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Motivation

Introduction

@ present elements of the classical theory

@ position some extensions w.r.t. this classical theory




Motivation

Typical problem

Comparing holiday packages

# of travel category distance . cultural
i Wifi
©os days time of hotel to beach ' interest
A 200€ 15 12h ok 45 km Y ++
B 425€ 18 15h oKk 0km N ——
C 150€ 4 7h ok 250 km N +
D 300€ 5 10h ok 5km Y —

Central problems

@ helping a DM choose between these packages

@ helping a DM structure his/her preferences

Motivation

Introduction

Two different contexts

©Q decision aiding
o careful analysis of objectives
e careful analysis of attributes

e careful selection of alternatives
e availability of the DM

© recommendation systems

e no analysis of objectives
e attributes as available

e alternatives as available
e limited access to the user




Motivation

Introduction

Basic model

e additive value function model

n n

rZye ) vilz) > ) vily:)
i=1 i=1
x,y : alternatives

x; : evaluation of alternative x on attribute ¢

vi(x;) : number

@ underlies most existing MCDM techniques

Underlying theory: conjoint measurement

e Economics (Debreu, 1960)
e Psychology (Luce & Tukey, 1964)

@ tools to help structure preferences

Outline

Outline: Classical theory

@ An aside: measurement in Physics

© An example: even swaps

© Notation

@ Additive value functions: outline of theory

@ Additive value functions: implementation
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Outline: Extensions

@ Models with interactions

@ Ordinal models

Part 1

Classical theory: conjoint measurement




Measurement in Physics

Aside: measurement of physical quantities

Lonely individual on a desert island

@ no tools, no books, no knowledge of Physics

e wants to rebuild a system of physical measures

A collection a rigid straight rods

@ problem: measuring the length of these rods
e pre-theoretical intuition

o length
e softness, beauty

@ comparing objects

@ creating and comparing new objects

@ creating standard sequences
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Measurement in Physics

Step 1: comparing objects

@ experiment to conclude which rod has “more length”
@ place rods side by side on the same horizontal plane J

a>=>b a~b



Measurement in Physics

Comparing objects

@ a > b: extremity of rod a is higher than extremity of rod b

@ a ~ b: extremity of rod a is as high as extremity of rod b

Expected properties

@ea>b,a~borb>a

@ > is asymmetric
~ 1s symmetric
> 1s transitive

~ 18 transitive

> and ~ combine “nicely”

ea>-bandb~c=a>c
ea~bandb>=c=a>c

Measurement in Physics

Comparing objects

Summary of experiments

e binary relation ;7 = > U ~ that is a weak order
o complete (a ZZbor b a)
o transitive (a Zband b’ c = a7 ¢)

Consequences

@ associate a real number ®(a) to each object a

@ the comparison of numbers faithfully reflects the results of experiments

a>b<s d(a) > d(b) a~bs dla) =d(b)

@ the function ® defines an ordinal scale

e applying an increasing transformation to ® leads to a scale that has the
same properties

e any two scales having the same properties are related by an increasing
transformation




Measurement in Physics

Comments

Nature of the scale
@ ® is quite far from a full-blown measure of length. ..

e useful though since it allows the experiments to be done only once

Hypotheses are stringent

@ highly precise comparisons

@ several practical problems

e any two objects can be compared
e connections between experiments
e comparisons may vary in time

@ idealization of the measurement process

Measurement in Physics

Step 2: creating and comparing new objects

@ use the available objects to create new ones
@ concatenate objects by placing two or more rods “in a row” }

aob cod

aob=cod



Measurement in Physics

Concatenation

e we want to be able to deduce ®(a o b) from ®(a) and ®(b)

@ simplest requirement

B(aob) = B(a) + B(b)

@ monotonicity constraints

a-bandc~d=aoc>=bod
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Measurement in Physics

Example

five rods: r1,79,...,75

we may only concatenate two rods (space reasons)
we may only experiment with different rods

data:

r1OT5 > 1T30T4 =T10T2 =15 T4 =73 =T2»T1

all constraints are satisfied: weak ordering and monotonicity




Measurement in Physics

T1OT5 »1T30T4 =T10T2 =15 =T4 =73 =T2>T1

q) (I)/ q)//
rp 14 10 14
rg 15 91 16
rs 20 92 17
rqa 21 93 18
rs 28 100 29

®, &' and ®” are equally good to compare simple rods

only ® and ®” capture the comparison of concatenated rods

going from ® to ®” does not involve a “change of units”

it is tempting to use ® or ®” to infer comparisons that have not been
performed. . .

disappointing

P:rgorg~riory P :rgory>=riory
3 3

Measurement in Physics

Step 3: creating and using standard sequences

@ choose a standard rod
@ be able to build perfect copies of the standard

@ concatenate the standard rod with its perfects copies

S8

S7
S6

S5

sS4 S(8) = a = S(7)
s3 P(s)=1=7<P(a) <8

S2

51




Measurement in Physics

Convergence

First method

@ choose a smaller standard rod

@ repeat the process

Second method

@ prepare a perfect copy of the object
@ concatenate the object with its perfect copy

@ compare the “doubled” object to the original standard sequence

@ repeat the process

Measurement in Physics

Summary

Extensive measurement

e Krantz, Luce, Suppes & Tversky (1971, chap. 3)

4 Ingredients
well-behaved relations > and ~
concatenation operation o

consistency requirements linking >, ~ and o

© 06060

ability to prepare perfect copies of some objects in order to build standard
sequences

Neglected problems

@ many!




