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Motivation

Introduction

Aims

present elements of the classical theory

position some extensions w.r.t. this classical theory
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Motivation

Typical problem

Comparing holiday packages

cost
# of
days

travel
time

category
of hotel

distance
to beach

Wifi cultural
interest

A 200e 15 12 h *** 45 km Y ++
B 425e 18 15 h **** 0 km N −−
C 150e 4 7 h ** 250 km N +
D 300e 5 10 h *** 5 km Y −

Central problems

helping a DM choose between these packages

helping a DM structure his/her preferences
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Motivation

Introduction

Two different contexts

1 decision aiding

careful analysis of objectives
careful analysis of attributes
careful selection of alternatives
availability of the DM

2 recommendation systems

no analysis of objectives
attributes as available
alternatives as available
limited access to the user
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Motivation

Introduction

Basic model

additive value function model

x % y ⇔
n∑
i=1

vi(xi) ≥
n∑
i=1

vi(yi)

x, y : alternatives

xi : evaluation of alternative x on attribute i

vi(xi) : number

underlies most existing MCDM techniques

Underlying theory: conjoint measurement

Economics (Debreu, )

Psychology (Luce & Tukey, )

tools to help structure preferences
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Outline

Outline: Extensions

6 Models with interactions

7 Ordinal models
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Part I

Classical theory: conjoint measurement



Measurement in Physics

Aside: measurement of physical quantities

Lonely individual on a desert island

no tools, no books, no knowledge of Physics

wants to rebuild a system of physical measures

A collection a rigid straight rods

problem: measuring the length of these rods
pre-theoretical intuition

length
softness, beauty

3 main steps

comparing objects

creating and comparing new objects

creating standard sequences
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Measurement in Physics

Step 1: comparing objects

experiment to conclude which rod has “more length”

place rods side by side on the same horizontal plane

a b
a � b

a b
a ∼ b
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Measurement in Physics

Comparing objects

Results

a � b: extremity of rod a is higher than extremity of rod b

a ∼ b: extremity of rod a is as high as extremity of rod b

Expected properties

a � b, a ∼ b or b � a
� is asymmetric

∼ is symmetric

� is transitive

∼ is transitive

� and ∼ combine “nicely”

a � b and b ∼ c ⇒ a � c
a ∼ b and b � c ⇒ a � c
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Measurement in Physics

Comparing objects

Summary of experiments

binary relation % = � ∪∼ that is a weak order

complete (a % b or b % a)
transitive (a % b and b % c ⇒ a % c)

Consequences

associate a real number Φ(a) to each object a

the comparison of numbers faithfully reflects the results of experiments

a � b⇔ Φ(a) > Φ(b) a ∼ b⇔ Φ(a) = Φ(b)

the function Φ defines an ordinal scale

applying an increasing transformation to Φ leads to a scale that has the
same properties
any two scales having the same properties are related by an increasing
transformation

go faster
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Measurement in Physics

Comments

Nature of the scale

Φ is quite far from a full-blown measure of length. . .

useful though since it allows the experiments to be done only once

Hypotheses are stringent

highly precise comparisons

several practical problems

any two objects can be compared
connections between experiments
comparisons may vary in time

idealization of the measurement process
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Measurement in Physics

Step 2: creating and comparing new objects

use the available objects to create new ones

concatenate objects by placing two or more rods “in a row”

a

b

c

d

a ◦ b c ◦ d

a ◦ b � c ◦ d
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Measurement in Physics

Concatenation

we want to be able to deduce Φ(a ◦ b) from Φ(a) and Φ(b)

simplest requirement

Φ(a ◦ b) = Φ(a) + Φ(b)

monotonicity constraints

a � b and c ∼ d⇒ a ◦ c � b ◦ d

go faster

16

Measurement in Physics

Example

five rods: r1, r2, . . . , r5

we may only concatenate two rods (space reasons)

we may only experiment with different rods

data:

r1 ◦ r5 � r3 ◦ r4 � r1 ◦ r2 � r5 � r4 � r3 � r2 � r1

all constraints are satisfied: weak ordering and monotonicity
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Measurement in Physics

Example

r1 ◦ r5 � r3 ◦ r4 � r1 ◦ r2 � r5 � r4 � r3 � r2 � r1
Φ Φ′ Φ′′

r1 14 10 14
r2 15 91 16
r3 20 92 17
r4 21 93 18
r5 28 100 29

Φ, Φ′ and Φ′′ are equally good to compare simple rods

only Φ and Φ′′ capture the comparison of concatenated rods

going from Φ to Φ′′ does not involve a “change of units”

it is tempting to use Φ or Φ′′ to infer comparisons that have not been
performed. . .

