Decisions with multiple attributes A brief introduction

Denis Bouyssou

CNRS–LAMSADE Paris, France

Motivation

Introduction

Aims

- present elements of the classical theory
- position some extensions w.r.t. this classical theory

Comp	parin	g holida	ay packag	es					
		$\cos t$	# of days	${f travel}\ {f time}$	category of hotel	distance to beach	Wifi	$\operatorname{cultural}$ interest	
	A	200€	15	$12\mathrm{h}$	***	$45\mathrm{km}$	Υ	++	
	B	$425 \in$	18	$15\mathrm{h}$	****	$0\mathrm{km}$	Ν		
	C	150€	4	$7\mathrm{h}$	**	$250{ m km}$	Ν	+	
	D	300€	5	$10\mathrm{h}$	***	$5\mathrm{km}$	Υ	_	

Motivation

Motivation

Central problems

3

- helping a DM choose between these packages
- helping a DM structure his/her preferences

・ロト・4 部・4 車・4 車・ りへぐ

Introduction

Two different contexts

• decision aiding

- careful analysis of objectives
- careful analysis of attributes
- careful selection of alternatives
- availability of the DM
- **2** recommendation systems
 - no analysis of objectives
 - attributes as available
 - alternatives as available
 - limited access to the user

Introduction

Motivation

Basic model

• additive value function model

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

x, y: alternatives x_i : evaluation of alternative x on attribute i $v_i(x_i)$: number

Outline

• underlies most existing MCDM techniques

Underlying theory: conjoint measurement

- Economics (Debreu, 1960)
- Psychology (Luce & Tukey, 1964)
- tools to help structure preferences

Outline: Classical theory

- 1 An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation

5

- 4 Additive value functions: outline of theory
- **5** Additive value functions: implementation

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 • ○ < ♡

Outline: Extensions

6 Models with interactions

7 Ordinal models

7

Outline

 </

Part I

DQC

E

Classical theory: conjoint measurement

Aside: measurement of physical quantities

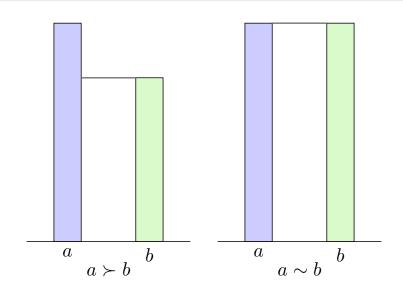
Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

A collection a rigid straight rods

- problem: measuring the length of these rods
 - pre-theoretical intuition
 - length
 - softness, beauty

3 main steps


- comparing objects
- creating and comparing new objects
- creating standard sequences

10

Measurement in Physics

Step 1: comparing objects

- experiment to conclude which rod has "more length"
- place rods side by side on the same horizontal plane

□ > < @ > < E > < E > < E

Da P

Comparing objects

Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

Expected properties

- $a \succ b, a \sim b \text{ or } b \succ a$
- \succ is asymmetric
- \sim is symmetric
- \succ is transitive
- \sim is transitive
- \succ and \sim combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \succ c$

12

Measurement in Physics

Comparing objects

Summary of experiments

- binary relation $\succeq = \succ \cup \sim$ that is a weak order
 - complete $(a \succeq b \text{ or } b \succeq a)$
 - transitive $(a \succeq b \text{ and } b \succeq c \Rightarrow a \succeq c)$

Consequences

- associate a real number $\Phi(a)$ to each object a
- the comparison of numbers faithfully reflects the results of experiments

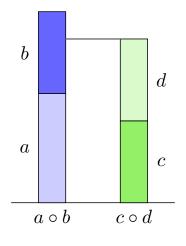
 $a \succ b \Leftrightarrow \Phi(a) > \Phi(b)$ $a \sim b \Leftrightarrow \Phi(a) = \Phi(b)$

- the function Φ defines an ordinal scale
 - applying an increasing transformation to Φ leads to a scale that has the same properties
 - any two scales having the same properties are related by an increasing transformation

Nature of the scale

- Φ is quite far from a full-blown measure of length...
- useful though since it allows the experiments to be done only once

Hypotheses are stringent


- highly precise comparisons
- several practical problems
 - any two objects can be compared
 - connections between experiments
 - comparisons may vary in time
- idealization of the measurement process

14

Measurement in Physics

Step 2: creating and comparing new objects

- use the available objects to create new ones
- concatenate objects by placing two or more rods "in a row"

 $a \circ b \succ c \circ d$

ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Measurement in Physics

Concatenation

- we want to be able to deduce $\Phi(a \circ b)$ from $\Phi(a)$ and $\Phi(b)$
- simplest requirement

$$\Phi(a \circ b) = \Phi(a) + \Phi(b)$$

• monotonicity constraints

 $a \succ b$ and $c \sim d \Rightarrow a \circ c \succ b \circ d$

16

Measurement in Physics

Example

- five rods: $r_1, r_2, ..., r_5$
- we may only concatenate two rods (space reasons)
- we may only experiment with different rods
- data:

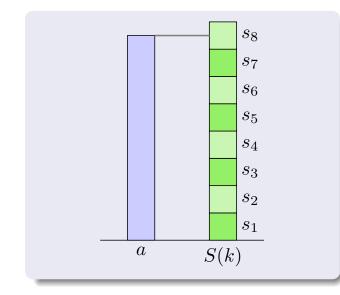
$$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$

• all constraints are satisfied: weak ordering and monotonicity

 $r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$

	Φ	Φ'	$\Phi^{\prime\prime}$
r_1	14	10	14
r_2	15	91	16
r_3	20	92	17
r_4	21	93	18
r_5	28	100	29

- Φ , Φ' and Φ'' are equally good to compare simple rods
- only Φ and Φ'' capture the comparison of concatenated rods
- going from Φ to Φ'' does not involve a "change of units"
- it is tempting to use Φ or Φ'' to infer comparisons that have not been performed...
- disappointing


 $\Phi: r_2 \circ r_3 \sim r_1 \circ r_4 \quad \Phi'': r_2 \circ r_3 \succ r_1 \circ r_4$

18

Measurement in Physics

Step 3: creating and using standard sequences

- choose a standard rod
- be able to build **perfect** copies of the standard
- concatenate the standard rod with its perfects copies

 $S(8) \succ a \succ S(7)$ $\Phi(s) = 1 \Rightarrow 7 < \Phi(a) < 8$

Convergence

First method

- choose a smaller standard rod
- repeat the process

Second method

- prepare a perfect copy of the object
- concatenate the object with its perfect copy
- compare the "doubled" object to the original standard sequence
- repeat the process

20

Measurement in Physics

Summary

Extensive measurement

• Krantz, Luce, Suppes & Tversky (1971, chap. 3)

4 Ingredients

- well-behaved relations \succ and \sim
- 2 concatenation operation \circ
- [●] consistency requirements linking \succ , ~ and °
- ability to prepare perfect copies of some objects in order to build standard sequences

Neglected problems

• many!