Measurement in Physics

Question

Can this be applied outside Physics?

@ no concatenation operation (intelligence!)

N
N

Measurement in Physics

What is conjoint measurement?

Conjoint measurement

e mimicking the operations of extensive measurement

e when there are no concatenation operation readily available
e when several dimensions are involved

Seems overly ambitious
@ let us start with a simple example




An example: even swaps

Example: Hammond, Keeney & Raiffa

Choice of an office to rent

e five locations have been identified

e five attributes are being considered

Commute time (minutes)

Clients: percentage of clients living close to the office
Services: ad hoc scale

o A (all facilities), B (telephone and fax), C' (no facility)

Size: square feet (~ 0.1 m?)
Cost: $ per month

e Commute, Size and Cost are natural attributes

e Clients is a proxy attribute

@ Services is a constructed attribute

An example: even swaps

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

Hypotheses and context

@ a single cooperative DM

@ choice of a single office

@ ceteris paribus reasoning seems possible
Commute: decreasing  Clients: increasing
Services: increasing Size: increasing
Cost: decreasing

@ dominance has meaning




An example: even swaps

a b c d

Commute 45 25 20 25
Clients 50 80 70 85
Services A B C A
Size 800 700 500 950
Cost 1850 1700 1500 1900

@ b dominates alternative e
@ d is “close” to dominating a

e divide and conquer: dropping alternatives

e drop a and e

30
75

700
1750

N
~

An example: even swaps

b c d

Commute 25 20 25
Clients 80 70 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

@ no more dominance

@ assessing tradeoffs

e all alternatives except ¢ have a common evaluation on Commute

e modify c in order to bring it to this level

e starting with ¢, what is the gain on Clients that would exactly compensate

a loss of 5 min on Commute?
e difficult but central question




An example: even swaps

Commute 20 25
Clients 70 70+ 9
Services C C
Size 500 500

Cost 1500 1500

find § such that ¢ ~ ¢

e for 6 = 8, I am indifferent between ¢ and ¢’

e replace ¢ with ¢/

An example: even swaps

b c d
Commute 25 25 25
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

e all alternatives have a common evaluation on Commute
e divide and conquer: dropping attributes

e drop attribute Commute

b c d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

30



An example: even swaps

b c d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

@ check again for dominance
e unfruitful

@ assess new tradeoffs

e neutralize Service using Cost as reference

31

An example: even swaps

b c d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

Questions

@ what maximal increase in monthly cost would you be prepared to pay to
go from C' to B on service for ¢?

e answer: 250 $

e what minimal decrease in monthly cost would you ask if we go from A to
B on service for d?

e answer: 100 $

b c c’ d d’

Clients 80 78 78 85 85

Services B C B A B
Size 700 500 500 950 950

Cost 1700 1500 1500 4+ 250 1900 1900 — 100



An example: even swaps

replacing ¢’ with ¢”

replacing d with d’

dropping Service

b C// dl
Clients 80 78 85
Size 700 500 950
Cost 1700 1750 1800

checking for dominance: ¢” is dominated by b }

c” can be dropped

33

An example: even swaps

e dropping ¢” )

b d’
Clients 80 85
Size 700 950
Cost 1700 1800

@ no dominance

@ question: starting with b what is the additional cost that you would be
prepared to pay to increase size by 2507

e answer: 250 $

b b’ d
Clients 80 80 85
Size 700 950 950

Cost 1700 1700 + 250 1800

34



An example: even swaps

e replace b with b’

e drop Size

@ check for dominance

@ d’ dominates b’

b d’

Clients 80 85
Size 950 950
Cost 1950 1800

b d’

Clients 80 85
Cost 1950 1800

J

@ Recommend d as the final choice \

35

An example: even swaps

Summary

Remarks

@ very simple process

process entirely governed by > and ~

no question on “intensity of preference”

notice that importance is not even mentioned

why be interested in something more complex?

Problems

v

@ set of alternative is small

e many questions otherwise

@ output is not a preference model

e if new alternatives appear, the process should be restarted

e what are the underlying hypotheses?