disappointing

Φ : r2 ◦ r3 ∼ r1 ◦ r4 Φ′′ : r2 ◦ r3 � r1 ◦ r4
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Measurement in Physics

Step 3: creating and using standard sequences

choose a standard rod

be able to build perfect copies of the standard

concatenate the standard rod with its perfects copies

s1

s2

s3

s4

s5

s6

s7

s8

a S(k)

S(8) � a � S(7)

Φ(s) = 1⇒ 7 < Φ(a) < 8
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Measurement in Physics

Convergence

First method

choose a smaller standard rod

repeat the process

Second method

prepare a perfect copy of the object

concatenate the object with its perfect copy

compare the “doubled” object to the original standard sequence

repeat the process
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Measurement in Physics

Summary

Extensive measurement

Krantz, Luce, Suppes & Tversky (, chap. 3)

4 Ingredients

1 well-behaved relations � and ∼
2 concatenation operation ◦
3 consistency requirements linking �, ∼ and ◦
4 ability to prepare perfect copies of some objects in order to build standard

sequences

Neglected problems

many!
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Measurement in Physics

Question

Can this be applied outside Physics?

no concatenation operation (intelligence!)
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Measurement in Physics

What is conjoint measurement?

Conjoint measurement

mimicking the operations of extensive measurement

when there are no concatenation operation readily available
when several dimensions are involved

Seems overly ambitious

let us start with a simple example

23



An example: even swaps

Example: Hammond, Keeney & Raiffa

Choice of an office to rent

five locations have been identified

five attributes are being considered

Commute time (minutes)
Clients: percentage of clients living close to the office
Services: ad hoc scale

A (all facilities), B (telephone and fax), C (no facility)

Size: square feet (' 0.1 m2)
Cost: $ per month

Attributes

Commute, Size and Cost are natural attributes

Clients is a proxy attribute

Services is a constructed attribute

25

An example: even swaps

Data

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

Hypotheses and context

a single cooperative DM

choice of a single office

ceteris paribus reasoning seems possible
Commute: decreasing Clients: increasing
Services: increasing Size: increasing
Cost: decreasing

dominance has meaning
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An example: even swaps

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

b dominates alternative e

d is “close” to dominating a

divide and conquer: dropping alternatives

drop a and e

27

An example: even swaps

b c d
Commute 25 20 25
Clients 80 70 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

no more dominance

assessing tradeoffs

all alternatives except c have a common evaluation on Commute

modify c in order to bring it to this level

starting with c, what is the gain on Clients that would exactly compensate
a loss of 5 min on Commute?
difficult but central question
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An example: even swaps

c c′

Commute 20 25
Clients 70 70 + δ
Services C C
Size 500 500
Cost 1500 1500

find δ such that c′ ∼ c

Answer

for δ = 8, I am indifferent between c and c′

replace c with c′
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An example: even swaps

b c′ d
Commute 25 25 25
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

all alternatives have a common evaluation on Commute

divide and conquer: dropping attributes

drop attribute Commute

b c′ d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900
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An example: even swaps

b c′ d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

check again for dominance

unfruitful

assess new tradeoffs

neutralize Service using Cost as reference

31

An example: even swaps

b c′ d
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

Questions

what maximal increase in monthly cost would you be prepared to pay to
go from C to B on service for c′?

answer: 250 $

what minimal decrease in monthly cost would you ask if we go from A to
B on service for d?

answer: 100 $

b c′ c′′ d d′

Clients 80 78 78 85 85
Services B C B A B
Size 700 500 500 950 950
Cost 1700 1500 1500 + 250 1900 1900 − 100
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An example: even swaps

replacing c′ with c′′

replacing d with d′

dropping Service

b c′′ d′

Clients 80 78 85
Size 700 500 950
Cost 1700 1750 1800

checking for dominance: c′′ is dominated by b

c′′ can be dropped
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An example: even swaps

dropping c′′

b d′

Clients 80 85
Size 700 950
Cost 1700 1800

no dominance

question: starting with b what is the additional cost that you would be
prepared to pay to increase size by 250?

answer: 250 $

b b′ d′

Clients 80 80 85
Size 700 950 950
Cost 1700 1700 + 250 1800
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An example: even swaps

replace b with b′

drop Size

b′ d′

Clients 80 85
Size 950 950
Cost 1950 1800

b′ d′

Clients 80 85
Cost 1950 1800

check for dominance

d′ dominates b′

Conclusion

Recommend d as the final choice
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An example: even swaps

Summary

Remarks

very simple process

process entirely governed by � and ∼
no question on “intensity of preference”

notice that importance is not even mentioned

why be interested in something more complex?