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Question

Can this be applied outside Physics?

• no concatenation operation (intelligence!)

22

Measurement in Physics

What is conjoint measurement?

Conjoint measurement

- mimicking the operations of extensive measurement
 - when there are no concatenation operation readily available
 - when several dimensions are involved

Seems overly ambitious

• let us start with a simple example

Example: Hammond, Keeney & Raiffa

Choice of an office to rent

- five locations have been identified
- five attributes are being considered
 - Commute time (minutes)
 - Clients: percentage of clients living close to the office
 - Services: ad hoc scale
 - A (all facilities), B (telephone and fax), C (no facility)
 - Size: square feet ($\simeq 0.1 \text{ m}^2$)
 - Cost: \$ per month

Attributes

- Commute, Size and Cost are natural attributes
- *Clients* is a **proxy** attribute
- Services is a constructed attribute

An example: even swaps

Data

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

Hypotheses and context

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible *Commute*: decreasing *Clients*: increasing *Services*: increasing *Size*: increasing *Cost*: decreasing
- dominance has meaning

◆□▶◆□▶◆≣▶◆≣▶ ≣ のへぐ

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- $\bullet~b$ dominates alternative e
- d is "close" to dominating a
- divide and conquer: dropping alternatives
 - drop a and e

27

n	example:	even	swaps

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- all alternatives except c have a common evaluation on Commute
- modify c in order to bring it to this level
 - starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute?
 - difficult but central question

	c	c'
Commute	20	25
Clients	70	$70 + \delta$
Services	C	C
Size	500	500
Cost	1500	1500

find δ such that $c' \sim c$

Answer

- for $\delta = 8$, I am indifferent between c and c'
- replace c with c'

29

An example: even swaps

	b	c'	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on *Commute*
- divide and conquer: dropping attributes
 - drop attribute *Commute*

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance
- unfruitful
- assess new tradeoffs
 - neutralize Service using *Cost* as reference

Ar	n example: even	swaps		
		b	c'	d
	Clients	80	78	85
	Services	B	C	A
	Size	700	500	950
	Cost	1700	1500	1900

Questions

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c'?
 - \bullet answer: 250 \$
- what minimal decrease in monthly cost would you ask if we go from A to B on service for d?
 - \bullet answer: 100 \$

	b	c'	c''	d	d'
Clients	80	78	78	85	85
Services	B	C	В	A	В
Size	700	500	500	950	950
Cost	1700	1500	1500 + 250	1900	1900 - 100

- replacing c' with c''
- replacing d with d'
- dropping Service

	b	c''	d'
Clients	80	78	85
Size	700	500	950
Cost	1700	1750	1800

- checking for dominance: c'' is dominated by b
- c'' can be dropped

33

An example: even swaps

• dropping c''

	b	d'
Clients	80	85
Size	700	950
Cost	1700	1800

- no dominance
- question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250?
 - answer: 250 \$

	b	b'	d'
Clients	80	80	85
Size	700	950	950
Cost	1700	1700 + 250	1800

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

590

An example: even swaps

- replace b with b'
- drop Size

	b'	d'
Clients	80	85
Size	950	950
Cost	1950	1800
	b'	d'
Clients	<i>b'</i> 80	$\frac{d'}{85}$

- check for dominance
- d' dominates b'

Conclusion

• Recommend d as the final choice

35

An example: even swaps

Summary

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance is not even mentioned
- why be interested in something more complex?

Problems

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c'', c'' \sim c', c' \sim c, d' \sim d, b' \sim b, d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

$$\Rightarrow d \succ b$$

37

< ロ > < 目 > < 目 > < 目 > < 目 > < 回 > <

An example: even swaps

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden... but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
 - $c \sim c'$
 - [25, 20] on *Commute* has the same length as [70, 78] on *Client*

	c	c'	f	f'
Commute	20	25	20	25
Clients	70	78	78	82
Services	C	C	C	C
Size	500	500	500	500
Cost	1500	1500	1500	1500

[70, 78] has the same length [78, 82] on Client

Setting

- $N = \{1, 2, \dots, n\}$ set of attributes
- X_i : set of possible levels on the *i*th attribute
- $X = \prod_{i=1}^{n} X_i$: set of all conceivable alternatives
 - X include the alternatives under study... and many others
- $J \subseteq N$: subset of attributes
- $X_J = \prod_{j \in J} X_j, X_{-J} = \prod_{j \notin J} X_j$
- $(x_J, y_{-J}) \in X$
- $(x_i, y_{-i}) \in X$
- \succeq : binary relation on X: "at least as good as"
- $x \succ y \Leftrightarrow x \succeq y$ and $Not[y \succeq x]$
- $x \sim y \Leftrightarrow x \succeq y$ and $y \succeq x$

Preference relations on Cartesian products

Notation

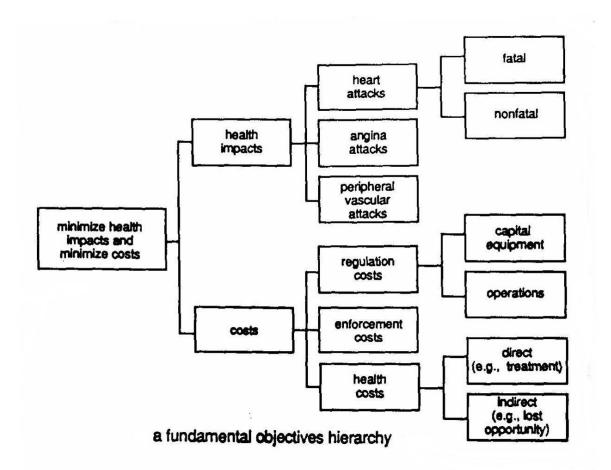
Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes
 - in all other cases, the Cartesian product is homogeneous

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What will be ignored today

Notation


Ignored

- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision

Keeney's view

- fundamental objectives: why?
- means objectives: how?