A\




An example: even swaps

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

e >: preference, ~: indifference

e we have implicitly supposed that they combine nicely

Recommendation: d

@ we should be able to prove that d > a,d >~ b, d > cand d > ¢

@ dominance: b > e and d > a
o tradeoffs + dominance: b = ¢”’, ¢’ ~ ¢, ~c,d ~d, b ~b, d =V
d>a,b>e
d'~cd,d~e b’
=b>c
drd bt d =t
=d>b

An example: even swaps

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?
@ hidden... but really there!

e standard sequence for length: objects that have exactly the same length

e tradeoffs: preference intervals on distinct attributes that have the same
length
e c~c

o [25,20] on Commute has the same length as [70, 78] on Client

c c f 1!
Commute 20 25 20 25
Clients 70 78 78 82
Services C C C C
Size 500 500 500 500
Cost 1500 1500 1500 1500

[70, 78] has the same length [78,82] on Client

38



Notation

Setting

N ={1,2,...,n} set of attributes
X;: set of possible levels on the ith attribute

X =i, Xi: set of all conceivable alternatives

e X include the alternatives under study... and many others

J C N: subset of attributes

Xy =1lies X Xy =1l¢s X;
(xg,y—g) € X

(i, y—:i) € X

> binary relation on X: “at least as good as”

x =y < x 2y and Notly 7 x]

r~y<sroyandy oo

40

Notation

Preference relations on Cartesian products

Applications

@ Economics: consumers comparing bundles of goods

@ Decision under uncertainty: consequences in several states

@ Inter-temporal decision making: consequences at several moments in time
°

Inequality measurement: distribution of wealth across individuals

Decision making with multiple attributes

e in all other cases, the Cartesian product is homogeneous




Notation

What will be ignored today

Ignored

@ structuring of objectives

e from objectives to attributes

e adequate family of attributes

e risk, uncertainty, imprecision

Keeney’s view

e fundamental objectives: why?

@ means objectives: how?

heart
aftacks

fatal

health

impacts

angina
attacks

nonfatal

minimize health
impacts and
minimize costs

peripheral
vascular
attacks

regulation
costs

equipment

enforcement
costs

il

health
costs

{e.0.. treatment)

a fundamental objectives hierarchy

indirect
(o.g., lost
opportunity)




CO

[ concentraions

e heaith = (vo) " ’ |
T W breathing iV
minimize heaith rale e+ Dody activity
renRimize costs
| construction schedule
- costs 4 maintenance
reqQuirements
fines for violators
a means-ends objectives network
Table 1. Preclosure Objectives and Performance Measures
Objective Performance mceasure
Health-and-safety impacts

1. Minimize worker health effects from Xi: repository-worker radiological
radiation exposure at the fatalities
repository

2. Minimizc public health effects from X,: public radiological fatalities
radiation cxposure at the from repository
repository

3. Minimize worker (atalities [rom X,: repository-worker nonradiological
nonradiological causcs at the fatalitics
rcpository

4. Minimize public fatalities from X,: public nonradiological fatalities
nonradiological causcs at the from repository
recpository

5. Minimize worker health effects from Xs: transportation-worker radiological
radiation exposure in waste fatalities
transportation

6. Minimize public health effects from Xs: public radiological fatalities
radiation cxposure in wiste from transportation
transportation

7. Minimize worker fatalities [rom X,: transportation-worker nonradiological
nonradiological causes in waste fatalities
transportation

8. Minimizc public [atalitics [rom Xy: public nonradiological fatalities
nonradiological causes in waste from transportation
transporiation

Environmental impacts

9. Minimize aestheiic degradation Xg: constructed scale“

10. Minimize the degradation of archacological, Xip: constructed scale”
historical, and cultural properties

11. Minimize biological degradation X, constructed scale“

Socioeconomic impacts
12. Minimijze adverse sociocconomic impacts X,,: constructed scale“
Economic impacts
13. Minimizec repository costs X,;: millions of dollars
14, Minimize waste-trangportation costs X\ 4: millions of dollars



Table 4.1. A constructed attribute for public attitudes

Attribute level Description of attribute level

1 Support: No groups are opposed to the facility and at
least one group has organized support for the facility.
0 Neutrality: All groups are indifferent or uninterested.
=1 Controversy: One or more groups have organized oppo-

sition, although no groups have action-oriented opposi-
tion. Other groups may either be neutral or support
the facility.

=2 Action-oriented opposition: Exactly one group has action-
oriented opposition. The other groups have organized
support, indifference or organized opposition.

=3 Strong action-oriented opposition: Two or more groups
have acuon-oriented opposition.