Problems

set of alternative is small

many questions otherwise

output is not a preference model

if new alternatives appear, the process should be restarted

what are the underlying hypotheses?
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An example: even swaps

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

�: preference, ∼: indifference

we have implicitly supposed that they combine nicely

Recommendation: d

we should be able to prove that d � a, d � b, d � c and d � e
dominance: b � e and d � a
tradeoffs + dominance: b � c′′, c′′ ∼ c′, c′ ∼ c, d′ ∼ d, b′ ∼ b, d′ � b′

d � a, b � e
c′′ ∼ c′, c′ ∼ c, b � c′′

⇒ b � c
d ∼ d′, b ∼ b′, d′ � b′

⇒ d � b
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An example: even swaps

Monsieur Jourdain doing conjoint measurement

OK. . . but where are the standard sequences?

hidden. . . but really there!

standard sequence for length: objects that have exactly the same length

tradeoffs: preference intervals on distinct attributes that have the same
length

c ∼ c′

[25, 20] on Commute has the same length as [70, 78] on Client

c c′ f f ′

Commute 20 25 20 25
Clients 70 78 78 82
Services C C C C
Size 500 500 500 500
Cost 1500 1500 1500 1500

[70, 78] has the same length [78, 82] on Client
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Notation

Setting

N = {1, 2, . . . , n} set of attributes

Xi: set of possible levels on the ith attribute

X =
∏n
i=1Xi: set of all conceivable alternatives

X include the alternatives under study. . . and many others

J ⊆ N : subset of attributes

XJ =
∏
j∈J Xj , X−J =

∏
j /∈J Xj

(xJ , y−J) ∈ X
(xi, y−i) ∈ X

%: binary relation on X: “at least as good as”

x � y ⇔ x % y and Not [y % x]

x ∼ y ⇔ x % y and y % x
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Notation

Preference relations on Cartesian products

Applications

Economics: consumers comparing bundles of goods

Decision under uncertainty: consequences in several states

Inter-temporal decision making: consequences at several moments in time

Inequality measurement: distribution of wealth across individuals

Decision making with multiple attributes

in all other cases, the Cartesian product is homogeneous
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Notation

What will be ignored today

Ignored

structuring of objectives

from objectives to attributes

adequate family of attributes

risk, uncertainty, imprecision

skip examples

Keeney’s view

fundamental objectives: why?

means objectives: how?
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Notation

Marginal preference and independence

Marginal preferences

J ⊆ N : subset of attributes

%J marginal preference relation induced by % on XJ

xJ %J yJ ⇔ (xJ , z−J) % (yJ , z−J), for all z−J ∈ X−J

Independence

J is independent for % if

[(xJ , z−J) % (yJ , z−J), for some z−J ∈ X−J ]⇒ xJ %J yJ
common levels on attributes other than J do not affect preference

Separability

J is separable for % if

[(xJ , z−J) � (yJ , z−J), for some z−J ∈ X−J ]⇒ xJ %J yJ
varying common levels on attributes other than J do reverse strict
preference
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Notation

Independence

Definition

for all i ∈ N , {i} is independent, % is weakly independent

for all J ⊆ N , J is independent, % is independent

Proposition

Let % be a weakly independent weak order on X =
∏n
i=1Xi. Then:

%i is a weak order on Xi

[xi %i yi, for all i ∈ N ] ⇒ x % y

[xi %i yi, for all i ∈ N and xj �j yj for some j ∈ N ] ⇒ x � y
for all x, y ∈ X

Dominance

as soon as I have a weakly independent weak order

dominance arguments apply
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Notation

Independence in practice

Independence

it is easy to imagine examples in which independence is violated

Main course and Wine example

it is nearly hopeless to try to work if weak independence (at least weak
separability) is not satisfied

some (e.g., R. L. Keeney) think that the same is true for independence

in all cases if independence is violated, things get complicated

decision aiding vs AI
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Additive value functions: outline of theory The case of 2 attributes

Outline of theory: 2 attributes

Question

suppose I can “observe” % on X = X1 ×X2

what must be supposed to guarantee that I can represent % in the
additive value function model

v1 : X1 → R
v2 : X2 → R

(x1, x2) % (y1, y2)⇔ v1(x1) + v2(x2) ≥ v1(y1) + v2(y2)

% must be an independent weak order

Method

try building standard sequences and see if it works!
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Additive value functions: outline of theory The case of 2 attributes

Why an additive model?