42

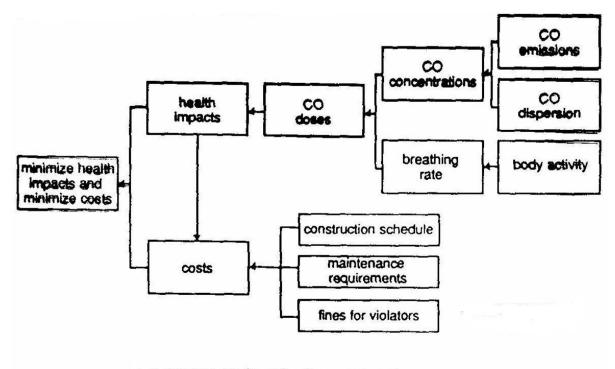


Table I. Preclosure Objectives and Performance Measures

Objective	Performance measure
Health-and-	safety impacts
 Minimize worker health effects from radiation exposure at the repository 	X ₁ : repository-worker radiological fatalities
 Minimize public health effects from radiation exposure at the repository 	X ₂ : public radiological fatalities from repository
 Minimize worker (atalities from nonradiological causes at the repository 	X ₃ : repository-worker nonradiological fatalities
 Minimize public fatalities from nonradiological causes at the repository 	X ₄ : public nonradiological fatalities from repository
 Minimize worker health effects from radiation exposure in waste transportation 	X ₅ : transportation-worker radiological fatalities
 Minimize public health effects from radiation exposure in waste transportation 	X ₆ : public radiological fatalities from transportation
 Minimize worker fatalities from nonradiological causes in waste transportation 	X ₇ : transportation-worker nonradiologica fatalities
 Minimize public fatalities from nonradiological causes in waste transportation 	X_8 : public nonradiological fatalities from transportation
Environn	nental impacts
9. Minimize aesthetic degradation	X ₉ : constructed scale"
 Minimize the degradation of archaeologica historical, and cultural properties 	$X_{10}: \text{ constructed scale}^{\#}$
11. Minimize biological degradation	X_{11} constructed scale"
Socioeco	nomic impacts
12. Minimize adverse socioeconomic impacts	X12: constructed scale"
Econo	mic impacts
13. Minimize repository costs	X_{13} : millions of dollars
14. Minimize waste-transportation costs	X_{14} : millions of dollars

Attribute level	Description of attribute level		
1	Support: No groups are opposed to the facility and at least one group has organized support for the facility.		
0	Neutrality: All groups are indifferent or uninterested.		
- 1	<i>Controversy:</i> One or more groups have organized oppo- sition, although no groups have action-oriented opposi- tion. Other groups may either be neutral or support the facility.		
-2	Action-oriented opposition: Exactly one group has action- oriented opposition. The other groups have organized support, indifference or organized opposition.		
- 3	Strong action-oriented opposition: Two or more groups have action-oriented opposition.		

Table 4.1. A constructed attribute for public attitudes

Scale to Measure Biological Impact

- Loss of 1.0 mi² of entirely agricultural or urban "habitat" with no loss of any "native" communities.
- Loss of 1.0 mi² of primarily (75%) agricultural habitat with loss of 25% of second growth; no measurable loss of wetlands or endangered species habitat.
- Loss of 1.0 mi² of farmed (50%) and disturbed (i.e., logged or new second-growth) (50%) habitat; no measurable loss of wetlands or endangered species habitat.
- Loss of 1.0 mi² of recently disturbed (logged, plowed) habitat with disturbance to surrounding (within 1.0 mi of site border) previously disturbed habitat; 15% loss of wetlands and/or endangered species habitat.
- Loss of 1.0 mi² of farmed or disturbed area (50%) and mature second-growth or other undisturbed community (50%); 15% loss of wetlands and/or endangered species.
- Loss of 1.0 mi² of primarily (75%) undisturbed mature desert community (i.e., sagebrush);
 15% loss of wetlands and/or endangered species habitat.
- Loss of 1.0 mi² of mature second-growth (but not virgin) forest community; 50% loss of big game and upland game birds; 50% loss of local wetlands and local endangered species habitat.

 Loss of 1.0 mi² of mature second-growth forest community; 90% loss of local productive wetlands and local endangered species habitat.

 Complete loss of 1.0 mi² of mature virgin forest; 100% loss of local wetlands and local endangered species habitat.

Impact level	Impacts on historical properties in the effected area"		
0	There are no impacts on any significant historical properties		
1	One historical property of major significance or 5 historical properties of minor significance are subjected to minimal adverse impacts		
2	Two historical properties of major significance or 10 historical		
3	properties of minor significance are subjected to minimal adverse impact Two historical properties of major significance or 10 historical		
4	properties of minor significance are subjected to major adverse impacts. Three historical properties of major significance or 15 historical properties of minor significance are subjected to major adverse impacts.		
5	Four historical properties of major significance are subjected to major adverse impacts properties of minor significance are subjected to major adverse impacts		

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- \succeq_J marginal preference relation induced by \succeq on X_J

 $x_J \succeq_J y_J \Leftrightarrow (x_J, z_{-J}) \succeq (y_J, z_{-J}), \text{ for all } z_{-J} \in X_{-J}$

Independence

• J is independent for \succeq if

 $[(x_J, z_{-J}) \succeq (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succeq_J y_J$

 \bullet common levels on attributes other than J do not affect preference

Separability

• J is separable for \succeq if

 $[(x_J, z_{-J}) \succ (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succeq_J y_J$

• varying common levels on attributes other than J do reverse strict preference

Independence

Definition

• for all $i \in N$, $\{i\}$ is independent, \succeq is weakly independent

Notation

• for all $J \subseteq N$, J is independent, \succeq is independent

Proposition

Let \succeq be a weakly independent weak order on $X = \prod_{i=1}^{n} X_i$. Then:

- \succeq_i is a weak order on X_i
- $[x_i \succeq_i y_i, \text{ for all } i \in N] \Rightarrow x \succeq y$
- $[x_i \succeq_i y_i, \text{ for all } i \in N \text{ and } x_j \succ_j y_j \text{ for some } j \in N] \Rightarrow x \succ y$

for all $x, y \in X$

Dominance

- as soon as I have a weakly independent weak order
- dominance arguments apply

50

Independence in practice

Independence

- it is easy to imagine examples in which independence is violated
 - Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
 - decision aiding vs AI

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 • ⊙ < ⊙

Additive value functions: outline of theory The case of 2 attributes

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succeq on $X = X_1 \times X_2$
- what must be supposed to guarantee that I can represent \succeq in the additive value function model

$$v_1 : X_1 \to \mathbb{R}$$
$$v_2 : X_2 \to \mathbb{R}$$
$$(x_1, x_2) \succeq (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \ge v_1(y_1) + v_2(y_2)$$

• \gtrsim must be an independent weak order

Method

• try building standard sequences and see if it works!

53

Additive value functions: outline of theory The case of 2 attributes

Why an additive model?

Answer

- v_1 and v_2 will be built so that additivity holds
- equivalent multiplicative model

$$(x_1, x_2) \succeq (y_1, y_2) \Leftrightarrow w_1(x_1) w_2(x_2) \ge w_1(y_1) w_2(y_2)$$
$$w_1 = \exp(v_1)$$
$$w_2 = \exp(v_2)$$

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Additive value functions: outline of theory The case of 2 attributes

Uniqueness

Important observation

Suppose that there are v_1 and v_2 such that

$$(x_1, x_2) \succeq (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \ge v_1(y_1) + v_2(y_2)$$

If $\alpha > 0$

 $w_1 = \alpha v_1 + \beta_1 \quad w_2 = \alpha v_2 + \beta_2$

is also a valid representation

Consequences

- fixing $v_1(x_1) = v_2(x_2) = 0$ is harmless
- fixing $v_1(y_1) = 1$ is harmless if $y_1 \succ_1 x_1$

