare
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objects evaluated on several dimensions. They are also common in social
choice dur to the Condorcet’s paradox. Indeed, a famous result (McGar-
vey 1953) show that with simple majority, any complete preference structure
can be be obtained as the result of the aggregation of individual weak or-
ders. With other aggregation methods, all preference structure may occur
(Bouyssou 1996).

The literature on Social Choice abound with studies of adequate choice
procedure on the basis of such preferences. The particular case of tourna-
ments (complete and antisymmetric relations) have been explored in depth
(Laslier 1997, Moulin 1986).

More recently, it was shown that it is possible to build numerical repre-
sentations of such relations (see Bouyssou 1986, Bouyssou and Pirlot 1999,
2002, Fishburn 1982, 1988, 1991a,b, 1992, Tversky 1969, Vind 1991). In the
models proposed in Bouyssou and Pirlot (2002), we have sets A being Carte-
sian products (as in decision under uncertainty or in decision with multiple
attributes):

a S b ⇔ F (p1(a1, b1), p2(a2, b2), . . . , pn(an, bn)) ≥ 0

where the pi’s are functions from A2
i to R, F is a function from

∏n

i=1
pi(A

2
i )

to R and where, e.g., F can be increasing in all its arguments. This model
generalizes the classical additive difference model proposed in Tversky (1969)
in which:

a S b ⇔

n
∑

i=1

ϕi(ui(ai) − ui(bi)) ≥ 0

where the ui’s are functions from Ai to R and the ϕi’s are odd increasing
functions on R.

Similarly, in the models studied in Fishburn (1982, 1988) for the case of
decision-making under risk, the numerical representation is such that:

a S b ⇔
∑

c∈C

∑

c′∈C

pa(c)pb(c
′)φ(c, c′) ≥ 0

where φ is a function from C2 to R and pa(c) is the probability to obtain the
consequence c ∈ C with object a.

A common criticism of such models is that cycles leave the door open
to apparently “irrational” behavior and makes an individual vulnerable to
“Dutch Books” (Raiffa 1970). As in the case of decision under risk mentioned
earlier, it is not clear that the arguments are really convincing (see Fishburn
1991b).
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7.2 Other problems

This brief survey of classical preference structures used in preference mod-
elling will hopefully give the reader enough clues to tackle a vast and complex
literature. It has neglected many important questions, among which:

• the question of the approximation of preference structure by another
one, e.g., the search for a total order at minimal distance of a tour-
nament (see Barthélémy, Guénoche, and Hudry 1989, Barthélémy and
Monjardet 1981, Bermond 1972, Charon-Fournier, Germa, and Hudry
1992, Hudry and Woirgard 1996, Monjardet 1979, Slater 1961)

• the way to collect and validate preference information in a given context
(see von Winterfeldt and Edwards 1986),

• the links between preference modelling the question of meaningfulness
in measurement theory (see Roberts 1979),

• the statistical analysis of preference data (see Coombs 1964, Green,
Tull, and Albaum 1988),

• deeper questions on the links between value systems and preferences
(see Broome 1991, Cowan and Fishburn 1988, Tsoukiàs and Vincke
1992, von Wright 1963).
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