Seale to Measure Biological Impnet

0. Loss of 1.0 mi® of entirely agricultural or urban “habitat™ with no loss of any “native”
communities.

1. Loss of 1.0 mi® of primarily {T5%5) agricullural habitat with luss of 255 of seeund growth;
ne mexsurable loss of wetlunds or endangered spevies habitat,

2. Loss of 1.0 mi® of farmed {309%) aud disturbed (Le., logged or new secund-growth) (30°77)
habitat; no measurable loss of wetlands or endangered species habitat, :

3. Loss of 1,0 mi® of recently disturbed (logged, plowed) habitat with disturbanee to surrounding
{within 1.0 mi of site border} previously disturbed habitt; 135 luss of wetlunds and/ue
endangered species habitat,

4. Loss of 1.0 mi® of farmed or disturbed aren (307%) wnd mature seennd-growth or other un-
disturbed comenunity (0001 15455 loss of wetlands and for emliagered speeies,

5. Loss of 1.0 mi® of primarily (75%) undisturbed mature desert community (i.e., sagebrush);
. 1377 luss of wetlands and/ur endangered species habitat,
G. Loss of 1.0 mi® of mature sceond-rrowth (but not virgin) forest communiny; 077 loss of big

game and upland game birds; 3075 loss of foead weelands and ool endungered species habitat,

7. Loss of 1.0 mi* of mature second-growth forest community; 90¢% loss of loval productive
wetlands and local endangered species habitat.

3. Cumplete Juss of 1.0 mi* of mature virgin forest; 1009 luss of lueal wetlands and loeal en-

danpered species habitat,



Impact level Impacts on historical propertics in the elfected arca®

0 There are no impacts on any significant historical propertics
1 One historical property of major significance or 5 historical properties
of minor signilicance are subjected to minimal adverse impacts
2 Two histoncal properties of major significance or 10 historical
properties of minor significance are subjected to minimal adverse impacts
3 Two historical properties of major significance or 10 historical
properties of minor significance are subjected to major adverse impacts
4 Three historical properties of major significance or 15 historical
properties of minor significance are subjected 1o major adverse impacts
5

Four historical properties of major significance or 20 historical
propertics of minor significance are subjected to major adverse impacts

Notation

Marginal preference and independence

Marginal preferences
e J C N: subset of attributes

e ~; marginal preference relation induced by >~ on X

vy Ziyr e (xg,2-5) 5 (Yr,2-7), forall z_; € X_;

Independence

e J is independent for - if

(xy,2—7) = (yg,2—7), for some z_; € X_j| = x5 75y

@ common levels on attributes other than J do not affect preference

Separability

e .J is separable for 7 if

(xy,2—g) = (yg,2_7), for some z_; € X ;| =z; 75y

@ varying common levels on attributes other than J do reverse strict
preference

49



Notation

Independence

Definition

e for all ¢ € N, {i} is independent, 7 is weakly independent
e for all J C N, J is independent, 77 is independent

Let 7 be a weakly independent weak order on X =[], X;. Then:
e ~; is a weak order on X,
o [x; =, vy, foralli € N] = x 7y
o [x; i yi, for alli € N and z; >~; y; for some j € N| = x >y
for all z,y € X

Dominance

@ as soon as I have a weakly independent weak order

@ dominance arguments apply

50

Notation

Independence in practice

Independence

@ it is easy to imagine examples in which independence is violated
e Main course and Wine example

e it is nearly hopeless to try to work if weak independence (at least weak
separability) is not satisfied
e some (e.g., R. L. Keeney) think that the same is true for independence

@ in all cases if independence is violated, things get complicated
e decision aiding vs Al




Additive value functions: outline of theory The case of 2 attributes

Outline of theory: 2 attributes

@ suppose I can “observe” =~ on X = X; x Xo

e what must be supposed to guarantee that I can represent 77 in the
additive value function model

v1: X7 — R
vy @ X9 — R
(1,22) Z (Y1, ¥2) € vi(z1) +v2(22) > vi(y1) + v2(y2)

e - must be an independent weak order

v

e try building standard sequences and see if it works! I

Additive value functions: outline of theory The case of 2 attributes

Why an additive model?

Answer

@ v and vy will be built so that additivity holds

@ equivalent multiplicative model
(z1,22) Z (Y1, y2) & wi(@1)wa(r2) > wi(y1)wa(ye)
w1 = exp(v1)

we = exp(v2)




Additive value functions: outline of theory The case of 2 attributes

Uniqueness

Important observation

Suppose that there are v; and v, such that
(w1, 22) Z (Y1,92) © vi(x1) + v2(22) > vi(y1) + v2(y2)
Ifa>0
w; = av; + B w2 = avy + B
is also a valid representation

Consequences

o fixing vy (x1) = va(x2) = 0 is harmless

o fixing v1(y1) = 1 is harmless if y; =1 1

ut
ot

Additive value functions: outline of theory The case of 2 attributes

Standard sequences

Preliminaries

o choose arbitrarily two levels 29, 21 € X3
e make sure that 21 = 2

o choose arbitrarily one level 23 € X5

o (29,29) € X is the reference point (origin)

o the preference interval [z{, 1] is the unit




Additive value functions: outline of theory The case of 2 attributes

Building a standard sequence on X

e find a “preference interval” on X5 that has the same “length” as the
reference interval [z9, z1]
e find 2} such that
(27, 23) ~ (21, 22)

v1(2Y) + va(z3) = v1(2]) + vo(z)) so that

va(z3) — v2(x3) = v1(21) — v1(a))