55

Additive value functions: outline of theory The case of 2 attributes

Standard sequences

Preliminaries

- choose arbitrarily two levels $x_1^0, x_1^1 \in X_1$
- make sure that $x_1^1 \succ_1 x_1^0$
- choose arbitrarily one level $x_2^0 \in X_2$
- $(x_1^0, x_2^0) \in X$ is the reference point (origin)
- the preference interval $[x_1^0, x_1^1]$ is the unit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Building a standard sequence on X_2

- find a "preference interval" on X_2 that has the same "length" as the reference interval $[x_1^0, x_1^1]$
- find x_2^1 such that

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$v_1(x_1^0) + v_2(x_2^1) = v_1(x_1^1) + v_2(x_2^0)$$
 so that
 $v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$

• the structure of X_2 has to be "rich enough"

57

Additive value functions: outline of theory The case of 2 attributes

Standard sequences

Consequences

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$
$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$

• it can be supposed that

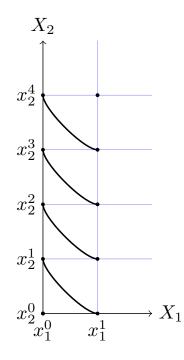
$$v_1(x_1^0) = v_2(x_2^0) = 0$$

 $v_1(x_1^1) = 1$

 $\Rightarrow v_2(x_2^1) = 1$

ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Going on


$$\begin{aligned} & (x_1^0, x_2^1) \sim (x_1^1, x_2^0) \\ & (x_1^0, x_2^2) \sim (x_1^1, x_2^1) \\ & (x_1^0, x_2^3) \sim (x_1^1, x_2^2) \\ & \dots \\ & (x_1^0, x_2^k) \sim (x_1^1, x_2^{k-1}) \end{aligned}$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0) = 1 \\ v_2(x_2^2) - v_2(x_2^1) = v_1(x_1^1) - v_1(x_1^0) = 1 \\ v_2(x_2^3) - v_2(x_2^2) = v_1(x_1^1) - v_1(x_1^0) = 1 \\ & \dots \end{aligned}$$

$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1 \\ & \dots \end{aligned}$$

59

<ロ>
<日>
<日>
<日>
<10</p>
<10</p

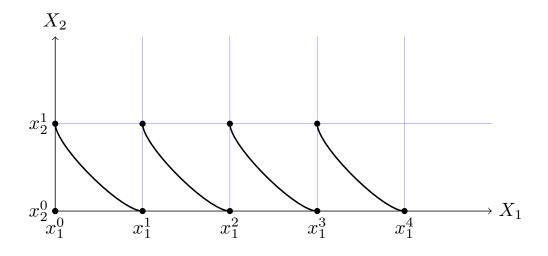
Standard sequence

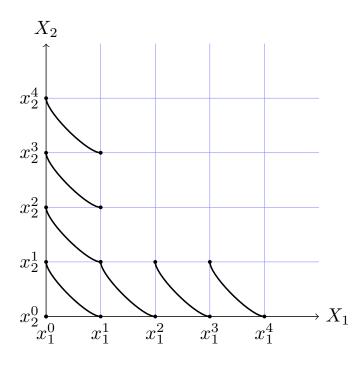
Archimedean

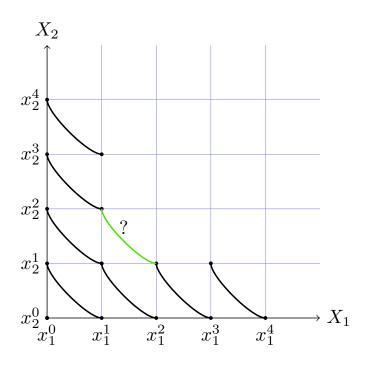
- implicit hypothesis for length
 - the standard sequence can reach the length of any object

 $\forall x, y \in \mathbb{R}, \exists n \in \mathbb{N} : ny > x$

- a similar hypothesis has to hold here
- rough interpretation
 - there are not "infinitely" liked or disliked consequences

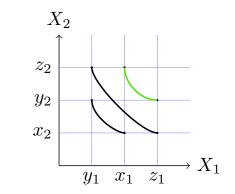

Additive value functions: outline of theory The case of 2 attributes Building a standard sequence on X_1


$$\begin{aligned} &(x_1^2, x_2^0) \sim (x_1^1, x_2^1) \\ &(x_1^3, x_2^0) \sim (x_1^2, x_2^1) \\ &\dots \\ &(x_1^k, x_2^0) \sim (x_1^{k-1}, x_2^1) \end{aligned}$$

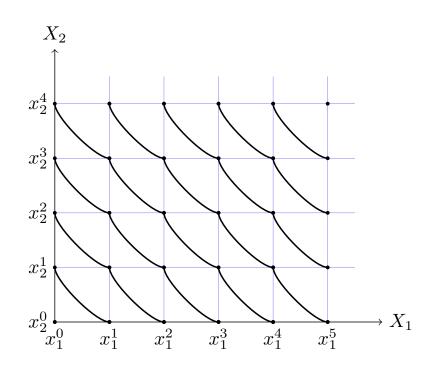

$$v_1(x_1^2) - v_1(x_1^1) = v_2(x_2^1) - v_2(x_2^0) = 1 \\ &v_1(x_1^3) - v_1(x_1^2) = v_2(x_2^1) - v_2(x_2^0) = 1 \\ &\dots \\ &v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1 \\ &\dots \end{aligned}$$

$$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1 \\ &\dots \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Additive value functions: outline of theory The case of 2 attributes


Thomsen condition

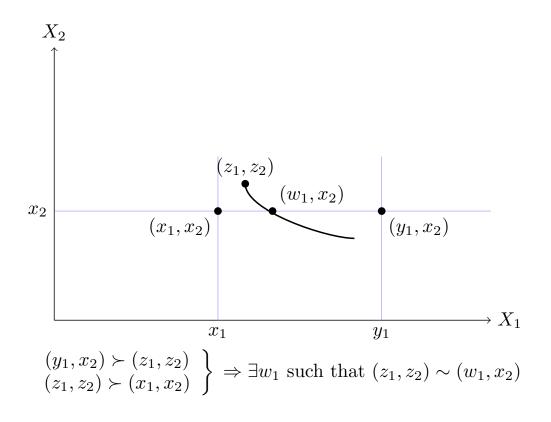
$$\begin{array}{l} (x_1, x_2) \sim (y_1, y_2) \\ \text{and} \\ (y_1, z_2) \sim (z_1, x_2) \end{array} \Rightarrow (x_1, z_2) \sim (z_1, y_2) \end{array}$$

Consequence

• there is an additive value function on the grid

Summary

- we have defined a "grid"
- there is an additive value function on the grid
- iterate the whole process with a "denser grid"


Additive value functions: outline of theory The case of 2 attributes

Hypotheses

- Archimedean: every strictly bounded standard sequence is finite
- essentiality: both \succ_1 and \succ_2 are nontrivial
- restricted solvability

69

ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Additive value functions: outline of theory The case of 2 attributes

Basic result

Theorem (2 attributes)