Answer

v1 and v2 will be built so that additivity holds

equivalent multiplicative model

(x1, x2) % (y1, y2)⇔ w1(x1)w2(x2) ≥ w1(y1)w2(y2)

w1 = exp(v1)

w2 = exp(v2)
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Additive value functions: outline of theory The case of 2 attributes

Uniqueness

Important observation

Suppose that there are v1 and v2 such that

(x1, x2) % (y1, y2)⇔ v1(x1) + v2(x2) ≥ v1(y1) + v2(y2)

If α > 0

w1 = αv1 + β1 w2 = αv2 + β2
is also a valid representation

Consequences

fixing v1(x1) = v2(x2) = 0 is harmless

fixing v1(y1) = 1 is harmless if y1 �1 x1
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Additive value functions: outline of theory The case of 2 attributes

Standard sequences

Preliminaries

choose arbitrarily two levels x01, x
1
1 ∈ X1

make sure that x11 �1 x
0
1

choose arbitrarily one level x02 ∈ X2

(x01, x
0
2) ∈ X is the reference point (origin)

the preference interval [x01, x
1
1] is the unit
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Additive value functions: outline of theory The case of 2 attributes

Building a standard sequence on X2

find a “preference interval” on X2 that has the same “length” as the
reference interval [x01, x

1
1]

find x12 such that

(x01, x
1
2) ∼ (x11, x

0
2)

v1(x01) + v2(x12) = v1(x11) + v2(x02) so that

v2(x12)− v2(x02) = v1(x11)− v1(x01)

the structure of X2 has to be “rich enough”

57

Additive value functions: outline of theory The case of 2 attributes

Standard sequences

Consequences

(x01, x
1
2) ∼ (x11, x

0
2)

v2(x12)− v2(x02) = v1(x11)− v1(x01)

it can be supposed that

v1(x01) = v2(x02) = 0

v1(x11) = 1

⇒ v2(x12) = 1
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Additive value functions: outline of theory The case of 2 attributes

Going on

(x01, x
1
2) ∼ (x11, x

0
2)

(x01, x
2
2) ∼ (x11, x

1
2)

(x01, x
3
2) ∼ (x11, x

2
2)

. . .

(x01, x
k
2) ∼ (x11, x

k−1
2 )

v2(x12)− v2(x02) = v1(x11)− v1(x01) = 1

v2(x22)− v2(x12) = v1(x11)− v1(x01) = 1

v2(x32)− v2(x22) = v1(x11)− v1(x01) = 1

. . .

v2(xk2)− v2(xk−12 ) = v1(x11)− v1(x01) = 1

⇒ v2(x22) = 2, v2(x32) = 3, . . . , v2(xk2) = k
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X1

X2

x01 x11
x02

x12

x22

x32

x42



Additive value functions: outline of theory The case of 2 attributes

Standard sequence

Archimedean

implicit hypothesis for length

the standard sequence can reach the length of any object

∀x, y ∈ R,∃n ∈ N : ny > x

a similar hypothesis has to hold here

rough interpretation

there are not “infinitely” liked or disliked consequences
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Additive value functions: outline of theory The case of 2 attributes

Building a standard sequence on X1

(x21, x
0
2) ∼ (x11, x

1
2)

(x31, x
0
2) ∼ (x21, x

1
2)

. . .

(xk1 , x
0
2) ∼ (xk−11 , x12)

v1(x21)− v1(x11) = v2(x12)− v2(x02) = 1

v1(x31)− v1(x21) = v2(x12)− v2(x02) = 1

. . .

v1(xk1)− v1(xk−11 ) = v2(x12)− v2(x02) = 1

v1(x21) = 2, v1(x31) = 3, . . . , v1(xk1) = k
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X1

X2

x02

x12

x01 x11 x21 x31 x41

X1

X2

x02

x12

x22

x32

x42

x01 x11 x21 x31 x41



X1

X2

x02

x12

x22

x32

x42

x01 x11 x21 x31 x41

?