@ the structure of X5 has to be “rich enough”

ot
~

Additive value functions: outline of theory The case of 2 attributes

Standard sequences

Consequences

(xlaxz) (z

va(23) — va(x3) =

)
1 (2

1) —vi(a7)

@ it can be supposed that

= vz(:c%) =1




Additive value functions: outline of theory The case of 2 attributes

Going on




Additive value functions: outline of theory The case of 2 attributes

Standard sequence

Archimedean

e implicit hypothesis for length

e the standard sequence can reach the length of any object

Ve,ye Rybdn e N:ny >z

@ a similar hypothesis has to hold here

@ rough interpretation

e there are not “infinitely” liked or disliked consequences

61

Additive value functions: outline of theory The case of 2 attributes

Building a standard sequence on X;

(21, 23) ~ (71, 23)

(l’?, .’.Eg) ~ (xla $2>
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Additive value functions: outline of theory The case of 2 attributes

Thomsen condition

(z1,22) ~ (Y1, y2)
and = (21, 22) ~ (21,¥2)
(Y1, 22) ~ (21, 72)

Xo

z2

Y2 AN

T2

Y1 T1 =1

Consequence

@ there is an additive value function on the grid

66



Additive value functions: outline of theory The case of 2 attributes

Summary

e we have defined a “grid”

@ there is an additive value function on the grid

@ iterate the whole process with a “denser grid”

68



Additive value functions: outline of theory The case of 2 attributes

Hypotheses

@ Archimedean: every strictly bounded standard sequence is finite
@ essentiality: both >; and >9 are nontrivial

@ restricted solvability

69

21722)

(w1, z2)

(21, 72) (y1, 72)

X4

Il A1

(y1,z2) > (21, 22)

(21,20) = (z1,72) } = Jw; such that (21, 22) ~ (w1, x2)



Additive value functions: outline of theory The case of 2 attributes

Basic result

Theorem (2 attributes)

If
@ restricted solvability holds
@ each attribute is essential

then

the additive value function model holds

if and only if

>~ is an independent weak order satisfying the Thomsen and the Archimedean
conditions

The representation is unique up to scale and location

Additive value functions: outline of theory More than 2 attributes

General case

Good news

e entirely similar. ..

@ with a very nice surprise: Thomsen can be forgotten

e if n = 2, independence is identical with weak independence
e if n > 3, independence is much stronger than weak independence

X1 Xo X3
a 75 10 0
b 100 2 0
c 75 10 40
d 100 2 40

X1: % of nights at home
Xo: attractiveness of city
X3: salary increase
weak independence holds
a > b and d > c is reasonable

~
N



Additive value functions: outline of theory More than 2 attributes

Basic result

Theorem (more than 2 attributes)
If
@ restricted solvability holds
e at least three attributes are essential

then

the additive value function model holds

if and only if

>~ is an independent weak order satisfying the Archimedean condition

The representation is unique up to scale and location

.

Additive value functions: outline of theory More than 2 attributes

Independence and even swaps

Even swaps technique
@ assessing tradeoffs. ..

e after having suppressed attributes

Implicit hypothesis

e what happens on these attributes do not influence tradeoffs

@ this is another way to formulate independence

74



Additive value functions: implementation Direct techniques

Assessing value functions

Standard technique

@ check independence
@ build standard sequences

o “weights” (importance) has no explicit role
e do not even pronounce the word!!

| N

Problems

@ many questions
questions on fictitious alternatives
rests on indifference judgments

discrete attributes

propagation of “errors”

N

Additive value functions: implementation Indirect techniques

UTA: outline

@ select a number of reference alternatives that the DM knows well

@ rank order these alternatives

@ test, using LP, if this information is compatible with an additive value
function
e if yes, present a central one

e interact with the DM
e apply the resulting function to the whole set of alternatives

e if not
o interact with the DM

~

~



Additive value functions: implementation Indirect techniques

UTA: decision variables

@ assess V1, Vg,...,Up
@ normalization

T+ worst level on attribute ¢

x;: best level on attribute ¢

v1(215) = v2(x24) = ... = Vp(Tpx) =0
> i vi(zi) =1

e if the attribute is discrete

e take as many variables as there are levels

o if the attribute is not discrete

e consider a piecewise linear approximation

e discrete attribute

1 2 T4 *
o X ={wi,xj,xi,...,x.", x;}

7 )
@ continuous attribute

e choose the number of linear pieces r; + 1

° [xi*ax':il]a [xf},xf], sy [x:i_17x:i]) [x:z’x:]