If

- restricted solvability holds
- each attribute is essential

then

the additive value function model holds

if and only if

 \succsim is an independent weak order satisfying the Thomsen and the Archimedean conditions

The representation is unique up to scale and location

71

Additive value functions: outline of theory More than 2 attributes

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
 - if n = 2, independence is identical with weak independence
 - if n > 3, independence is much stronger than weak independence

	X_1	X_2	X_3
a	75	10	0
b	100	2	0
c	75	10	40
d	100	2	40

 X_1 : % of nights at home

 X_2 : attractiveness of city

 X_3 : salary increase

weak independence holds $a \succ b$ and $d \succ c$ is reasonable

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Additive value functions: outline of theory More than 2 attributes

Basic result

Theorem (more than 2 attributes)

If

- restricted solvability holds
- at least three attributes are essential

then

the additive value function model holds

if and only if

 \succsim is an independent weak order satisfying the Archimedean condition

The representation is unique up to scale and location

73

Additive value functions: outline of theory More than 2 attributes

Independence and even swaps

Even swaps technique

- assessing tradeoffs...
- after having suppressed attributes

Implicit hypothesis

- what happens on these attributes do not influence tradeoffs
- this is another way to formulate independence

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Additive value functions: implementation Direct techniques

Assessing value functions

Standard technique

- check independence
- build standard sequences
 - "weights" (importance) has no explicit rôle
 - do not even pronounce the word!!

Problems

- many questions
- questions on fictitious alternatives
- rests on indifference judgments
- discrete attributes
- propagation of "errors"

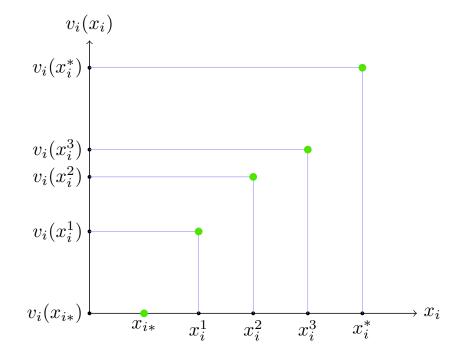
76

Additive value functions: implementation Indirect techniques

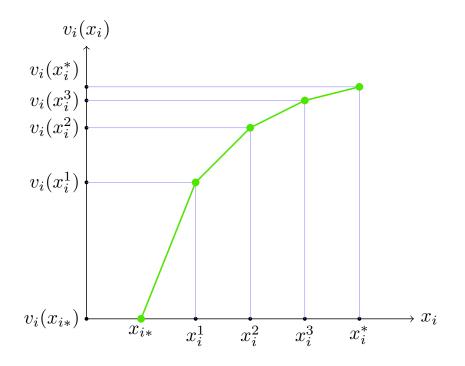
UTA: outline

Principle

- select a number of reference alternatives that the DM knows well
- rank order these alternatives
- test, using LP, if this information is compatible with an additive value function
 - if yes, present a central one
 - interact with the DM
 - apply the resulting function to the whole set of alternatives
 - if not
 - interact with the DM


◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

UTA: decision variables


Aim

- assess v_1, v_2, \ldots, v_n
- normalization
 - x_{i*} : worst level on attribute i
 - x_i^* : best level on attribute i
 - $v_1(x_{1*}) = v_2(x_{2*}) = \ldots = v_n(x_{n*}) = 0$
 - $\sum_{i=1}^{n} v_i(x_i^*) = 1$
- if the attribute is discrete
 - take as many variables as there are levels
- if the attribute is not discrete
 - consider a piecewise linear approximation
- discrete attribute
 - $X_i = \{x_{i*}, x_i^1, x_i^2, \dots, x_i^{r_i}, x_i^*\}$
- continuous attribute
 - choose the number of linear pieces $r_i + 1$
 - $[x_{i*}, x_i^1], [x_i^1, x_i^2], \dots, [x_i^{r_i-1}, x_i^{r_i}], [x_i^{r_i}, x_i^*]$

78

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

UTA: constraints

Using these conventions

• for all $x, v(x) = \sum_{i=1}^{n} v_i(x_i)$ can be expressed as a linear combination of the $\sum_{i=1}^{n} (r_i + 1)$ variables

$$\begin{aligned} x\succ y \Leftrightarrow v(x) > v(y) \\ v(x) - v(y) + \sigma^+(xy) - \sigma^-(xy) &\geq \varepsilon \\ x\sim y \Leftrightarrow v(x) = v(y) \\ v(x) - v(y) + \sigma^+(xy) - \sigma^-(xy) &= 0 \end{aligned}$$

minimize
$$Z = \sum_{\text{constraints}} \sigma^+(xy) + \sigma^-(xy)$$

s.t.

one constraint per pair of compared alternatives normalization constraints

82

Additive value functions: implementation Indirect techniques

UTA: analyzing results

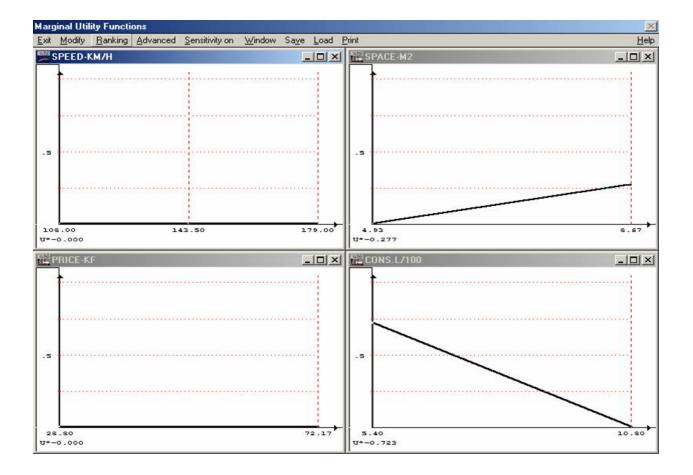
If $Z^* = 0$

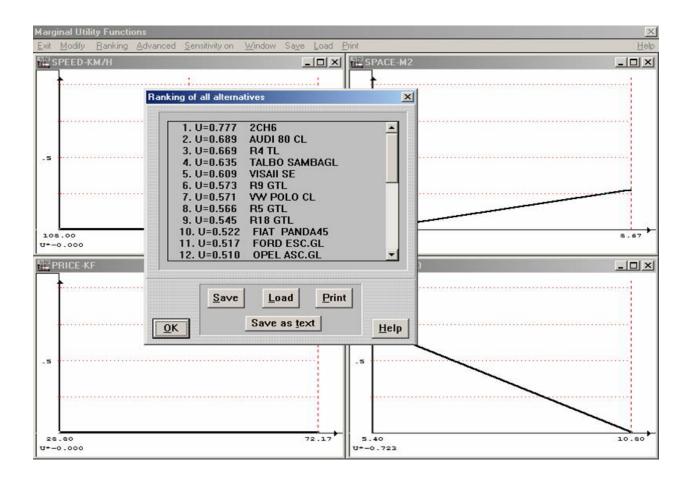
- there is one additive value function compatible with the given information
- there are infinitely many (identically normalized) compatible additive value functions $v \in \mathcal{V}$
- use post-optimality analysis and/or interaction to explore \mathcal{V}