Additive value functions: outline of theory The case of 2 attributes

Thomsen condition

(x1, x2) ∼ (y1, y2)
and

(y1, z2) ∼ (z1, x2)
⇒ (x1, z2) ∼ (z1, y2)

X1

X2

y1 x1 z1

x2

y2

z2

Consequence

there is an additive value function on the grid
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X1

X2

x02

x12

x22

x32

x42

x01 x11 x21 x31 x41 x51

Additive value functions: outline of theory The case of 2 attributes

Summary

we have defined a “grid”

there is an additive value function on the grid

iterate the whole process with a “denser grid”
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Additive value functions: outline of theory The case of 2 attributes

Hypotheses

Archimedean: every strictly bounded standard sequence is finite

essentiality: both �1 and �2 are nontrivial

restricted solvability
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X1

X2

x2

x1 y1

(x1, x2) (y1, x2)

(z1, z2)

(w1, x2)

(y1, x2) � (z1, z2)
(z1, z2) � (x1, x2)

}
⇒ ∃w1 such that (z1, z2) ∼ (w1, x2)



Additive value functions: outline of theory The case of 2 attributes

Basic result

Theorem (2 attributes)

If

restricted solvability holds

each attribute is essential

then
the additive value function model holds
if and only if
% is an independent weak order satisfying the Thomsen and the Archimedean
conditions

The representation is unique up to scale and location
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Additive value functions: outline of theory More than 2 attributes

General case

Good news

entirely similar. . .

with a very nice surprise: Thomsen can be forgotten

if n = 2, independence is identical with weak independence
if n > 3, independence is much stronger than weak independence

X1 X2 X3

a 75 10 0
b 100 2 0
c 75 10 40
d 100 2 40

X1: % of nights at home
X2: attractiveness of city

X3: salary increase
weak independence holds

a � b and d � c is reasonable
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Additive value functions: outline of theory More than 2 attributes

Basic result

Theorem (more than 2 attributes)

If

restricted solvability holds

at least three attributes are essential

then
the additive value function model holds
if and only if
% is an independent weak order satisfying the Archimedean condition

The representation is unique up to scale and location
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Additive value functions: outline of theory More than 2 attributes

Independence and even swaps

Even swaps technique

assessing tradeoffs. . .

after having suppressed attributes

Implicit hypothesis

what happens on these attributes do not influence tradeoffs

this is another way to formulate independence
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Additive value functions: implementation Direct techniques

Assessing value functions

Standard technique

check independence

build standard sequences

“weights” (importance) has no explicit rôle
do not even pronounce the word!!

Problems

many questions

questions on fictitious alternatives

rests on indifference judgments

discrete attributes

propagation of “errors”
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Additive value functions: implementation Indirect techniques

UTA: outline

Principle

select a number of reference alternatives that the DM knows well

rank order these alternatives

test, using LP, if this information is compatible with an additive value
function

if yes, present a central one

interact with the DM
apply the resulting function to the whole set of alternatives

if not

interact with the DM
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Additive value functions: implementation Indirect techniques

UTA: decision variables

Aim

assess v1, v2, . . . , vn
normalization

xi∗: worst level on attribute i
x∗i : best level on attribute i
v1(x1∗) = v2(x2∗) = . . . = vn(xn∗) = 0∑n

i=1 vi(x
∗
i ) = 1

if the attribute is discrete

take as many variables as there are levels

if the attribute is not discrete

consider a piecewise linear approximation

discrete attribute

Xi = {xi∗, x
1
i , x

2
i , . . . , x

ri
i , x∗i }

continuous attribute

choose the number of linear pieces ri + 1
[xi∗, x

1
i ], [x1

i , x
2
i ], . . . , [xri−1

i , xri
i ], [xri

i , x∗i ]

78

xi

vi(xi)

xi∗ x1i x2i x3i x∗i
vi(xi∗)

vi(x
1
i )

vi(x
2
i )

vi(x
3
i )

vi(x
∗
i )



xi

vi(xi)

xi∗ x1i x2i x3i x∗i
vi(xi∗)

vi(x
1
i )

vi(x
2
i )

vi(x
3
i )

vi(x
∗
i )

Additive value functions: implementation Indirect techniques

UTA: constraints

Using these conventions

for all x, v(x) =
∑n
i=1 vi(xi) can be expressed as a linear combination of

the
∑n
i (ri + 1) variables

x � y ⇔ v(x) > v(y)

v(x)− v(y) + σ+(xy)− σ−(xy) ≥ ε

x ∼ y ⇔ v(x) = v(y)

v(x)− v(y) + σ+(xy)− σ−(xy) = 0
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Additive value functions: implementation Indirect techniques