Tix gl 2 3 gt



Additive value functions: implementation Indirect techniques

UTA: constraints

Using these conventions

o for all z, v(z) = >, vi(x;) can be expressed as a linear combination of
the > 7 (r; + 1) variables

x =y v(z)>v(y)
v(@) —o(y) + ol (zy) —o (ay) > ¢

e~y s () =uv(y)
v(z) —v(y) + ot (zy) — o (wy) =

81



Additive value functions: implementation Indirect techniques

UTA: LP

minimize Z = Z ot (zy) + o~ (xy)
constraints

S.t.
one constraint per pair of compared alternatives

normalization constraints

Additive value functions: implementation Indirect techniques

UTA: analyzing results

IftzZ*=0
@ there is one additive value function compatible with the given information

@ there are infinitely many (identically normalized) compatible additive
value functions v € V

@ use post-optimality analysis and/or interaction to explore V

ItZ*>0

@ there is no additive value function compatible with the given information

@ interact

increase the number of linear pieces
decrease ¢

modify ranking

diagnostic a failure of independence
use approximate function

A\




Fie Pohlerm Hanking Solve Funchon Finalranking  Load funchon Help

EEIC M o

|6 1% s 12 3 b oo o 1%

| yosoi

Démaner||| 1) {5 || yCFich | B Micros.. | [EMicros.. | @Eudoa. | e | ot | ewn. [[Ruta @

g

Fie Pohlerm Hanking Solve Funchon Finalranking  Load funchon Help

[ | _ Hew

GV e
3w POLD CL x|

S WE w0

(]

& [ s |2 3 0 oo o 1%

| yosoi

| c-\windows\bureau\mcdmso™1%uta_~1\versio™1\cars.uta
gpémaner||| 14 \D || CuciFich | B Micos | @imicros . | @Eudora | e | ew. | Sown [[luta (@

g




E2UTA+ method

Fie Pohlerm Hanking Solve Funchon Finalranking  Load funchon

User's ranking of reference alternatives

FC AUDI 100 CL
P3SGR
_OPEL KAD.GL

Insertin mnlﬂng_-_: - OPEL KAD.GL

> ﬁmm‘“hﬂe‘mm }Preierem:e

- [ Preference

G B w0 FY

& |5 12 | [ oo [ |81 | %

| c:\windows\bureau\medmso™T\uta_~1\versio™1\cars.uta

| yosoi

gpémaner|| | 14 \D || uc\Fich | @7 Micros. | @iMicros. | AEudora | e | e | Sown [[luta (@ nm

P2 UTA+ method

Fie Pohlerm Hanking Solve Funchon Finalranking  Load funchon

U7+ Ol roossion
| Average function
‘+ Default threshold for LP prablem
 Use preference intensities for alternatives
~ User defined threshold for LP prablem

[l

| Ideal alternative

| Play sound after all
 Leftclick to stop calculation !

(51 B ->wo Y

R = Sl

| er\windows\bureau\medmso™T\uta_~1\versio~1\cars.uta
Fpémaner ||| 1) |2 || yCAFL | B Mico. | @EiMicn | @Eudo. | uow. | Sowl | uow [[lRor

$
g | yosoi



{E2UTA+ method =18l x]B

Fie Pioblern HRanking Solve Funchon Final ranking  Load funchion Help

Solving the preblem!

QR ol

(=5

|6 % s |2 3 0 oo o 1 |26

=

; _~T\versio™1\cars.uta
aum” el |J amn | B dicto. | @imicro. | AEudo. | e | Sow | Sew |[lur @

g

Marginal Utlity Functions

Exit_Modly Ranking | Advanced Sensiiviyon Window Save Load Prnt ek

SUSPEEDRMAM T =R - SPACE MZE e < <
________________________________ . 3
................................ M sanbani il dbi s e i)

1 ] 1
& bessmniseisas) R , p |
: .
________________________________ -+
L ——
10 .00 143 .50 175 .00 4.53 .87
U* =0 000 =0 27T
=
. .
> >
s .80 Tz.17 5.40 1o .80
U*—0 _ 000 u*—0 . F23




Help

=10l x|

Ranking of all alternatives » x|

1.U=0.777 2CHb

2. U=0.6869 AUDI S0 CL

3. U=0.669 RATL

4. U=0.635 TALBO SAMBAGL
5. U=0.609 VISAlNl SE
i}
T
8
9

IC

. U=0.573 RS3GTL OB
. U=0.571 VYW POLOCL I
. U=0.566 R5 GTL I
. U=0.545 R18 GTL

= == 10. U=0.522 FIAT PANDAA4S | —
u*—0 000 11. U=0.517 FORD ESC.GL |
= 12. U=0.510 OPEL ASC.GL -
“-PRICEKF | ) — =101 x|
: Save | Load | Print | E
Saveaslextl ﬂelp|?"" R G N B e S R RS T S s E
o O e S S B SR ! e N R R '
X8 .80 72.17: S5.40 1\:\.30:
U*—0 000 g*~—0 . 723

Additive value functions: implementation Indirect techniques

UTA: variants

Possible variants

e use a different formulation (e.g., minimize the maximum deviation)
e add constraints on the shape of the v;

e decreasing, increasing, convex, s-shaped
post optimality analysis
interaction with the DM
choice of the reference alternatives

dealing with “inconsistencies”

admitting other type of information

e x is “much better” then y
o the difference between x and y is “larger” than the difference between z
and w