If $Z^* > 0$

- there is no additive value function compatible with the given information
- interact
 - increase the number of linear pieces
 - decrease ε
 - modify ranking
 - diagnostic a failure of independence
 - use approximate function

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</


🞆 UTA+ method	_ B × 1
File Problem Banking Solve Function Final ranking Load function	Help 📻
	Office
Edition	×
	Help
Alternatives : Add	CONS.L/100
2CH6	SPACE-M2
TALBO SAMBAGL	
FORD FIES.1100S	
P104 GR R5 GTL	
VISAII SE FIAT RIT.65CL <u>VI</u> Done	<u>Help</u> Cons.L/100 SPACE-M2 PRICE-KF SPEED-KM/H
	25
	Mi
	270
	Microsoft
c:\windows\bureau\mcdmso~1\uta_~1\versio~1\cars.uta	
Démarrer Micros	


🗱 UTA+ method			_ 8 × 5
<u>File Problem Banking Solve Fu</u>	nction Final ranking Load function		Help 📑
Edition		<u>H</u> elp	Office
+ Alternation	W POLO CL	Criteria -	
H4 TL 2CH6 FIAT PAN TALBO SA	Values for criteria :	Main	<u></u>
FORD FIES VW POLO P104 GR R5 GTL	CONS.L/100 7.00 A	<u>Change name</u>	
VISAII SE FIAT RIT.E	PRICE-KF 39.39 SPEED-KM/H 140.00	Prev	
			1
	×	Edit	2E
			
	CONS.L/100 7.00		
-	-		Microsoft
c:\windows\bureau\mcdmso~1\			
第Démarrer 図 20 見 ことFich W Micros Micros 分 Eudora つこいい つこいい つこいい していい 4 UTA 4 11:00			

UTA+ method	
Elle Problem Banking Solve Function He	P 📑
	Office
User's ranking of reference alternatives	
Alternatives Ranking	Ď
WW GOLF C AUDI 100 CL R9 GTL ALFAS.TI-NR FORD ESC.GL SGA X1 OPEL ASC.GL SGR TALBOT HOR.GLS VW PASSAT C AUDI 80 CL VW PASSAT C	
Insert in ranking : OPEL KAD.GL	
○ Before selected item Preference	
After selected item VW PASSAT C	DF
<u>QK</u> <u>H</u> elp	2
c:\windows\bureau\mcdmso~1\uta_~1\versio~1\cars.uta	Microsoft
C.\WI C.\WI C.\WI WMicros Micros C.\WI C.\WI C.\WI C.\WI C.\WI	11:01

Elle Broblem Banking Solve Function Final ranking Load function	1.1
UTA+ - Ordinal regression	1
Average function	
 Default threshold for LP problem 	8
Use preference intensities for alternatives	1
User defined threshold for LP problem	4
Find concave utility function	-
Add :	
V Ideal alternative	
Help	
Anti-ideal alternative	1
 ◆ Default threshold for LP problem ◆ Use preference intensities for alternatives ◆ User defined threshold for LP problem Find concave utility function Add : ✓ Ideal alternative ✓ Ideal alternative ✓ Ideal alternative ✓ Play sound after all Cancel ✓ Qk 	4
Leftclick to stop calculation !	
	2
	M.M.
c:\windows\bureau\mcdmso~1\uta_~1\versio~1\cars.uta	
Berger Micro Micro Micro PEudo C:W C:W C:W W UT V. 11:02 V	:

🗰 UTA+ method					_ 8 × 5
File Problem Ranking Solve F	Function Final ranki	ng Load function			Help 📻
Solvin	ig the problem!		X		Office
P	ass 1 0. ass 2 0.	Kendall 143 0.905 .071 0.905 .048 0.005	lter. 9 10		
		mation	inction found fits ranking	s your	
	Cance Help	3	Qk		
c:\windows\bureau\mcdmso~1	1\uta_~1\versio~	1\cars.uta			Microsoft
reserves the first state of the first state			C:w C:	W 🔄 C:W 🔚 UT	9 11:02

Additive value functions: implementation Indirect techniques

UTA: variants

Possible variants

- use a different formulation (e.g., minimize the maximum deviation)
- add constraints on the shape of the v_i
 - decreasing, increasing, convex, s-shaped
- post optimality analysis
- interaction with the DM
- choice of the reference alternatives
- dealing with "inconsistencies"
- admitting other type of information
 - x is "much better" then y
 - the difference between x and y is "larger" than the difference between z and w
- exploit the whole set \mathcal{V} to build a recommendation

Scaling constants

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

Convenient normalization

- x_{i*}, x_i^*
- $v_1(x_{1*}) = v_2(x_{2*}) = \ldots = v_n(x_{n*}) = 0$
- $\sum_{i=1}^{n} v_i(x_i^*) = 1$

92

Additive value functions: implementation Indirect techniques

Scaling constants

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$
$$v_1(x_{1*}) = v_2(x_{2*}) = \ldots = v_n(x_{n*}) = 0$$
$$\sum_{i=1}^{n} v_1(x_i^*) = 1$$

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} \lambda_i u_i(x_i) \ge \sum_{i=1}^{n} \lambda_i u_i(y_i)$$
$$\sum_{i=1}^{n} \lambda_i = 1$$
$$u_1(x_{1*}) = u_2(x_{2*}) = \dots = u_n(x_{n*}) = 0$$
$$u_1(x_1^*) = u_2(x_2^*) = \dots = u_n(x_n^*) = 1$$
$$u_i = v_i/v_i(x_i^*)$$

Scaling constants

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} \lambda_i u_i(x_i) \ge \sum_{i=1}^{n} \lambda_i u_i(y_i)$$
$$\sum_{i=1}^{n} \lambda_i = 1$$
$$u_1(x_{1*}) = u_2(x_{2*}) = \dots = u_n(x_{n*}) = 0$$
$$u_1(x_1^*) = u_2(x_2^*) = \dots = u_n(x_n^*) = 1$$

Most critical mistake

- the numbers λ_i do NOT reflect the importance of attribute i
- they reflect the width of the interval $[x_{i*}, x_i^*]$
- if this interval is changed, the λ_i MUST be changed

Э

< □ > < @ > < ≧ > < ≧ >

94

Additive value functions: implementation Indirect techniques

MACBETH

Conventions

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} \lambda_i u_i(x_i) \ge \sum_{i=1}^{n} \lambda_i u_i(y_i)$$
$$\sum_{i=1}^{n} \lambda_i = 1$$
$$u_1(x_{1*}) = u_2(x_{2*}) = \dots = u_n(x_{n*}) = 0$$
$$u_1(x_1^*) = u_2(x_2^*) = \dots = u_n(x_n^*) = 1$$

Principles

- assess the u_i independently on each attribute using "preference differences"
- assess the λ_i to fit these functions together