UTA: LP

minimize Z =
∑

constraints

σ+(xy) + σ−(xy)

s.t.

one constraint per pair of compared alternatives

normalization constraints
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Additive value functions: implementation Indirect techniques

UTA: analyzing results

If Z∗ = 0

there is one additive value function compatible with the given information

there are infinitely many (identically normalized) compatible additive
value functions v ∈ V
use post-optimality analysis and/or interaction to explore V

If Z∗ > 0

there is no additive value function compatible with the given information

interact

increase the number of linear pieces
decrease ε
modify ranking
diagnostic a failure of independence
use approximate function

83









Additive value functions: implementation Indirect techniques

UTA: variants

Possible variants

use a different formulation (e.g., minimize the maximum deviation)

add constraints on the shape of the vi
decreasing, increasing, convex, s-shaped

post optimality analysis

interaction with the DM

choice of the reference alternatives

dealing with “inconsistencies”

admitting other type of information

x is “much better” then y
the difference between x and y is “larger” than the difference between z
and w

exploit the whole set V to build a recommendation
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Additive value functions: implementation Indirect techniques

Scaling constants

x % y ⇔
n∑
i=1

vi(xi) ≥
n∑
i=1

vi(yi)

Convenient normalization

xi∗, x
∗
i

v1(x1∗) = v2(x2∗) = . . . = vn(xn∗) = 0∑n
i=1 vi(x

∗
i ) = 1
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Additive value functions: implementation Indirect techniques

Scaling constants

x % y ⇔
n∑
i=1

vi(xi) ≥
n∑
i=1

vi(yi)

v1(x1∗) = v2(x2∗) = . . . = vn(xn∗) = 0
n∑
i=1

v1(x∗i ) = 1

x % y ⇔
n∑
i=1

λiui(xi) ≥
n∑
i=1

λiui(yi)

n∑
i=1

λi = 1

u1(x1∗) = u2(x2∗) = . . . = un(xn∗) = 0

u1(x∗1) = u2(x∗2) = . . . = un(x∗n) = 1

ui = vi/vi(x
∗
i )
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Additive value functions: implementation Indirect techniques

Scaling constants

x % y ⇔
n∑
i=1

λiui(xi) ≥
n∑
i=1

λiui(yi)

n∑
i=1

λi = 1

u1(x1∗) = u2(x2∗) = . . . = un(xn∗) = 0

u1(x∗1) = u2(x∗2) = . . . = un(x∗n) = 1

Most critical mistake

the numbers λi do NOT reflect the importance of attribute i

they reflect the width of the interval [xi∗, x
∗
i ]

if this interval is changed, the λi MUST be changed

���

go faster

���
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MACBETH

Conventions

x % y ⇔
n∑
i=1

λiui(xi) ≥
n∑
i=1

λiui(yi)

n∑
i=1

λi = 1

u1(x1∗) = u2(x2∗) = . . . = un(xn∗) = 0

u1(x∗1) = u2(x∗2) = . . . = un(x∗n) = 1

Principles

assess the ui independently on each attribute using “preference differences”

assess the λi to fit these functions together
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Additive value functions: implementation Indirect techniques

MACBETH

Assessing the ui

compare alternatives only differing on attribute i

rate their difference of attractiveness on a 7-point scale

Categories Description
C0 null
C1

C2 weak
C3

C4 strong
C5

C6 extreme
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MACBETH

(ai, bi) ∈ Ck
(ci, di) ∈ C`

` > k

⇒ ui(ai)− ui(bi) < ui(ci)− ui(di)

Solution

add normalization constraints ui(xi∗) = 0, ui(x
∗
i ) = 1

add deviation variables

use LP
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Additive value functions: implementation Indirect techniques

Scaling constants

x % y ⇔
n∑
i=1

λiui(xi) ≥
n∑
i=1

λiui(yi)

u1(x1∗) = u2(x2∗) = . . . = un(xn∗) = 0

u1(x∗1) = u2(x∗2) = . . . = un(x∗n) = 1

Scaling constants

once the ui are known. . .

comparing alternatives leads to a constraint on the λi

MACBETH

Repeat the procedure with the alternatives:

(x∗1, x2∗, . . . , xn∗), (x1∗, x
∗
2, . . . , xn∗) . . . (x1∗, x2∗, . . . , x

∗
n)
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Summary

Conjoint measurement

highly consistent theory

together with practical assessment techniques

Why consider extensions?