@ exploit the whole set V to build a recommendation
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Additive value functions: implementation Indirect techniques

Scaling constants

*
2

@ v1(214) = v2(Tox) = ... = Vp(Tps) =0

OZ'L 17)7,( )_1

@ Tix, T

Additive value functions: implementation Indirect techniques

Scaling constants




Additive value functions: implementation Indirect techniques

Scaling constants

i=1 i=1

Most critical mistake

@ the numbers \; do NOT reflect the importance of attribute ¢
o they reflect the width of the interval [z;., z}]
e if this interval is changed, the A\; MUST be changed

e L
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Additive value functions: implementation Indirect techniques

MACBETH

Conventions

i=1 i=1

Uy (T14) = U2(CI?2_*) = ... = Up(Tn«) =0
up(x]) =ug(x3) = ... =uy(z);) =1

Principles

@ assess the u; independently on each attribute using “preference differences”

@ assess the A; to fit these functions together




Additive value functions: implementation Indirect techniques

MACBETH

Assessing the wu;

e compare alternatives only differing on attribute ¢

e rate their difference of attractiveness on a 7-point scale

Categories Description

C() null
Ch

(s weak
Cs

Cy strong
Cs

Cs extreme
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Additive value functions: implementation Indirect techniques

MACBETH

(ai,bi) c Ck
(C@', dz) € Cg = uz(az) — uz(bz) < ul(cz) — ’Ujl(dz)
>k

e add normalization constraints u;(z;«) =0, u;(z) =1

@ add deviation variables
@ use LP
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Additive value functions: implementation Indirect techniques

Scaling constants

i=1 i=1

U1 (1) = Ug(24) = ... = Up(Tpx) =0

ui(z]) =uz(x3) = ... =uy(z)) =1

Scaling constants

@ once the u; are known. ..

@ comparing alternatives leads to a constraint on the \;

Repeat the procedure with the alternatives:

(T, @2y - oy T ), (T1ay Ty e ooy T ) + oo (T 1y T2y - oo, T
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Additive value functions: implementation Indirect techniques

Summary

Conjoint measurement

@ highly consistent theory

@ together with practical assessment techniques

Why consider extensions?

@ hypotheses may be violated

@ assessment is demanding

o time
e cognitive effort
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Part 11

A glimpse at possible extensions

Additive value function model

@ requires independence

@ requires a finely grained analysis of preferences

Two main types of extensions

@ models with interactions

@ more ordinal models
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Models with interactions

Interactions

Two extreme models

e additive value function model

e independence

@ decomposable model

e only weak independence

n
$c>y<:>Z’Uz$z ZZ yz

v E oy Flon(en)... on(on)] 2 Flon(on)s .o en(on)]
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Models with interactions

Decomposable models

xZy e Flor(21), .. on(2n)] = Floi(yr), - - vn(yn)]
F' increasing in all arguments

Under mild conditions, any weakly independent weak order may be represented
in the decomposable model

Problem

e all possible types of interactions are admitted

@ assessment is a very challenging task
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Models with interactions

Two main directions

Extensions

Q@ work with the decomposable model
e rough sets

@ find models “in between additive” and decomposable
o CP-nets, GAI

o fuzzy integrals
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Models with interactions Rough sets

Rough sets

Basic ideas

e work within the general decomposable model
@ use the same principle as in UTA

@ replacing the numerical model by a symbolic one

@ infer decision rules

Ir

T1 > G1y...yXTj > Qjy...,Ty > Ay and
Y1 < b1, .Y < by Yn < by
THEN

Ty

@ many possible variants J

e Greco, Matarazzo, Stowinski
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Models with interactions GAI networks

GAI: Example

Choice of a meal: 3 attributes

X1 = {Steak, Fish}
X2 = {Red, White}
X3 = {Cake, sherBet}

Preferences

' = (S,R,C) z*=(S,R,B) z*=(S,W,C) z*=(S,W,B)
25 = (F,R,C) 2°=(F,R,B) 2" =(F,W,C) %= (F,W,

e S A LN VL L L

@ the important is to match main course and wine
o I prefer Steak to Fish

@ I prefer Cake to sherBet if Fish

o I prefer sherBet to Cake if Steak

109

Models with interactions GAI networks

Example

e S LN NV N S L L

Independence

' = 2° = v (9) > v (F)
" = 2% = v (F) > v1(9)

Grouping main course and wine?

z” = 28 = v3(C) > v3(B)
2?2 = z' = v3(B) > v3(0O)
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Models with interactions GAI networks

e S A LN NV N SR L L

T Y < uia(, x2) + uis(xr, x3) > wi2(y1, y2) + wis(yr, y3)

ulg(S,R) =6 Ulg(F, W) =4 U12<S, W) =2 ulg(F, R) =0
U13(S, C) =0 ulg(S,B) =1 U13(F, C) =1 u13(F, S) =0