MACBETH

Assessing the u_i

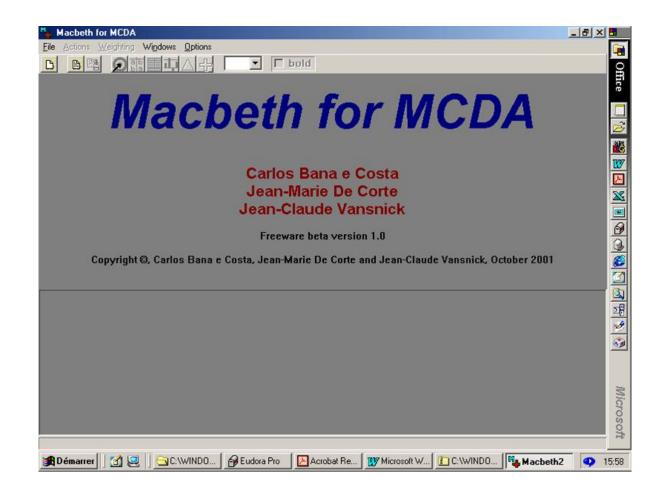
• compare alternatives only differing on attribute i

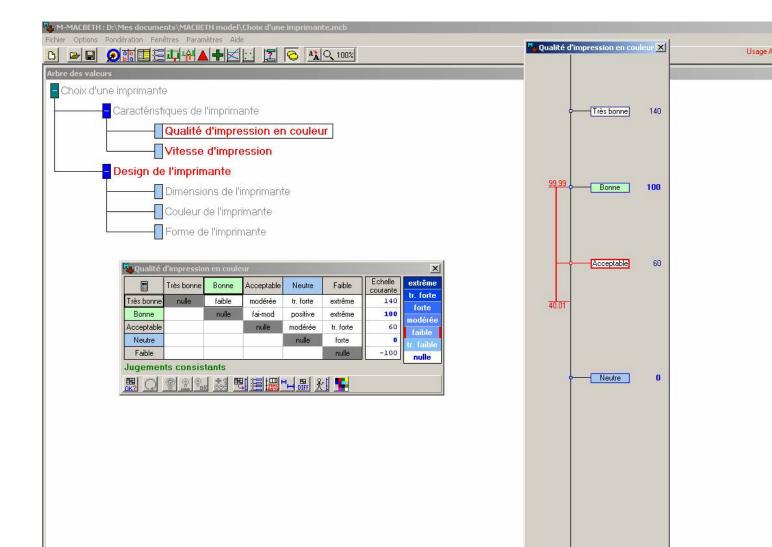
_

• rate their difference of attractiveness on a 7-point scale

Categories	Description
C_0	null
C_1	
C_2	weak
C_3	
C_4	strong
C_5	
C_6	extreme

96


Additive value functions: implementation Indirect techniques


MACBETH

$$\begin{array}{c} (a_i, b_i) \in C_k \\ (c_i, d_i) \in C_\ell \\ \ell > k \end{array} \right\} \Rightarrow u_i(a_i) - u_i(b_i) < u_i(c_i) - u_i(d_i)$$

Solution

- add normalization constraints $u_i(x_{i*}) = 0, u_i(x_i^*) = 1$
- add deviation variables
- use LP

Scaling constants

$$x \succeq y \Leftrightarrow \sum_{i=1}^n \lambda_i u_i(x_i) \ge \sum_{i=1}^n \lambda_i u_i(y_i)$$
$$u_1(x_{1*}) = u_2(x_{2*}) = \dots = u_n(x_{n*}) = 0$$
$$u_1(x_1^*) = u_2(x_2^*) = \dots = u_n(x_n^*) = 1$$

Scaling constants

- once the u_i are known...
- comparing alternatives leads to a constraint on the λ_i

MACBETH

Repeat the procedure with the alternatives: $(x_1^*, x_{2*}, ..., x_{n*}), (x_{1*}, x_2^*, ..., x_{n*}) \dots (x_{1*}, x_{2*}, ..., x_n^*)$

100

・< 日 > < 目 > < 目 > < 目 > < 日 > < < への

Additive value functions: implementation Indirect techniques

Summary

Conjoint measurement

- highly consistent theory
- together with practical assessment techniques

Why consider extensions?

- hypotheses may be violated
- assessment is demanding
 - time
 - cognitive effort

Part II

A glimpse at possible extensions

Summary

Additive value function model

- requires independence
- requires a finely grained analysis of preferences

Two main types of extensions

- models with interactions
- 2 more ordinal models

Two extreme models

- additive value function model
 - independence
- decomposable model
 - only weak independence

$$x \succeq y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$
$$x \succeq y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$

105

Models with interactions Decomposable models

$$x \succeq y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$

 F increasing in all arguments

Result

Under mild conditions, any weakly independent weak order may be represented in the decomposable model

Problem

- all possible types of interactions are admitted
- assessment is a very challenging task

<ロト</p>

Two main directions

Extensions

- work with the decomposable model
 - rough sets
- 2 find models "in between additive" and decomposable
 - CP-nets, GAI
 - fuzzy integrals

107

Models with interactions Rough sets

Rough sets

Basic ideas

- work within the general decomposable model
- use the same principle as in UTA
- replacing the numerical model by a symbolic one
- infer decision rules

 \mathbf{IF}

$$x_1 \ge a_1, \dots, x_i \ge a_i, \dots, x_n \ge a_n$$
 and
 $y_1 \le b_1, \dots, y_i \le b_i, \dots, y_n \le b_n$
Then
 $x \succeq y$

- many possible variants
- Greco, Matarazzo, Słowiński

Models with interactions GAI networks

GAI: Example

Choice of a meal: 3 attributes

 $X_1 = \{\text{Steak}, \text{Fish}\}$ $X_2 = \{\text{Red}, \text{White}\}$ $X_3 = \{\text{Cake}, \text{sherBet}\}$

Preferences

 $x^{1} = (S, R, C) \quad x^{2} = (S, R, B) \quad x^{3} = (S, W, C) \quad x^{4} = (S, W, B)$ $x^{5} = (F, R, C) \quad x^{6} = (F, R, B) \quad x^{7} = (F, W, C) \quad x^{8} = (F, W, B)$

$$x^2\succ x^1\succ x^7\succ x^8\succ x^4\succ x^3\succ x^5\succ x^6$$

- the important is to match main course and wine
- I prefer Steak to Fish
- I prefer Cake to sherBet if Fish
- I prefer sherBet to Cake if Steak