hypotheses may be violated

assessment is demanding

time
cognitive effort
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Part II

A glimpse at possible extensions

Summary

Additive value function model

requires independence

requires a finely grained analysis of preferences

Two main types of extensions

1 models with interactions

2 more ordinal models
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Models with interactions

Interactions

Two extreme models

additive value function model

independence

decomposable model

only weak independence

x % y ⇔
n∑
i=1

vi(xi) ≥
n∑
i=1

vi(yi)

x % y ⇔ F [v1(x1), . . . vn(xn)] ≥ F [v1(y1), . . . vn(yn)]
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Models with interactions

Decomposable models

x % y ⇔ F [v1(x1), . . . vn(xn)] ≥ F [v1(y1), . . . vn(yn)]

F increasing in all arguments

Result

Under mild conditions, any weakly independent weak order may be represented
in the decomposable model

Problem

all possible types of interactions are admitted

assessment is a very challenging task

106



Models with interactions

Two main directions

Extensions

1 work with the decomposable model

rough sets

2 find models “in between additive” and decomposable

CP-nets, GAI
fuzzy integrals
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Models with interactions Rough sets

Rough sets

Basic ideas

work within the general decomposable model

use the same principle as in UTA

replacing the numerical model by a symbolic one

infer decision rules

If

x1 ≥ a1, . . . , xi ≥ ai, . . . , xn ≥ an and

y1 ≤ b1, . . . , yi ≤ bi, . . . , yn ≤ bn
Then

x % y

many possible variants

Greco, Matarazzo, S lowiński
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Models with interactions GAI networks

GAI: Example

Choice of a meal: 3 attributes

X1 = {Steak,Fish}
X2 = {Red,White}
X3 = {Cake, sherBet}

Preferences

x1 = (S,R,C) x2 = (S,R,B) x3 = (S,W,C) x4 = (S,W,B)

x5 = (F,R,C) x6 = (F,R,B) x7 = (F,W,C) x8 = (F,W,B)

x2 � x1 � x7 � x8 � x4 � x3 � x5 � x6

the important is to match main course and wine

I prefer Steak to Fish

I prefer Cake to sherBet if Fish

I prefer sherBet to Cake if Steak
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Models with interactions GAI networks

Example

x1 = (S,R,C) x2 = (S,R,B) x3 = (S,W,C) x4 = (S,W,B)

x5 = (F,R,C) x6 = (F,R,B) x7 = (F,W,C) x8 = (F,W,B)

x2 � x1 � x7 � x8 � x4 � x3 � x5 � x6

Independence

x1 � x5 ⇒ v1(S) > v1(F )

x7 � x3 ⇒ v1(F ) > v1(S)

Grouping main course and wine?

x7 � x8 ⇒ v3(C) > v3(B)

x2 � x1 ⇒ v3(B) > v3(C)
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Models with interactions GAI networks

Example

x1 = (S,R,C) x2 = (S,R,B) x3 = (S,W,C) x4 = (S,W,B)

x5 = (F,R,C) x6 = (F,R,B) x7 = (F,W,C) x8 = (F,W,B)

x2 � x1 � x7 � x8 � x4 � x3 � x5 � x6

Model

x % y ⇔ u12(x1, x2) + u13(x1, x3) ≥ u12(y1, y2) + u13(y1, y3)

u12(S,R) = 6 u12(F,W ) = 4 u12(S,W ) = 2 u12(F,R) = 0

u13(S,C) = 0 u13(S,B) = 1 u13(F,C) = 1 u13(F, S) = 0
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Models with interactions GAI networks

Generalized Additive Independence

GAI (Gonzales & Perny)

axiomatic analysis

if interdependences are known

assessment techniques
efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

the attribute “richness” of meal is missing

GAI

interdependence within a framework that is quite similar to that of
classical theory

powerful generalization of recent models in Computer Science
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Models with interactions Fuzzy integrals

Fuzzy integrals

Origins

decision making under uncertainty

homogeneous Cartesian product

mathematics

integrating w.r.t. a non-additive measure

game theory

cooperative TU games

multiattribute decisions

generalizing the weighted sum
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Models with interactions Fuzzy integrals

Example

Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12 13

a � b d � c

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

having good grades in both

Math and Physics or
Maths and Economics

better than having good grades in both

Physics and Economics
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Models with interactions Fuzzy integrals