Models with interactions GAI networks

Generalized Additive Independence

GAI (Gonzales & Perny)

@ axiomatic analysis

e if interdependences are known

e assessment techniques
o efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

@ the attribute “richness” of meal is missing

e interdependence within a framework that is quite similar to that of
classical theory

e powerful generalization of recent models in Computer Science




Models with interactions Fuzzy integrals

Fuzzy integrals

Origins

@ decision making under uncertainty
e homogeneous Cartesian product
e mathematics
e integrating w.r.t. a non-additive measure
@ game theory
e cooperative TU games
e multiattribute decisions

e generalizing the weighted sum

Models with interactions Fuzzy integrals
Example
Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12 13
a-b d>c

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

@ having good grades in both

e Math and Physics or
e Maths and Economics

@ better than having good grades in both

e Physics and Economics

N




Models with interactions Fuzzy integrals

Weighted sum

Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12 13

a > b= 18wy + 12wy + 6wz > 18w, + Tws + 11wz = wy > w3
d > ¢ = dbwi + 17wy + 8wz > dwi + 12wy + 13wz = w3z > wy

Models with interactions Fuzzy integrals

Choquet integral

Capacity
w2V —10,1]

4(2) = 0, u(N) =
ACB= u(4)

1
1(B)

IA




Models with interactions Fuzzy integrals

Choquet integral

1y —zo) w({(1),(2),3),4)...,(n)})
T(2) — T(1) 1({(2),(3),(4)...,(n)})
T(3) — T(2) pn({(3),(4)...,(n)})

Cu(@) =) [26) — m-n)] (A

=1

Models with interactions Fuzzy integrals

Application
Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12 13
uw(M) =0.1,u(P) = 0.5, u(F) = 0.5
p(M,P) =1> p(M) + p(P)
pu(M,E) =1> pu(M) + p(E)
p(P,E) =0.6 < pu(P) + pu(E)
Cula) =6x14+(12—-6) x 14+ (18 —12) x 0.5 = 15.0
Cu() =7+ (11-7) x 0.6+ (18 —11) x 0.5 =12.9
Culc)=5+(8—-5)x1+(17—-8)x0.1=8.9
Cu(d)=5+(12-5)x1+(13-12) x 0.5 =125




Models with interactions Fuzzy integrals

Choquet integral in MCDM

Properties
@ monotone, idempotent, continuous
@ preserves weak separability

e tolerates violation of independence

@ contains many other aggregation functions as particular cases

| A

Capacities
Fascinating mathematical object:
@ Mobius transform

e Shapley value

@ interaction indices

A
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Models with interactions Fuzzy integrals

Questions

Hypotheses

@ I can compare z; with z;

o attributes are (level) commensurable

Classical model

o I can indirectly compare [z;, y;] with [z, y;]

Central research question

o how to assess u : |J;_; X; — R so that the levels are commensurate?
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Models with interactions Fuzzy integrals

Choquet integral

@ variety of mathematical programming based approaches \

Extensions

e Choquet integral with a reference point (statu quo)

@ Sugeno integral (median)

e axiomatization as aggregation functions

e k-additive capacities

Ordinal models

Observations

Classical model

e deep analysis of preference that may not be possible

e preference are not well structured
e several or no DM
e prudence

@ it is not very restrictive to suppose that levels on each X; can be ordered

e aggregate these orders

@ possibly taking importance into account

Social choice

e aggregate the preference orders of the voters to build a collective
preference




Ordinal models

Outranking methods

x 7y if
Concordance a “majority” of attributes support the assertion

Discordance the opposition of the minority is not “too strong”

. ;>
zz:xi?\:iyi Wi = 8

Ty S
Notly; V; z;|,Vi e N

Problem

@ 7~ may not be complete

@ 7~ may not be transitive

@ > may have cycles

Ordinal models

Condorcet’s paradox

vy {ieN x Ziyitl > [{i € Ny Zi 24}

1:x1>1y1>1z1
2:z2>2x2>2y2
3:Yy3 =323 =3T3

T = ($17x27x3)

y = (y1,Y2,Y3)

Z = (Z1,Z2723)




Ordinal models

Arrow’s theorem

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very
attractive. ..

o dictator (weak order)

e oligarchy (transitive >)

e veto (acyclic >)

126

Ordinal models

Ways out

Accepting intransitivity

e find way to extract information in spite of intransitivity

o ELECTRE I, II, III, IS
o PROMETHEE I, II

Do not use paired comparisons

e only compare x with carefully selected alternatives

o ELECTRE TRI
e methods using reference points




Ordinal models

Conclusion

Fascinating field

@ theoretical point of view

e measurement theory
e decision under uncertainty
e social choice theory

@ practical point of view

e rating firms from a social point of view
e evaluating Ha-propelled cars
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