109

Models with interactions GAI networks

Example

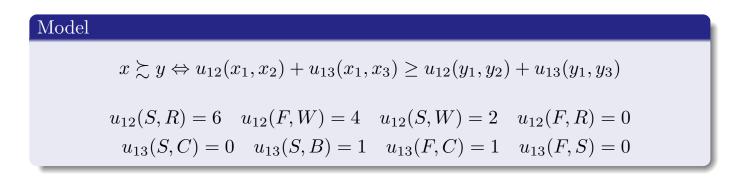
$$\begin{aligned} x^1 &= (S, R, C) \quad x^2 &= (S, R, B) \quad x^3 &= (S, W, C) \quad x^4 &= (S, W, B) \\ x^5 &= (F, R, C) \quad x^6 &= (F, R, B) \quad x^7 &= (F, W, C) \quad x^8 &= (F, W, B) \end{aligned}$$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

Independence

$$x^{1} \succ x^{5} \Rightarrow v_{1}(S) > v_{1}(F)$$
$$x^{7} \succ x^{3} \Rightarrow v_{1}(F) > v_{1}(S)$$

Grouping main course and wine?


$$x^7 \succ x^8 \Rightarrow v_3(C) > v_3(B)$$
$$x^2 \succ x^1 \Rightarrow v_3(B) > v_3(C)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{aligned} x^1 &= (S, R, C) \quad x^2 &= (S, R, B) \quad x^3 &= (S, W, C) \quad x^4 &= (S, W, B) \\ x^5 &= (F, R, C) \quad x^6 &= (F, R, B) \quad x^7 &= (F, W, C) \quad x^8 &= (F, W, B) \end{aligned}$$

Models with interactions GAI networks

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

111

Generalized Additive Independence

GAI (Gonzales & Perny)

- axiomatic analysis
- if interdependences are known
 - assessment techniques
 - efficient algorithms (compactness of representation)

Models with interactions GAI networks

What R. L. Keeney would probably say

• the attribute "richness" of meal is missing

GAI

- interdependence within a framework that is quite similar to that of classical theory
- powerful generalization of recent models in Computer Science

Fuzzy integrals

Origins

- decision making under uncertainty
 - homogeneous Cartesian product
- mathematics
 - integrating w.r.t. a non-additive measure
- game theory
 - cooperative TU games
- multiattribute decisions
 - generalizing the weighted sum

Models with interactions Fuzzy integrals

Example

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13
	0	$a \succ b d \succ c$	

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

- having good grades in both
 - Math and Physics or
 - Maths and Economics
- better than having good grades in both
 - Physics and Economics

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Weighted sum

	Physics	Maths	Economics
\overline{a}	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

 $a \succ b \Rightarrow 18w_1 + 12w_2 + 6w_3 > 18w_1 + 7w_2 + 11w_3 \Rightarrow w_2 > w_3$ $d \succ c \Rightarrow 5w_1 + 17w_2 + 8w_3 > 5w_1 + 12w_2 + 13w_3 \Rightarrow w_3 > w_2$

Models with interactions Fuzzy integrals

Choquet integral

Capacity

$$\begin{split} \mu &: 2^N \to [0,1] \\ \mu(\varnothing) &= 0, \mu(N) = 1 \\ A \subseteq B \Rightarrow \mu(A) \leq \mu(B) \end{split}$$

Choquet integral

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$\begin{array}{cccc} x_{(1)} - x_{(0)} & \mu(\{(1), (2), (3), (4) \dots, (n)\}) \\ x_{(2)} - x_{(1)} & \mu(\{(2), (3), (4) \dots, (n)\}) \\ x_{(3)} - x_{(2)} & \mu(\{(3), (4) \dots, (n)\}) \\ \dots & \dots \\ x_{(n)} - x_{(n-1)} & \mu(\{(n)\}) \end{array}$$

$$\mathcal{C}_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$
$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Models with interactions Fuzzy integrals

Application

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

$$\begin{split} \mu(M) &= 0.1, \mu(P) = 0.5, \mu(E) = 0.5\\ \mu(M, P) &= 1 > \mu(M) + \mu(P)\\ \mu(M, E) &= 1 > \mu(M) + \mu(E)\\ \mu(P, E) &= 0.6 < \mu(P) + \mu(E) \end{split}$$

$$C_{\mu}(a) = 6 \times 1 + (12 - 6) \times 1 + (18 - 12) \times 0.5 = 15.0$$

$$C_{\mu}(b) = 7 + (11 - 7) \times 0.6 + (18 - 11) \times 0.5 = 12.9$$

$$C_{\mu}(c) = 5 + (8 - 5) \times 1 + (17 - 8) \times 0.1 = 8.9$$

$$C_{\mu}(d) = 5 + (12 - 5) \times 1 + (13 - 12) \times 0.5 = 12.5$$

Choquet integral in MCDM

Properties

- monotone, idempotent, continuous
- preserves weak separability
- tolerates violation of independence
- contains many other aggregation functions as particular cases

Capacities

Fascinating mathematical object:

- Möbius transform
- Shapley value
- interaction indices

119

Models with interactions Fuzzy integrals

Questions

Hypotheses

- I can compare x_i with x_j
 - attributes are (level) commensurable

Classical model

• I can indirectly compare $[x_i, y_i]$ with $[x_j, y_j]$

Central research question

• how to assess $u: \bigcup_{i=1}^n X_i \to \mathbb{R}$ so that the levels are commensurate?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Choquet integral

Assessment

• variety of mathematical programming based approaches

Extensions

- Choquet integral with a reference point (statu quo)
- Sugeno integral (median)
- axiomatization as aggregation functions
- *k*-additive capacities

121

Observations

Classical model

• deep analysis of preference that may not be possible

Ordinal models

- preference are not well structured
- several or no DM
- prudence

Idea

- it is not very restrictive to suppose that levels on each X_i can be ordered
- aggregate these orders
- possibly taking importance into account

Social choice

• aggregate the preference orders of the voters to build a collective preference

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Outranking methods

ELECTRE

$x \succeq y$ if

Concordance a "majority" of attributes support the assertion Discordance the opposition of the minority is not "too strong"

Ordinal models

$$x \succeq y \Leftrightarrow \begin{cases} \sum_{i:x_i \succeq iy_i} w_i \ge s \\ Not[y_i \ V_i \ x_i], \forall i \in N \end{cases}$$

Problem

- \gtrsim may not be complete
- \gtrsim may not be transitive
- \succ may have cycles

124

Ordinal models

Condorcet's paradox

 $x \succsim y \Leftrightarrow |\{i \in N : x_i \succsim_i y_i\}| \ge |\{i \in N : y_i \succsim_i x_i\}|$

◆□▶<□</p>
◆□▶<□</p>
◆□▶
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●</

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very attractive...

Ordinal models

- dictator (weak order)
- oligarchy (transitive \succ)
- veto (acyclic \succ)

126

Ordinal models

Ways out

Accepting intransitivity

- find way to extract information in spite of intransitivity
 - ELECTRE I, II, III, IS
 - PROMETHEE I, II

Do not use paired comparisons

- only compare x with carefully selected alternatives
 - ELECTRE TRI
 - methods using reference points

Conclusion

Fascinating field

- theoretical point of view
 - measurement theory
 - decision under uncertainty
 - social choice theory
- practical point of view
 - rating firms from a social point of view

Ordinal models

• evaluating H_2 -propelled cars