Weighted sum

Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12 13

a � b⇒ 18w1 + 12w2 + 6w3 > 18w1 + 7w2 + 11w3 ⇒ w2 > w3

d � c⇒ 5w1 + 17w2 + 8w3 > 5w1 + 12w2 + 13w3 ⇒ w3 > w2
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Models with interactions Fuzzy integrals

Choquet integral

Capacity

µ : 2N → [0, 1]

µ(∅) = 0, µ(N) = 1

A ⊆ B ⇒ µ(A) ≤ µ(B)
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Models with interactions Fuzzy integrals

Choquet integral

0 = x(0) ≤ x(1) ≤ · · · ≤ x(n)

x(1) − x(0) µ({(1), (2), (3), (4) . . . , (n)})
x(2) − x(1) µ({(2), (3), (4) . . . , (n)})
x(3) − x(2) µ({(3), (4) . . . , (n)})

. . . . . .

x(n) − x(n−1) µ({(n)})

Cµ(x) =
n∑
i=1

[
x(i) − x(i−1)

]
µ(A(i))

A(i) = {(i), (i+ 1), . . . , (n)}
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Models with interactions Fuzzy integrals

Application

Physics Maths Economics
a 18 12 6
b 18 7 11
c 5 17 8
d 5 12 13

µ(M) = 0.1, µ(P ) = 0.5, µ(E) = 0.5

µ(M,P ) = 1 > µ(M) + µ(P )

µ(M,E) = 1 > µ(M) + µ(E)

µ(P,E) = 0.6 < µ(P ) + µ(E)

Cµ(a) = 6× 1 + (12− 6)× 1 + (18− 12)× 0.5 = 15.0

Cµ(b) = 7 + (11− 7)× 0.6 + (18− 11)× 0.5 = 12.9

Cµ(c) = 5 + (8− 5)× 1 + (17− 8)× 0.1 = 8.9

Cµ(d) = 5 + (12− 5)× 1 + (13− 12)× 0.5 = 12.5
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Models with interactions Fuzzy integrals

Choquet integral in MCDM

Properties

monotone, idempotent, continuous

preserves weak separability

tolerates violation of independence

contains many other aggregation functions as particular cases

Capacities

Fascinating mathematical object:

Möbius transform

Shapley value

interaction indices
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Models with interactions Fuzzy integrals

Questions

Hypotheses

I can compare xi with xj
attributes are (level) commensurable

Classical model

I can indirectly compare [xi, yi] with [xj , yj ]

Central research question

how to assess u :
⋃n
i=1Xi → R so that the levels are commensurate?
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Models with interactions Fuzzy integrals

Choquet integral

Assessment

variety of mathematical programming based approaches

Extensions

Choquet integral with a reference point (statu quo)

Sugeno integral (median)

axiomatization as aggregation functions

k-additive capacities
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Ordinal models

Observations

Classical model

deep analysis of preference that may not be possible

preference are not well structured
several or no DM
prudence

Idea

it is not very restrictive to suppose that levels on each Xi can be ordered

aggregate these orders

possibly taking importance into account

Social choice

aggregate the preference orders of the voters to build a collective
preference
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Ordinal models

Outranking methods

ELECTRE

x % y if

Concordance a “majority” of attributes support the assertion

Discordance the opposition of the minority is not “too strong”

x % y ⇔


∑
i:xi%iyi

wi ≥ s

Not [yi Vi xi],∀i ∈ N

Problem

% may not be complete

% may not be transitive

� may have cycles

go faster
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Ordinal models

Condorcet’s paradox

x % y ⇔ |{i ∈ N : xi %i yi}| ≥ |{i ∈ N : yi %i xi}|

1 : x1 �1 y1 �1 z1

2 : z2 �2 x2 �2 y2

3 : y3 �3 z3 �3 x3

x = (x1, x2, x3)

y = (y1, y2, y3)

z = (z1, z2, z3)

x y

z

�

��
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Ordinal models

Arrow’s theorem

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very
attractive. . .

dictator (weak order)

oligarchy (transitive �)

veto (acyclic �)
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Ordinal models

Ways out

Accepting intransitivity

find way to extract information in spite of intransitivity

ELECTRE I, II, III, IS
PROMETHEE I, II

Do not use paired comparisons

only compare x with carefully selected alternatives

ELECTRE TRI
methods using reference points
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Ordinal models

Conclusion

Fascinating field

theoretical point of view

measurement theory
decision under uncertainty
social choice theory

practical point of view

rating firms from a social point of view
evaluating H2-propelled cars
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